15-213, Fall 200X
Lab Assignment 7: Web Proxy
Assigned: November XXX, Due: December XXX, 11:59PM

Harry Bovik (bovi k@s. cnu. edu)is the lead person for this assignment.

Introduction

A Web proxy is a program that acts as a middleman between a Yéasbr and amend server. Instead of
contacting the end server directly to get a Web page, thedaowaontacts the proxy, which forwards the
request on to the end server. When the end server replies farofty, the proxy sends the reply on to the
browser.

Proxies are used for many purposes. Sometimes proxieseaarurewalls, such that the proxy is the only
way for a browser inside the firewall to contact an end seru&ide. The proxy may do translation on the
page, for instance, to make it viewable on a Web-enablegbelhe. Proxies are also usedsasnymizers.

By stripping a request of all identifying information, a gyocan make the browser anonymous to the end
server. Proxies can even be used to cache Web objects, mgstocopy of, say, an image when a request
for it is first made, and then serving that image in respondattoe requests rather than going to the end
server.

In this lab, you will write a concurrent Web proxy that loggjuests. In the first part of the lab, you will
write a simple sequential proxy that repeatedly waits foequest, forwards the request to the end server,
and returns the result back to the browser, keeping a logatf seguests in a disk file. This part will help
you understand basics about network programming and thePHiFatocol.

In the second part of the lab, you will upgrade your proxy st ituses threads to deal with multiple clients
concurrently. This part will give you some experience witimncurrency and synchronization, which are
crucial computer systems concepts.

Logistics

As always, you may work in a group of up to two people. The omgdin will be electronic. Any clarifica-
tions and revisions to the assignment will be posted on thesed\Veb page.

Hand Out Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how the instructor will hand out
the pr oxyl ab- handout . t ar file to the students.

Start by copyingpr oxyl ab- handout . t ar to a (protected) directory in which you plan to do your work.
Then give the command ‘ar xvf proxyl ab- handout . t ar”. This will cause a humber of files to
be unpacked in the directory:

e proxy. c: This is the only file you will be modifying and handing in. lbmtains the bulk of the
logic for your proxy.

e csapp. c: This is the file of the same name that is described in the CB:#&Rtbook. It contains
error handling wrappers and helper functions such as the(RtDust 1/0) package (CS:APP 11.4),
open_clientfd(CS:APP 12.4.4), andpen_l i st enf d (CS:APP 12.4.7).

e csapp. h: This file contains a few manifest constants, type definftji@nd prototypes for the func-
tions incsapp. c.

e Makefil e: Compiles and linkpr oxy. ¢c andcsapp. ¢ into the executablpr oxy.

Your pr oxy. c file may call any function in thesapp. c file. However, since you are only handing in a
singlepr oxy. c file, please don’'t modify thesapp. c file. If you want different versions of functions in
in csapp. ¢ (see the Hints section), write new functions in fireoxy. c file.

Part I: Implementing a Sequential Web Proxy

In this part you will implement a sequential logging proxyouY proxy should open a socket and listen
for a connection request. When it receives a connectionesgit should accept the connection, read the
HTTP request, and parse it to determine the name of the ewersérshould then open a connection to the
end server, send it the request, receive the reply, and fdrthe reply to the browser if the request is not
blocked.

Since your proxy is a middleman between client and end sdtweitl have elements of both. It will act as
a server to the web browser, and as a client to the end serves you will get experience with both client
and server programming.

Logging

Your proxy should keep track of all requests in a log file namedxy. | og. Each log file entry should be
a file of the form:

Date: browserl P URL size

wherebr owser | Pis the IP address of the brows&RL is the URL asked forsi ze is the size in bytes
of the object that was returned. For instance:

Sun 27 Qct 2002 02:51:02 EST: 128.2.111.38 http://ww.cs. cnu. edu/ 34314

Note thatsi ze is essentially the number of bytes received from the endesdrom the time the connection
is opened to the time it is closed. Only requests that are jnatrdesponse from an end server should be
logged. We have provided the functiéror mat | og_entry in csapp. c to create a log entry in the
required format.

Port Numbers
You proxy should listen for its connection requests on the pomber passed in on the command line:
uni x> ./ proxy 15213

You may use any port number wherel024 < p < 65536, and where is not currently being used by any
other system or user services (including other studentxigs). Sed et c/ servi ces for a list of the
port numbers reserved by other system services.

Part II: Dealing with multiple requests concurrently

Real proxies do not process requests sequentially. Theytbanultiple requests concurrently. Once you

have a working sequential logging proxy, you should altéo thandle multiple requests concurrently. The
simplest approach is to create a new thread to deal with eaglcannection request that arrives (CSAPP
13.3.8).

With this approach, it is possible for multiple peer thretmlaccess the log file concurrently. Thus, you will
need to use a semaphore to synchronize access to the filehstianty one peer thread can modify it at a
time. If you do not synchronize the threads, the log file mightorrupted. For instance, one line in the file
might begin in the middle of another.

Evaluation

Each group will be evaluated on the basis of a demo to youruictstrs. See the course Web page for
instructions on how to sign up for your demos.

e Basic proxy functionality (30 points). Your sequential yyoshould correctly accept connections,
forward the requests to the end server, and pass the respacis¢o the browser, making a log entry
for each request. Your program should be able to proxy brovespiests to the following Web sites
and correctly log the requests:

— http://ww. yahoo. com
— http://ww. aol . com
—http://ww. nfl.com

e Handling concurrent requests (20 points).

Your proxy should be able to handle multiple concurrent emtions. We will determine this using
the following test: (1) Open a connection to your proxy udiid net , and then leave it open without

3

typing in any data. (2) Use a Web browser (pointed at yourygraxrequest content from some end
server.

Furthermore, your proxy should be thread-safe, protedihgpdates of the log file and protecting
calls to any thread unsafe functions suclyas host byaddr . We will determine this by inspection
during the demo.

e Style (10 points). Up to 10 points will be awarded for codet tkareadable and well commented.
Your code should begin with a comment block that describesgeneral way how your proxy works.
Furthermore, each function should have a comment blockritbesg what that function does. Fur-
thermore, your threads should run detached, and your canéddshot have any memory leaks. We
will determine this by inspection during the demo.

Hints

e The best way to get going on your proxy is to start with the basho server (CS:APP 12.4.9) and
then gradually add functionality that turns the server mfmroxy.

¢ Initially, you should debug your proxy using telnet as thertl (CS:APP 12.5.3).

e Later, test your proxy with a real browser. Explore the bremgettings until you find “proxies”, then
enter the host and port where you're running yours. With d&ge, choose Edit, then Preferences,
then Advanced, then Proxies, then Manual Proxy Configuratio Internet Explorer, choose Tools,
then Options, then Connections, then LAN Settings. Chede’proxy server,” and click Advanced.
Just set your HTTP proxy, because that’s all your code isgytuirbe able to handle.

e Since we want you to focus on network programming issueshierlab, we have provided you with
two additional helper routinesar se_ur i , which extracts the hostname, path, and port components
from a URI, and or mat | og_ent r y, which constructs an entry for the log file in the proper forma

e Be careful about memory leaks. When the processing for anRHEfuest fails for any reason, the
thread must close all open socket descriptors and free atlangeresources before terminating.

¢ You will find it very useful to assign each thread a small usiquteger ID (such as the current request
number) and then pass this ID as one of the arguments to #&dtihoutine. If you display this ID in
each of your debugging output statements, then you canaetytrack the activity of each thread.

¢ To avoid a potentially fatal memory leak, your threads stouh as detached, not joinable (CS:APP
13.3.6).

e Since the log file is being written to by multiple threads, youst protect it with mutual exclusion
semaphores whenever you write to it (CS:APP 13.5.2 and3)3.5.

e Be very careful about calling thread-unsafe functions aagihnet _nt oa, get host bynane, and
get host byaddr inside a thread. In particular, thepen_cl i ent f d function incsapp. c is
thread-unsafe because it cajlst host byaddr , a Class-3 thread unsafe function (CSAPP 13.7.1).
You will need to write a thread-safe versionagfen_cl i ent f d, calledopen_cli entfd._ s, that
uses the lock-and-copy technique (CS:APP 13.7.1) whettistgat host byaddr .

e Use the RIO (Robust 1/0) package (CS:APP 11.4) for all /O atksts. Do not use standard 1/0 on
sockets. You will quickly run into problems if you do. Howeystandard 1/O calls such &®pen
andf wri t e are fine for 1/O on the log file.

e TheRi o_readn, Ri oreadl i neb, andRi o.wr it en error checking wrappers insapp. c are
not appropriate for a realistic proxy because they terminhe process when they encounter an
error. Instead, you should write new wrappers cal®d_r eadn_w, Ri o_r eadl i neb_w, and
Ri o_wri t en_w that simply return after printing a warning message whenf#id. When either
of the read wrappers detects an error, it should return Gyaagh it encountered EOF on the socket.

e Reads and writes can fail for a variety of reasons. The mashwan read failure is aBrrno =
ECONNRESET error caused by reading from a connection that has alreaely tlesed by the peer
on the other end, typically an overloaded end server. Thé coosmon write failure is aerrno =
EPI PE error caused by writing to a connection that has been clogéd peer on the other end. This
can occur for example, when a user hits their browser’'s Stitjoty during a long transfer.

e Writing to connection that has been closed by the peer firs¢ #licits an error with errno set to
EPIPE. Writing to such a connection a second time elicits@GPHPE signal whose default action is
to terminate the process. To keep your proxy from crashingcoam use the SIBGGN argument to the
signal function (CS:APP 8.5.3) to explicitly ignore thed&BIPE signals

Handin Instructions

SITE-SPECIFIC: Insert a paragraph here that tells each teamhow to hand in their
pr oxy. ¢ solution file. For example, here are the handin instructionsve use at CMU.

e Remove any extraneous print statements.
e Make sure that you have included your identifying inforraatin pr oxy. c.
e Create a team name of the form:

— “ID” where ID is your andrew ID.

e To hand in youpr oxy. c file, type:
make handi n TEAMEt eanmane

wheret eammane is the team name described above.

e After the handin, you can submit a revised copy by typing
make handi n TEAM=t eammanme VERSI ON=2
You can verify your handin by looking at
[af s/ cs. cmu. edu/ academi c/ cl ass/ 15213-f 02/ L7/ handi n

You have list and insert permissions in this directory, butead or write permissions.

