Preface

This book (CS:APP) is for computer scientists, computeirerggs, and others who want to be able to write
better programs by learning what is going on “under the had@ computer system.

Our aim is to explain the enduring concepts underlying athpater systems, and to show you the concrete
ways that these ideas affect the correctness, performandeytility of your application programs. Other
systems books are written frombailder’s perspectivedescribing how to implement the hardware or the
systems software, including the operating system, compiled network interface. This book is written
from aprogrammer’s perspectivalescribing how application programmers can use their kedyge of a
system to write better programs. Of course, learning whgstem is supposed to do provides a good first
step in learning how to build one, and so this book also seasesvaluable introduction to those who go on
to implement systems hardware and software.

If you study and learn the concepts in this book, you will beyonr way to becoming the rare “power
programmer” who knows how things work and how to fix them wheeytbreak. Our aim is to present
the fundamental concepts in ways that you will find usefuhtrigway. You will also be prepared to delve
deeper, studying such topics as compilers, computer aothie, operating systems, embedded systems,
and networking.

Assumptions about the Reader’s Background

The presentation of machine code in the book is based on tatedeformats supported by Intel and its
competitors, colloquially known as “x86.” 1A32 is the maghicode that has become the de facto standard
for a wide range of systems. x86-64 is an extension of IA32ntbée programs to operate on larger data
and to reference a wider range of memory addresses. Sine@x8gstems are able to run IA32 code, both
of these forms of machine code will see widespread use fdiotleseeable future. We consider how these
machines execute C programs on Unix or Unix-like (such aspbimperating systems. (To simplify our
presentation, we will use the term “Unix” as an umbrella téamsystems having Unix as their heritage,
including Solaris, MacOS, and Linux.) The text contains Buonis programming examples that have been
compiled and run on Linux systems. We assume that you haessitc such a machine, and are able to log
in and do simple things such as changing directories.

If your computer runs Microsoft Windows, you have two cheiceFirst, you can get a copy of Linux
(wwv. ubunt u. com and install it as a “dual boot” option, so that your machiaa cun either operating
system. Alternatively, by installing a copy of the Cygwimks (mwwv. cygwi n. com), you can run a Unix-

XV

XVi PREFACE

like shell under Windows and have an environment very clogkét provided by Linux. Not all features of
Linux are available under Cygwin, however.

We also assume that you have some familiarity with C or C++olfr only prior experience is with Java,
the transition will require more effort on your part, but wél\welp you. Java and C share similar syntax
and control statements. However, there are aspects of Gguybarly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java.trmately, C is a small language, and it is clearly
and beautifully described in the classic “K&R” text by Brikernighan and Dennis Ritchie [58]. Regardless
of your programming background, consider K&R an essental @f your personal systems library.

Several of the early chapters in the book explore the intieres between C programs and their machine-
language counterparts. The machine-language examplesallegenerated by the GNGcc compiler
running on 1A32 and x86-64 processors. We do not assume amygxperience with hardware, machine
language, or assembly-language programming.

New to C?: Advice on the C programming language
To help readers whose background in C programming is weakafoexistent), we have also included these special
notes to highlight features that are especially importaii€.i We assume you are familiar with C++ or Jakad.

How to Read the Book

Learning how computer systems work from a programmer’spasti/e is great fun, mainly because you
can do it actively. Whenever you learn something new, youtoait out right away and see the result
first hand. In fact, we believe that the only way to learn gystés todo systems, either working concrete
problems or writing and running programs on real systems.

This theme pervades the entire book. When a new conceptasluted, it is followed in the text by one
or morepractice problemshat you should work immediately to test your understandiglutions to the
practice problems are at the end of each chapter. As you teath solve each problem on your own,
and then check the solution to make sure you are on the rigtk.trEach chapter is followed by a set of
homework problemsf varying difficulty. Your instructor has the solutions teethomework problems in an
Instructor's Manual. For each homework problem, we showtiagaf the amount of effort we feel it will
require:

¢ Should require just a few minutes. Little or no programmiaguired.

4 ¢ Might require up to 20 minutes. Often involves writing anstileg some code. Many of these
are derived from problems we have given on exams.

¢ ¢ ¢ Requires a significant effort, perhaps 1-2 hours. Genenallylves writing and testing a
significant amount of code.

¢ ¢ ¢ ¢ Alab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, witlamy manual intervention, from a C program
compiled withccc and tested on a Linux system. Of course, your system may hdifeegent version of

XVii

GCgC, or a different compiler altogether, and so your compilegimigenerate different machine code, but
the overall behavior should be the same. All of the source é®dvailable from the CS:APP Web page at
csapp. cs. cru. edu. In the text, the file names of the source programs are dodgeh@nhorizontal bars
that surround the formatted code. For example, the progndrigure 1 can be found in the fileel | 0. ¢

in directorycode/ i nt r o/ . We encourage you to try running the example programs on sy&tem as
you encounter them.

code/intro/hello.c

1 #include <stdio. h>

2

3 int main()

4 {

5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1:A typical code example.

To avoid having a book that is overwhelming, both in bulk andcontent, we have created a number
of Web asidesontaining material that supplements the main presentaticthe book. These asides are
referenced within the book with a notation of the fo@RIAP. TOP, whereCHAPIs a short encoding of the
chapter subject, an@OPis short code for the topic that is covered. For example, Welde&DATA :BOOL
contains supplementary material on Boolean algebra foptbgentation on data representations in Chapter
2, while Web AsideaRCH:VLOG contains material describing processor designs usingehitoy hardware
description language, supplementing the presentatiomaaiegsor design in Chapter 4. All of these Web
asides are available from the CS:APP Web page.

Aside: What isan aside?

You will encounter asides of this form throughout the texsid®s are parenthetical remarks that give you some
additional insight into the current topic. Asides serve abar of purposes. Some are little history lessons. For
example, where did C, Linux, and the Internet come from? Odiseles are meant to clarify ideas that students
often find confusing. For example, what is the differenceveen a cache line, set, and block? Other asides give
real-world examples. For example, how a floating-pointrecrashed a French rocket, or what the geometry of an
actual Seagate disk drive looks like. Finally, some asidegust fun stuff. For example, what is a “hoinky®End
Aside.

Book Overview

The CS:APP book consists of 12 chapters designed to capieiete ideas in computer systems:

e Chapter 1: A Tour of Computer Systemshis chapter introduces the major ideas and themes in
computer systems by tracing the life cycle of a simple “heMorld” program.

e Chapter 2: Representing and Manipulating Informati®e cover computer arithmetic, emphasizing
the properties of unsigned and two’s-complement numbeesentations that affect programmers.

XVviii

PREFACE

We consider how numbers are represented and therefore amge of values can be encoded for
a given word size. We consider the effect of casting betwégmed and unsigned numbers. We
cover the mathematical properties of arithmetic operatidtovice programmers are often surprised
to learn that the (two's-complement) sum or product of twsifpee numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies thebaaic properties of a ring, and hence a
compiler can safely transform multiplication by a constinib a sequence of shifts and adds. We
use the bit-level operations of C to demonstrate the pri@sipnd applications of Boolean algebra.
We cover the IEEE floating-point format in terms of how it repents values and the mathematical
properties of floating-point operations.

Having a solid understanding of computer arithmetic isicaitto writing reliable programs. For
example, programmers and compilers cannot replace thessipn(x<y) with (x-y < 0), due
to the possibility of overflow. They cannot even replace itmthe expressiori-y < -Xx), due
to the asymmetric range of negative and positive numbersdrnwo’s-complement representation.
Arithmetic overflow is a common source of programming ergd security vulnerabilities, yet few
other books cover the properties of computer arithmetimfeoprogrammer’s perspective.

Chapter 3: Machine-Level Representation of Prograkivs.teach you how to read the 1A32 and x86-

64 assembly language generated by a C compiler. We coveia#ie instruction patterns generated

for different control constructs, such as conditionalgpls and switch statements. We cover the
implementation of procedures, including stack allocatr@gister usage conventions, and parameter
passing. We cover the way different data structures sudnadgigres, unions, and arrays are allocated
and accessed. We also use the machine-level view of programmsvay to understand common code

security vulnerabilities, such as buffer overflow, and stédgat the programmer, the compiler, and

the operating system can take to mitigate these threatsnibgathe concepts in this chapter helps

you become a better programmer, because you will undergtewdprograms are represented on

a machine. One certain benefit is that you will develop a thginoand concrete understanding of

pointers.

Chapter 4. Processor ArchitectureThis chapter covers basic combinational and sequentiat log
elements, and then shows how these elements can be combddtapath that executes a simplified
subset of the IA32 instruction set called “Y86.” We begintwiihe design of a single-cycle datapath.
This design is conceptually very simple, but it would not eeywfast. We then introduggipelining,
where the different steps required to process an instiuetie implemented as separate stages. At
any given time, each stage can work on a different instroctiour five-stage processor pipeline is
much more realistic. The control logic for the processoigiesis described using a simple hardware
description language called HCL. Hardware designs writtddCL can be compiled and linked into
simulators provided with the textbook, and they can be usegbiherate Verilog descriptions suitable
for synthesis into working hardware.

Chapter 5: Optimizing Program Performanc&his chapter introduces a number of techniques for
improving code performance, with the idea being that pnognars learn to write their C code in such
a way that a compiler can then generate efficient machine. cafestart with transformations that
reduce the work to be done by a program and hence should aastapractice when writing any
program for any machine. We then progress to transformstitat enhance the degree of instruction-
level parallelism in the generated machine code, therelprawing their performance on modern

XiX

“superscalar” processors. To motivate these transfoamsitiwe introduce a simple operational model
of how modern out-of-order processors work, and show howeasure the potential performance of
a program in terms of the critical paths through a graphieptesentation of a program. You will be
surprised how much you can speed up a program by simple oramafions of the C code.

Chapter 6: The Memory Hierarchi.he memory system is one of the most visible parts of a compute
system to application programmers. To this point, you halied on a conceptual model of the
memory system as a linear array with uniform access timesprdatice, a memory system is a
hierarchy of storage devices with different capacitiestscand access times. We cover the different
types of RAM and ROM memories and the geometry and organizaif magnetic-disk and solid-
state drives. We describe how these storage devices argadén a hierarchy. We show how this
hierarchy is made possible by locality of reference. We nthkse ideas concrete by introducing a
unique view of a memory system as a “memory mountain” witge&lof temporal locality and slopes
of spatial locality. Finally, we show you how to improve therfprmance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, iniclgdthe ideas of
relocatable and executable object files, symbol resolutielocation, static libraries, shared object
libraries, and position-independent code. Linking is rmtered in most systems texts, but we cover
it for several reasons. First, some of the most confusingr&that programmers can encounter are
related to glitches during linking, especially for largeta@re packages. Second, the object files
produced by linkers are tied to concepts such as loadingiayimemory, and memory mapping.

Chapter 8: Exceptional Control Flowln this part of the presentation, we step beyond the single-
program model by introducing the general concept of exoapticontrol flow (i.e., changes in control
flow that are outside the normal branches and procedure.c&lls cover examples of exceptional
control flow that exist at all levels of the system, from loswl hardware exceptions and interrupts,
to context switches between concurrent processes, to tatihapges in control flow caused by the
delivery of Unix signals, to the nonlocal jumps in C that lrélae stack discipline.

This is the part of the book where we introduce the fundaméata of aprocess an abstraction of
an executing program. You will learn how processes work aowd they can be created and manip-
ulated from application programs. We show how applicatiomgmmmers can make use of multiple
processes via Unix system calls. When you finish this chapberwill be able to write a Unix shell
with job control. It is also your first introduction to the rabeterministic behavior that arises with
concurrent program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks to gwees
understanding of how it works and its characteristics. Wetwau to know how it is that the different
simultaneous processes can each use an identical rangdregsés, sharing some pages but having
individual copies of others. We also cover issues involveanianaging and manipulating virtual
memory. In particular, we cover the operation of storagecaliors such as the Unial | oc and

f r ee operations. Covering this material serves several pugpdseeinforces the concept that the
virtual memory space is just an array of bytes that the pragran subdivide into different storage
units. It helps you understand the effects of programs aantamemory referencing errors such as
storage leaks and invalid pointer references. Finally,yvagplication programmers write their own

XX

PREFACE

storage allocators optimized toward the needs and chasdcte of the application. This chapter,
more than any other, demonstrates the benefit of coveririgthethardware and the software aspects
of computer systems in a unified way. Traditional computehiéecture and operating systems texts
present only part of the virtual memory story.

Chapter 10: System-Level I/@Ve cover the basic concepts of Unix I/O such as files and qescsi
We describe how files are shared, how /O redirection workd, leow to access file metadata. We
also develop a robust buffered I/O package that deals dlyrn@th a curious behavior known as
short countswhere the library function reads only part of the input date cover the C standard 1/0
library and its relationship to Unix 1/O, focusing on limii@ns of standard 1/0 that make it unsuitable
for network programming. In general, the topics coveredia thapter are building blocks for the
next two chapters on network and concurrent programming.

Chapter 11: Network Programmingletworks are interesting I/O devices to program, tying toge
many of the ideas that we have studied earlier in the texty asgrocesses, signals, byte ordering,
memory mapping, and dynamic storage allocation. Netwodgmms also provide a compelling
context for concurrency, which is the topic of the next ceapihis chapter is a thin slice through
network programming that gets you to the point where you ceateva Web server. We cover the
client-server model that underlies all network applicagio We present a programmer’s view of the
Internet, and show how to write Internet clients and serusisg the sockets interface. Finally, we
introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrent Programming-his chapter introduces concurrent programming using In-
ternet server design as the running motivational example.ctvhpare and contrast the three basic
mechanisms for writing concurrent programs — process@anldltiplexing, and threads — and show
how to use them to build concurrent Internet servers. Wercdoasic principles of synchronization
using P andV semaphore operations, thread safety and reentrancy, cad#ions, and deadlocks.
Writing concurrent code is essential for most server appboas. We also describe the use of thread-
level programming to express parallelism in an applicafpoogram, enabling faster execution on
multi-core processors. Getting all of the cores working @mgle computational problem requires a
careful coordination of the concurrent threads, both foreminess and to achieve high performance.

New to this Edition

The first edition of this book was published with a copyrigh603. Considering the rapid evolution of
computer technology, the book content has held up surghsimell. Intel x86 machines running Unix-like
operating systems and programmed in C proved to be a cordrindiat continues to encompass many
systems today. Changes in hardware technology and cospitet the experience of many instructors
teaching the material have prompted a substantial revision

Here are some of the more significant changes:

e Chapter 2: Representing and Manipulating InformatioNe have tried to make this material more

accessible, with more careful explanations of conceptsvatidmany more practice and homework

XXi

problems. We moved some of the more theoretical aspects lboadides. We also describe some of
the security vulnerabilities that arise due to the overfloopprties of computer arithmetic.

e Chapter 3: Machine-Level Representation of Programé& have extended our coverage to include
x86-64, the extension of x86 processors to a 64-bit word di¥e also use the code generated by a
more recent version acc. We have enhanced our coverage of buffer overflow vulnetiakil We
have created Web asides on two different classes of instngctor floating point, and also a view
of the more exotic transformations made when compilersmgitenigher degrees of optimization.
Another web aside describes how to embed x86 assembly calie&iC program.

e Chapter 4: Processor ArchitectureWe include a more careful exposition of exception detection
and handling in our processor design. We have also createebaa®ide showing a mapping of our
processor designs into Verilog, enabling synthesis intkimg hardware.

e Chapter 5. Optimizing Program Performancéle have greatly changed our description of how
an out-of-order processor operates, and we have createdptesiechnique for analyzing program
performance based on the paths in a data-flow graph repatisenbf a program. A Web aside
describes how C programmers can write programs that makefuse SIMD (single-instruction,
multiple-data) instructions found in more recent versiohs86 processors.

e Chapter 6: The Memory HierarchyVe have added material on solid-state disks, and we haveagda
our presentation to be based on the memory hierarchy of ehQatre i7 processor.

e Chapter 7: Linking.This chapter has changed only slightly.

e Chapter 8. Exceptional Control FlowwWe have enhanced our discussion of how the process model
introduces some fundamental concepts of concurrency, asiobndeterminism.

e Chapter 9: Virtual MemoryWe have updated our memory system case study to describd-ibi¢ 6
Intel Core i7 processor. We have also updated our samplesimgaitation ofral | oc to work for
both 32-bit and 64-bit execution.

e Chapter 10: System-Level I/his chapter has changed only slightly.
e Chapter 11: Network Programming-his chapter has changed only slightly.

e Chapter 12: Concurrent ProgrammingiVe have increased our coverage of the general principles
of concurrency, and we also describe how programmers canhusad-level parallelism to make
programs run faster on multi-core machines.

In addition, we have added and revised a number of practiddamework problems.

Origins of the Book

The book stems from an introductory course that we develap&arnegie Mellon University in the Fall of
1998, calledl5-213: Introduction to Computer Syste(h€S) [14]. The ICS course has been taught every

XXii PREFACE

semester since then, each time to about 150-250 studentgngafrom sophomores to masters degree
students and with a wide variety of majors. It is a requiredrse for all undergraduates in the CS and ECE
departments at Carnegie Mellon, and it has become a prergiar most upper-level systems courses.

The idea with ICS was to introduce students to computers iiffereht way. Few of our students would
have the opportunity to build a computer system. On the dthad, most students, including all computer
scientists and computer engineers, will be required to ndegpaogram computers on a daily basis. So we
decided to teach about systems from the point of view of tlgnmmer, using the following filter: we
would cover a topic only if it affected the performance, eatness, or utility of user-level C programs.

For example, topics such as hardware adder and bus desigasoute Topics such as machine language
were in, but instead of focusing on how to write assembly lagg by hand, we would look at how a C

compiler translates C constructs into machine code, imetudointers, loops, procedure calls, and switch
statements. Further, we would take a broader and moreibalisiv of the system as both hardware and
systems software, covering such topics as linking, logdimgcesses, signals, performance optimization,
virtual memory, 1/0, and network and concurrent prograngnin

This approach allowed us to teach the ICS course in a wayslpaictical, concrete, hands-on, and exciting
for the students. The response from our students and famllgagues was immediate and overwhelmingly
positive, and we realized that others outside of CMU migkmefié from using our approach. Hence this
book, which we developed from the ICS lecture notes, andhwvie have now revised to reflect changes in
technology and how computer systems are implemented.

For Instructors: Courses Based on the Book

Instructors can use the CS:APP book to teach five differemtiskiof systems courses (Figure 2). The
particular course depends on curriculum requirementssopet taste, and the backgrounds and abilities
of the students. From left to right in the figure, the courgescaaracterized by an increasing emphasis on
the programmer’s perspective of a system. Here is a briefrigion:

e ORG: A computer organization course with traditional topicse®d in an untraditional style. Tra-
ditional topics such as logic design, processor architectassembly language, and memory systems
are covered. However, there is more emphasis on the impatttdfgprogrammer. For example, data
representations are related back to the data types andtiopsraf C programs, and the presenta-
tion on assembly code is based on machine code generated bgragiler rather than hand-written
assembly code.

e ORG+: The ORG course with additional emphasis on the impact aivaare on the performance
of application programs. Compared to ORG, students leame mioout code optimization and about
improving the memory performance of their C programs.

e ICS: The baseline ICS course, designed to produce enlightagdgmmers who understand the im-
pact of the hardware, operating system, and compilatiotesysn the performance and correctness
of their application programs. A significant differencefr®RG+ is that low-level processor archi-
tecture is not covered. Instead, programmers work with ladri¢gevel model of a modern out-of-order

XXili

processor. The ICS course fits nicely into a 10-week quatet,can also be stretched to a 15-week
semester if covered at a more leisurely pace.

e ICS+: The baseline ICS course with additional coverage of systpragramming topics such as
system-level I/O, network programming, and concurrengmming. This is the semester-long
Carnegie Mellon course, which covers every chapter in C8:ARcept low-level processor architec-
ture.

e SP: A systems programming course. Similar to the ICS+ coursedimps floating point and perfor-
mance optimization, and places more emphasis on systerggpiming, including process control,
dynamic linking, system-level 1/0, network programmingdaconcurrent programming. Instructors
might want to supplement from other sources for advanceidd@guch as daemons, terminal control,

and Unix IPC.
Course
| Chapter]| Topic ORG | ORG+| ICS [ICS+ | SP
1 | Tour of systems ° ° ° ° °
2 | Data representation PY ° ° PY ® ()
3 | Machine language ° ° ° ° °
4 | Processor architecture || ¢ P
5 | Code optimization ° ° °
6 | Memory hierarchy ® @) ° ° ° ® @
7 | Linking ®(© ®(©) °
8 | Exceptional control flow ° ° °
9 | Virtual memory ® (b) ° ° ° °
10 | System-level /1O ° °
11 | Network programming ° °
12 | Concurrent programming PY °

Figure 2:Five systems courses based on the CS:APP book. Notes: (a) Hardware only, (b) No dynamic
storage allocation, (c) No dynamic linking, (d) No floating point. ICS+ is the 15-213 course from Carnegie
Mellon.

The main message of Figure 2 is that the CS:APP book givesdt tmitions to students and instructors.
If you want your students to be exposed to lower-level preaearchitecture, then that option is available
via the ORG and ORG+ courses. On the other hand, if you wanwitcts from your current computer
organization course to an ICS or ICS+ course, but are warynateng such a drastic change all at once,
then you can move toward ICS incrementally. You can statt @iRG, which teaches the traditional topics
in a nontraditional way. Once you are comfortable with thatemal, then you can move to ORG+, and
eventually to ICS. If students have no experience in C (fangxle they have only programmed in Java),
you could spend several weeks on C and then cover the mai&@RRG or ICS.

Finally, we note that the ORG+ and SP courses would make awi¢erm (either quarters or semesters)
sequence. Or you might consider offering ICS+ as one terr@8fdnd one term of SP.

XXIV

PREFACE

Classroom-Tested L aboratory Exercises

The ICS+ course at Carnegie Mellon receives very high etialsfrom students. Median scoressad /5.0
and means of.6/5.0 are typical for the student course evaluations. Studetgstioe fun, exciting, and
relevant laboratory exercises as the primary reason. Towedee available from the CS:APP Web page.
Here are examples of the labs that are provided with the book:

Data Lab. This lab requires students to implement simple logical aitbraetic functions, but using

a highly restricted subset of C. For example, they must ceenie absolute value of a number using
only bit-level operations. This lab helps students undetthe bit-level representations of C data
types and the bit-level behavior of the operations on data.

Binary Bomb LabA binary bomhis a program provided to students as an object-code file. Wren

it prompts the user to type in six different strings. If anytloése is incorrect, the bomb “explodes,”
printing an error message and logging the event on a gradingrs Students must “defuse” their
own unique bombs by disassembling and reverse engine&rengrograms to determine what the six
strings should be. The lab teaches students to understaachbly language, and also forces them to
learn how to use a debugger.

Buffer Overflow Lab.Students are required to modify the run-time behavior ofratyi executable
by exploiting a buffer overflow vulnerability. This lab tdses the students about the stack discipline,
and teaches them about the danger of writing code that i€kalbhe to buffer overflow attacks.

Architecture Lab.Several of the homework problems of Chapter 4 can be combiriech lab as-
signment, where students modify the HCL description of @@ssor to add new instructions, change
the branch prediction policy, or add or remove bypassinggahd register ports. The resulting pro-
cessors can be simulated and run through automated testsilildetect most of the possible bugs.
This lab lets students experience the exciting parts ofggsmr design without requiring a complete
background in logic design and hardware description laggsia

Performance LabStudents must optimize the performance of an applicationgkéunction such as
convolution or matrix transposition. This lab provides ayeear demonstration of the properties of
cache memories, and gives students experience with losV{ewgram optimization.

Shell Lab.Students implement their own Unix shell program with jobteol including thect r | - ¢
andctrl - z keystrokesf g, bg, andj obs commands. This is the student’s first introduction to
concurrency, and gives them a clear idea of Unix processapsignals, and signal handling.

Malloc Lab. Students implement their own versionsndfl | oc, f r ee, and (optionally) eal | oc.
This lab gives students a clear understanding of data lagioditorganization, and requires them to
evaluate different trade-offs between space and time exfiogi

Proxy Lab.Students implement a concurrent Web proxy that sits betwesinbrowsers and the rest
of the World Wide Web. This lab exposes the students to sygg@s Web clients and servers, and
ties together many of the concepts from the course, suchtasobgering, file I/O, process control,
signals, signal handling, memory mapping, sockets, andwoency. Students like being able to see
their programs in action with real Web browsers and Web ssrve

XXV

The CS:APP Instructor's Manual has a detailed discussidheoabs, as well as directions for downloading
the support software.

Acknowledgments for the Second Edition

We are deeply grateful to the many people who have helpedagkipe this second edition of the CS:APP
text.

First and foremost, we would to recognize our colleagues hdne taught the ICS course at Carnegie
Mellon for their insightful feedback and encouragement:y @lelloch, Roger Dannenberg, David Eck-
hardt, Greg Ganger, Seth Goldstein, Greg Kesden, Bruce $/dggld Mowry, Andreas Nowatzyk, Frank
Pfenning, and Markus Pueschel.

Thanks also to our sharp-eyed readers who contributedtssjoathe errata page for the first edition: Daniel
Amelang, Rui Baptista, Quarup Barreirinhas, Michael Bokykjorg Brauer, Jordan Brough, Yixin Cao,
James Caroll, Rui Carvalho, Hyoung-Kee Choi, Al Davis, Gilaavis, Christian Dufour, Mao Fan, Tim
Freeman, Inge Frick, Max Gebhardt, Jeff Goldblat, Thomags§r Anita Gupta, John Hampton, Hiep
Hong, Greg Israelsen, Ronald Jones, Haudy Kazemi, Brial) ehstantine Kousoulis, Sacha Krakowiak,
Arun Krishnaswamy, Martin Kulas, Michael Li, Zeyang Li, RicLiu, Mario Lo Conte, Dirk Maas, Devon
Macey, Carl Marcinik, Will Marrero, Simone Martins, Tao MeMark Morrissey, Venkata Naidu, Bhas
Nalabothula, Thomas Niemann, Eric Peskin, David Po, AnngelRg John Ross, Michael Scott, Seiki, Ray
Shih, Darren Shultz, Erik Silkensen, Suryanto, Emil Tgralawanan Theera-Ampornpunt, Joe Trdinich,
Michael Trigoboff, James Troup, Martin Vopatek, Alan WeBetsy Wolff, Tim Wong, James Woodrulff,
Scott Wright, Jackie Xiao, Guanpeng Xu, Qing Xu, Caren Yafig,Yongsheng, Wang Yuanxuan, Steven
Zhang, and Day Zhong. Special thanks to Inge Frick, who ifledta subtle deep copy bug in our lock-
and-copy example, and to Ricky Liu, for his amazing proafieg skills.

Our Intel Labs colleagues Andrew Chien and Limor Fix weree@tionally supportive throughout the writ-
ing of the text. Steve Schlosser graciously provided sorsk diive characterizations. Casey Helfrich
and Michael Ryan installed and maintained our new Core i7 btichael Kozuch, Babu Pillai, and Jason
Campbell provided valuable insight on memory system patéorce, multi-core systems, and the power
wall. Phil Gibbons and Shimin Chen shared their considerakpertise on solid-state disk designs.

We have been able to call on the talents of many, including-WenHwu, Markus Pueschel, and Jiri Simsa,
to provide both detailed comments and high-level advicsme¥aHoe helped us create a Verilog version of
the Y86 processor and did all of the work needed to synthesizking hardware.

Many thanks to our colleagues who provided reviews of thé dnanuscript: James Archibald (Brigham
Young University), Richard Carver (George Mason UnivgjsiMirela Damian (Villanova University),

Peter Dinda (Northwestern University), John Fiore (Teniptaversity), Jason Fritts (St. Louis Univer-
sity), John Greiner (Rice University), Brian Harvey (Unisiy of California, Berkeley), Don Heller (Penn
State University), Wei Chung Hsu (University of Minnesoti)ichelle Hugue (University of Maryland),

Jeremy Johnson (Drexel University), Geoff Kuenning (Hsriudd College), Ricky Liu, Sam Madden
(MIT), Fred Martin (University of Massachusetts, LowelBbraham Matta (Boston University), Markus
Pueschel (Carnegie Mellon University), Norman Ramsey téTUniversity), Glenn Reinmann (UCLA),
Michela Taufer (University of Delaware), and Craig Zillegl|JC).

XXVi PREFACE

Paul Anagnostopoulos of Windfall Software did an outstagdbb of typesetting the book and leading
the production team. Many thanks to Paul and his superb té&iok Camp (copyeditor), Joe Snowden
(compositor), MaryEllen N. Oliver (proofreader), LaureulNer (artist), and Ted Laux (indexer).

Finally, we would like to thank our friends at Prentice Hallarcia Horton has always been there for us.
Our editor Matt Goldstein provided stellar leadership frbeginning to end. We are profoundly grateful
for their help, encouragement, and insights.

Acknowledgments from the First Edition

We are deeply indebted to many friends and colleagues farttimughtful criticisms and encouragement.
A special thanks to our 15-213 students, whose infectioasggrand enthusiasm spurred us on. Nick Carter
and Vinny Furia generously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry tatlghcourse over multiple semesters, gave
us encouragement, and helped improve the course mategah Bberby provided early spiritual guidance
and encouragement. Allan Fisher, Garth Gibson, ThomassG&8mtya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggdsbm Garth early on got the whole ball
rolling, and this was picked up and refined with the help of@ugrled by Allan Fisher. Mark Stehlik and
Peter Lee have been very supportive about building this mahiato the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on tBec@urse. Greg Ganger and Jiri Schindler
graciously provided some disk drive characterizations amsivered our questions on modern disks. Tom
Stricker showed us the memory mountain. James Hoe provisiefdludeas and feedback on how to present
processor architecture.

A special group of students — Khalil Amiri, Angela Demke BrawChris Colohan, Jason Crawford, Peter
Dinda, Julio Lopez, Bruce Lowekamp, Jeff Pierce, Sanjay, Badaji Sarpeshkar, Blake Scholl, Sanijit

Seshia, Greg Steffan, Tiankai Tu, Kip Walker, and Yingliaie %~ were instrumental in helping us develop

the content of the course. In particular, Chris Colohanbdisteed a fun (and funny) tone that persists to this
day, and invented the legendary “binary bomb” that has proedye a great tool for teaching machine code
and debugging concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadas, Gobimer, Bruce Jacob, Barry Johnson, Don
Heller, Bruce Lowekamp, Greg Morrisett, Brian Noble, Babl@thmer, Bill Pugh, Michael Scott, Mark
Smotherman, Greg Steffan, and Bob Wier took time that thdyndi have to read and advise us on early
drafts of the book. A very special thanks to Al Davis (Univgr®of Utah), Peter Dinda (Northwestern
University), John Greiner (Rice University), Wei Hsu (Uairgity of Minnesota), Bruce Lowekamp (College
of William & Mary), Bobbie Othmer (University of MinnesotaMichael Scott (University of Rochester),
and Bob Wier (Rocky Mountain College) for class testing tle¢eBsersion. A special thanks to their students
as well!

We would also like to thank our colleagues at Prentice Hakrdva Horton, Eric Frank, and Harold Stone
have been unflagging in their support and vision. Harold &lsiped us present an accurate historical
perspective on RISC and CISC processor architectures. Ratya provided sharp insights and taught us a
lot about good writing.

Finally, we would like to acknowledge the great technicaitevs Brian Kernighan and the late W. Richard

XXVil

Stevens, for showing us that technical books can be behutifu
Thank you all.

Randy Bryant
Dave O’Hallaron

Pittsburgh, PA

XXViil PREFACE
About the Authors

Randal E. Bryant received his Bachelor's degree from the University of Mgam in 1973 and then at-
tended graduate school at the Massachusetts Institutechhdtogy, receiving a Ph.D. degree in computer
science in 1981. He spent three years as an Assistant Ryofgsthe California Institute of Technology,
and has been on the faculty at Carnegie Mellon since 1984s Elgriently a University Professor of Com-
puter Science and Dean of the School of Computer Sciencelsdd@alds a courtesy appointment with the
Department of Electrical and Computer Engineering.

He has taught courses in computer systems at both the uadaeede and graduate level for over 30 years.
Over many years of teaching computer architecture counsdsegan shifting the focus from how computers
are designed to one of how programmers can write more effiaighreliable programs if they understand
the system better. Together with Professor O’Hallaron, éxeldped the course 15-213 “Introduction to
Computer Systems” at Carnegie Mellon that is the basis ferlibok. He has also taught courses in algo-
rithms, programming, computer networking, and VLSI design

Most of Professor Bryant's research concerns the desigofofare tools to help software and hardware
designers verify the correctness of their systems. Theheda several types of simulators, as well as formal
verification tools that prove the correctness of a designgusiathematical methods. He has published over
150 technical papers. His research results are used by m@joputer manufacturers, including Intel,
FreeScale, IBM, and Fujitsu. He has won several major avfardss research. These include two inventor
recognition awards and a technical achievement award fnenSemiconductor Research Corporation, the
Kanellakis Theory and Practice Award from the Association €Gomputer Machinery (ACM), and the
W. R. G. Baker Award, the Emmanuel Piore Award, and the Phiifkean Award from the Institute of
Electrical and Electronics Engineers (IEEE). He is a Feltdwoth the ACM and the IEEE and a member
of the U. S. National Academy of Engineering.

David R. O’Hallaron is the Director of Intel Labs Pittsburgh and an Associatefdasor in Computer
Science and Electrical and Computer Engineering at Caeridgilon University. He received his Ph.D.
from the University of Virginia.

He has taught computer systems courses at the undergrashgegeaduate levels on such topics as computer
architecture, introductory computer systems, paralletessor design, and Internet services. Together with
Professor Bryant, he developed the course at Carnegie iVibléd led to this book. In 2004, he was awarded
the Herbert Simon Award for Teaching Excellence by the CMUdat of Computer Science, an award for
which the winner is chosen based on a poll of the students.

Professor O’Hallaron works in the area of computer systevith,specific interests in software systems for
scientific computing, data-intensive computing, and waiization. The best known example of his work is
the Quake project, a group of computer scientists, civilireegys, and seismologists who have developed
the ability to predict the motion of the ground during strasythquakes. In 2003, Professor O’Hallaron
and the other members of the Quake team won the Gordon Be#,Rhe top international prize in high-
performance computing.

