Chapter 6

The Memory Hierarchy

To this point in our study of systems, we have relied on a smmpbdel of a computer system as a CPU
that executes instructions and a memory system that hadttsiations and data for the CPU. In our simple
model, the memory system is a linear array of bytes, and tHe €& access each memory location in a
constant amount of time. While this is an effective modelaassk it goes, it does not reflect the way that
modern systems really work.

In practice, anemory systens a hierarchy of storage devices with different capagitiests, and access
times. CPU registers hold the most frequently used datall Sast cache memoriesearby the CPU act as
staging areas for a subset of the data and instructionsdsitotie relatively slow main memory. The main
memory stages data stored on large, slow disks, which inaften serve as staging areas for data stored on
the disks or tapes of other machines connected by networks.

Memory hierarchies work because well-written programsl tienaccess the storage at any particular level
more frequently than they access the storage at the next lewed. So the storage at the next level can be
slower, and thus larger and cheaper per bit. The overalttefea large pool of memory that costs as much
as the cheap storage near the bottom of the hierarchy, ligdhas data to programs at the rate of the fast
storage near the top of the hierarchy.

As a programmer, you need to understand the memory hierdetguse it has a big impact on the perfor-
mance of your applications. If the data your program neeesstared in a CPU register, then they can be
accessed in zero cycles during the execution of the ingtrucif stored in a cache, 1 to 30 cycles. If stored
in main memory, 50 to 200 cycles. And if stored in disk tens dfioms of cycles!

Here, then, is a fundamental and enduring idea in compusgemss: If you understand how the system
moves data up and down the memory hierarchy, then you cae yaiir application programs so that their
data items are stored higher in the hierarchy, where the GRlaccess them more quickly.

This idea centers around a fundamental property of compuitgrams known akocality. Programs with
good locality tend to access the same set of data items odeo\ar again, or they tend to access sets of
nearby data items. Programs with good locality tend to acoewe data items from the upper levels of the
memory hierarchy than programs with poor locality, and thusfaster. For example, the running times
of different matrix multiplication kernels that performetlsame number of arithmetic operations, but have
different degrees of locality, can vary by a factor of 20!

531

532 CHAPTER 6. THE MEMORY HIERARCHY

In this chapter, we will look at the basic storage techn@sgi— SRAM memory, DRAM memory, ROM
memory, and rotating and solid state disks — and describe thew are organized into hierarchies. In
particular, we focus on the cache memories that act as gtageas between the CPU and main memory,
because they have the most impact on application prograforpemce. We show you how to analyze
your C programs for locality and we introduce techniquesrfgoroving the locality in your programs. You
will also learn an interesting way to characterize the pennce of the memory hierarchy on a particular
machine as a “memory mountain” that shows read access tisrgeefuaction of locality.

6.1 Storage Technologies

Much of the success of computer technology stems from timeetnelous progress in storage technology.
Early computers had a few kilobytes of random-access menTdrg earliest IBM PCs didn’t even have a
hard disk. That changed with the introduction of the IBM PT-X 1982, with its 10-megabyte disk. By
the year 2010, typical machines had 150,000 times as muklsttisage, and the amount of storage was
increasing by a factor of 2 every couple of years.

6.1.1 Random-Access Memory

Random-access memd®AM) comes in two varieties-staticanddynamic Static RAM(SRAM) is faster
and significantly more expensive th@ynamic RAM(DRAM). SRAM is used for cache memories, both
on and off the CPU chip. DRAM is used for the main memory plesftame buffer of a graphics system.
Typically, a desktop system will have no more than a few meggesbof SRAM, but hundreds or thousands
of megabytes of DRAM.

Static RAM

SRAM stores each bit inlaistablememory cell. Each cell is implemented with a six-transisiocuit. This
circuit has the property that it can stay indefinitely in eitbf two different voltage configurations, states.
Any other state will be unstable—starting from there, theuwit will quickly move toward one of the stable
states. Such a memory cell is analogous to the inverted hendlustrated in Figure 6.1.

Unstable

Stable Left Stable Right

PN

Figure 6.1:Inverted pendulum. Like an SRAM cell, the pendulum has only two stable configurations, or
states.

The pendulum is stable when it is tilted either all the wayhte feft or all the way to the right. From any

6.1. STORAGE TECHNOLOGIES 533

other position, the pendulum will fall to one side or the othie principle, the pendulum could also remain
balanced in a vertical position indefinitely, but this siatmetastable-the smallest disturbance would make
it start to fall, and once it fell it would never return to thertical position.

Due to its bistable nature, an SRAM memory cell will retais value indefinitely, as long as it is kept
powered. Even when a disturbance, such as electrical rmaseirbs the voltages, the circuit will return to
the stable value when the disturbance is removed.

Dynamic RAM

DRAM stores each bit as charge on a capacitor. This capasii@ry small—typically around 30 femto-
farads, that is30 x 10~'° farads. Recall, however, that a farad is a very large unit eisare. DRAM
storage can be made very dense—each cell consists of atoawil a single access-transistor. Unlike
SRAM, however, a DRAM memory cell is very sensitive to anytutisance. When the capacitor voltage is
disturbed, it will never recover. Exposure to light rayslwduse the capacitor voltages to change. In fact,
the sensors in digital cameras and camcorders are eskeatralys of DRAM cells.

Various sources of leakage current cause a DRAM cell to tssgharge within a time period of around 10 to
100 milliseconds. Fortunately, for computers operatinthwlock cycles times measured in hanoseconds,
this retention time is quite long. The memory system musioperally refresh every bit of memory by
reading it out and then rewriting it. Some systems also us®-eorrecting codes, where the computer
words are encoded a few more bits (e.g., a 32-bit word miglenoeded using 38 bits), such that circuitry
can detect and correct any single erroneous bit within a word

Figure 6.2 summarizes the characteristics of SRAM and DRA&Mmimory. SRAM is persistent as long as
power is applied to them. Unlike DRAM, no refresh is necessé88RAM can be accessed faster than
DRAM. SRAM is not sensitive to disturbances such as light alettrical noise. The trade-off is that
SRAM cells use more transistors than DRAM cells, and thug h@wver densities, are more expensive, and
consume more power.

Transistors| Relative Relative
per bit access timg Persistent? Sensitive?| cost | Applications
SRAM 6 1X Yes No 100X | Cache memory
DRAM 1 10X No Yes 1X Main mem, frame bufferg

Figure 6.2:Characteristics of DRAM and SRAM memory.

Conventional DRAMSs

The cells (bits) in a DRAM chip are partitioned intbsupercells each consisting oft DRAM cells. A
d x w DRAM stores a total oflw bits of information. The supercells are organized as a mgctar array
with r rows andc columns, wherec = d. Each supercell has an address of the f6inj), wherei denotes
the row, andj denotes the column.

For example, Figure 6.3 shows the organization d@6a< 8 DRAM chip with d = 16 supercellsw = 8

534 CHAPTER 6. THE MEMORY HIERARCHY

bits per supercell; = 4 rows, andc = 4 columns. The shaded box denotes the supercell at address
Information flows in and out of the chip via external connestealledpins Each pin carries a 1-bit signal.
Figure 6.3 shows two of these sets of pins: eigat a pins that can transfer 1 byte in or out of the chip,
and twoaddr pins that carry two-bit row and column supercell addres$gther pins that carry control
information are not shown.

DRAMchip .
| Cols
2 0 :
addr | :
: 1 :
{—— | Rows |
Memory ! :
i 2 :
controller ! I — Supercell
(to CPU) ; : (2.1)
8 ! 3 !
[—p
data

Internal row buffer

Figure 6.3:High level view of a 128-bit 16 x 8 DRAM chip.

Aside: A note on terminology

The storage community has never settled on a standard namé@RAM array element. Computer architects tend
to refer to it as a “cell,” overloading the term with the DRANbgage cell. Circuit designers tend to refer to it as a
“word,” overloading the term with a word of main memory. TaaVconfusion, we have adopted the unambiguous
term “supercell.’End Aside.

Each DRAM chip is connected to some circuitry, known asrttemory controllerthat can transfew bits

at a time to and from each DRAM chip. To read the contents ofgll (7, j), the memory controller sends
the row address to the DRAM, followed by the column addregs The DRAM responds by sending the
contents of supercelli, j) back to the controller. The row address called aRAS (Row Access Strobe)
request The column addresgis called aCAS (Column Access Strobe) requdsbtice that the RAS and
CAS requests share the same DRAM address pins.

For example, to read supercéll, 1) from the16 x 8 DRAM in Figure 6.3, the memory controller sends
row address 2, as shown in Figure 6.4(a). The DRAM respondsopying the entire contents of row 2
into an internal row buffer. Next, the memory controller dgrcolumn address 1, as shown in Figure 6.4(b).
The DRAM responds by copying the 8 bits in super¢elll) from the row buffer and sending them to the
memory controller.

One reason circuit designers organize DRAMSs as two-dimeasarrays instead of linear arrays is to reduce
the number of address pins on the chip. For example, if oumple128-bit DRAM were organized as a
linear array of 16 supercells with addresses 0 to 15, therchipewould need four address pins instead
of two. The disadvantage of the two-dimensional array degdion is that addresses must be sent in two
distinct steps, which increases the access time.

6.1. STORAGE TECHNOLOGIES 535

DRAMcehip . DRAMchip
—_— ; Cols —_— ; Cols
RAS = 2 3 s = 1 3
2 0 2 0
addr addr
: 1 : 1
Memory : Rows : Memory : Rows
controller H 2 H controller | Supercell ! 2
: : @1
s | 3 : 8 3
data . ' data = |
f Row 2 : H%
1 1 | 1
: Internal row buffer : : Internal row buffer
(a) Select row 2 (RAS request). (b) Select column 1 (CAS rstjue

Figure 6.4:Reading the contents of a DRAM supercell.

Memory Modules

DRAM chips are packaged imemory modulethat plug into expansion slots on the main system board
(motherboard). Common packages include the 16&ipai inline memory module (DIMMyvhich transfers
data to and from the memory controller in 64-bit chunks, amel 72-pinsingle inline memory module
(SIMM), which transfers data in 32-bit chunks.

Figure 6.5 shows the basic idea of a memory module. The exampdule stores a total of 64 MB
(megabytes) using eight 64-Mit)M x 8 DRAM chips, numbered 0 to 7. Each supercell stores 1 byte
of main memoryand each 64-bit doublewdrat byte address! in main memory is represented by the
eight supercells whose corresponding supercell addreggsjis In the example in Figure 6.5, DRAM 0
stores the first (lower-order) byte, DRAM 1 stores the nexepgnd so on.

To retrieve a 64-bit doubleword at memory addrelssthe memory controller convertd to a supercell
addresgi, j) and sends it to the memory module, which then broadéastd; to each DRAM. In response,
each DRAM outputs the 8-bit contents of {iis j) supercell. Circuitry in the module collects these outputs
and forms them into a 64-bit doubleword, which it returnshi® memory controller.

Main memory can be aggregated by connecting multiple memagules to the memory controller. In this
case, when the controller receives an addreghe controller selects the module¢hat contains4, converts
Atoits (i, 7) form, and sendsi, j) to modulek.

Practice Problem 6.1;

In the following, letr be the number of rows in a DRAM arraythe number of column$,. the number

of bits needed to address the rows, apdhe number of bits needed to address the columns. For each
of the following DRAMSs, determine the power-of-two arrayrdinsions that minimizewax(b,., b..), the
maximum number of bits needed to address the rows or colufithe array.

11A32 would call this 64-bit quantity a “quadword.”

536 CHAPTER 6. THE MEMORY HIERARCHY

addr (row =i, col =j)
O: Supercell (i,j)
v A 4
v I [DRAM 0
VI
v I A A o 64 MB
A A O D memory module
A A - | consisting of
DRAM 7 o 8 8Mx8 DRAMs
01
0l data
bits bits bits bits bits bits bits bits
56-63 |48-55 [40-47 |32-39 [24-31 |16-23 |8-15 |o-7
\ 4 v v v v v v v
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
C T T T T T T T 7 feom
controller
64-bit double word at main memory address A

64-bit doubleword to CPU chip

Figure 6.5:Reading the contents of a memory module.

Organization| r | ¢ [b, | be | max(by,bc) |
16 x 1
16 x 4
128 x 8
512 x 4
1024 x 4

Enhanced DRAMs

There are many kinds of DRAM memories, and new kinds appedh@market with regularity as man-
ufacturers attempt to keep up with rapidly increasing pseoe speeds. Each is based on the conventional
DRAM cell, with optimizations that improve the speed withialthe basic DRAM cells can be accessed.

e Fast page mode DRAM (FPM DRAMA conventional DRAM copies an entire row of supercells into
its internal row buffer, uses one, and then discards the €8¢l DRAM improves on this by allowing
consecutive accesses to the same row to be served dirauntiytiie row buffer. For example, to read
four supercells from row of a conventional DRAM, the memory controller must send RANS/CAS
requests, even though the row addregsidentical in each case. To read supercells from the same
row of an FPM DRAM, the memaory controller sends an initial REAS request, followed by three
CAS requests. The initial RAS/CAS request copies famto the row buffer and returns the supercell
addressed by the CAS. The next three supercells are semamdlydifrom the row buffer, and thus
more quickly than the initial supercell.

6.1. STORAGE TECHNOLOGIES 537

e Extended data out DRAM (EDO DRAM)N enhanced form of FPM DRAM that allows the individual
CAS signals to be spaced closer together in time.

e Synchronous DRAM (SDRAMjonventional, FPM, and EDO DRAMs are asynchronous in theese
that they communicate with the memory controller using ao$eixplicit control signals. SDRAM
replaces many of these control signals with the rising edddbe same external clock signal that
drives the memory controller. Without going into detaik thet effect is that an SDRAM can output
the contents of its supercells at a faster rate than its &synous counterparts.

e Double Data-Rate Synchronous DRAM (DDR SDRADMDR SDRAM is an enhancement of SDRAM
that doubles the speed of the DRAM by using both clock edgeoatol signals. Different types
of DDR SDRAMs are characterized by the size of a small prafetdfer that increases the effective
bandwidth: DDR (2 bits), DDR2 (4 bits), and DDR3 (8 bits).

e Rambus DRAM (RDRAMYhis is an alternative proprietary technology with a highgximum
bandwidth than DDR SDRAM.

e Video RAM (VRAM)Used in the frame buffers of graphics systems. VRAM is smiih spirit to
FPM DRAM. Two major differences are that (1) VRAM output isoduced by shifting the entire
contents of the internal buffer in sequence, and (2) VRAMvedl concurrent reads and writes to the
memory. Thus, the system can be painting the screen withixxb&spn the frame buffer (reads) while
concurrently writing new values for the next update (wjites

Aside: Historical popularity of DRAM technologies

Until 1995, most PCs were built with FPM DRAMs. From 1996 t®29EDO DRAMs dominated the market,
while FPM DRAMs all but disappeared. SDRAMs first appearedd85 in high-end systems, and by 2002 most
PCs were built with SDRAMs and DDR SDRAMs. By 2010, most seved desktop systems were built with
DDR3 SDRAMSs. In fact, the Intel Core i7 supports only DDR3 SANR End Aside.

Nonvolatile Memory

DRAMs and SRAMs ar@olatile in the sense that they lose their information if the supplyage is turned
off. Nonvolatile memorieson the other hand, retain their information even when threypowered off.
There are a variety of nonvolatile memories. For historiegsons, they are referred to collectively as
read-only memories (ROMsgven though some types of ROMs can be written to as well as iR@®Ms
are distinguished by the number of times they can be repmoged (written to) and by the mechanism for
reprogramming them.

A programmable ROM (PROMJan be programmed exactly once. PROMs include a sort of fitbesach
memory cell that can be blown once by zapping it with a highrenitr

An erasable programmable ROM (EPROMAs a transparent quartz window that permits light to reach
the storage cells. The EPROM cells are cleared to zeros bynghultraviolet light through the window.
Programming an EPROM is done by using a special device t@wries into the EPROM. An EPROM
can be erased and reprogrammed on the order of 1000 timesleéinically erasable PROM (EEPROM)

is akin to an EPROM, but does not require a physically sepgreigramming device, and thus can be

538 CHAPTER 6. THE MEMORY HIERARCHY

reprogrammed in-place on printed circuit cards. An EEPRQ@M lee reprogrammed on the order16f
times before it wears out.

Flash memorys a type of nonvolatile memory, based on EEPROMSs, that hesrbe an important storage
technology. Flash memories are everywhere, providingdadtdurable nonvolatile storage for a slew of
electronic devices, including digital cameras, cell plsymausic players, PDAs, and laptop, desktop, and
server computer systems. In Section 6.1.3, we will look itaifl@t a new form of flash-based disk drive,
known as asolid state disk (SSD}that provides a faster, sturdier, and less power-hunggrredtive to
conventional rotating disks.

Programs stored in ROM devices are often referred forasvare When a computer system is powered up,
it runs firmware stored in a ROM. Some systems provide a smaatifprimitive input and output functions
in firmware, for example, a PC’s BIOS (basic input/outputteyy routines. Complicated devices such as
graphics cards and disk drive controllers also rely on firnewa translate I/O (input/output) requests from
the CPU.

Accessing Main Memory

Data flows back and forth between the processor and the DRAM mamory over shared electrical con-
duits calledbuses Each transfer of data between the CPU and memory is accgimegliwith a series of
steps called aus transactionA read transactiortransfers data from the main memory to the CPUvike
transactiontransfers data from the CPU to the main memory.

A busis a collection of parallel wires that carry address, data] eontrol signals. Depending on the

particular bus design, data and address signals can shesarhe set of wires, or they can use different
sets. Also, more than two devices can share the same busomtrelavires carry signals that synchronize

the transaction and identify what kind of transaction isrently being performed. For example, is this

transaction of interest to the main memory, or to some ott@@revice such as a disk controller? Is the
transaction a read or a write? Is the information on the busdaness or a data item?

Figure 6.6 shows the configuration of an example computeeisys The main components are the CPU
chip, a chipset that we will call aHlO bridge (which includes the memory controller), and the DRAM
memory modules that make up main memory. These component®ranected by a pair of busessystem
busthat connects the CPU to the I/O bridge, anchamory bughat connects the I/O bridge to the main
memory.

The I/O bridge translates the electrical signals of theesydbus into the electrical signals of the memory
bus. As we will see, the 1/0O bridge also connects the systesvabd memory bus to an I/O bus that is shared
by 1/0 devices such as disks and graphics cards. For nowglhaue will focus on the memory bus.

Aside: A note on busdesigns

Bus design is a complex and rapidly changing aspect of caenmyistems. Different vendors develop different
bus architectures as a way to differentiate their produEts. example, Intel systems use chipsets known as the
northbridgeand thesouthbridgeto connect the CPU to memory and 1/0 devices, respectivelylder Pentium
and Core 2 systems,feont side bus (FSBgonnects the CPU to the northbridge. Systems from AMD repthe
FSB with theHyperTransporinterconnect, while newer Intel Core i7 systems useQh&kPathinterconnect. The
details of these different bus architectures are beyonddbpe of this text. Instead, we will use the high-level bus
architecture from Figure 6.6 as a running example throughmitext. It is a simple but useful abstraction that

6.1. STORAGE TECHNOLOGIES 539

CPU chip

Register file

3 C ALU
System bus Memory bus
1L l
Bus interface B Vo Main
ust] bridge memory

Figure 6.6:Example bus structure that connects the CPU and main memory.

allows us to be concrete, and captures the main ideas witiedng tied too closely to the detail of any proprietary
designsEnd Aside.

Consider what happens when the CPU performs a load opestinas

nmovl A, %eax

where the contents of addredsare loaded into registéreax. Circuitry on the CPU chip called tHaus
interfaceinitiates a read transaction on the bus. The read transactosists of three steps. First, the
CPU places the addresson the system bus. The 1/O bridge passes the signal along tmémory bus
(Figure 6.7(a)). Next, the main memory senses the addrgealsin the memory bus, reads the address
from the memory bus, fetches the data word from the DRAM, aritbsvthe data to the memory bus. The
I/0O bridge translates the memory bus signal into a systensigusl, and passes it along to the system bus
(Figure 6.7(b)). Finally, the CPU senses the data on thesybus, reads it from the bus, and copies it to
register¥eax (Figure 6.7(c)).

Conversely, when the CPU performs a store instruction ssch a

movl %ax, A

where the contents of registégax are written to addresd, the CPU initiates a write transaction. Again,
there are three basic steps. First, the CPU places the adunethe system bus. The memory reads the
address from the memory bus and waits for the data to arrigei@6.8(a)). Next, the CPU copies the data
word in %eax to the system bus (Figure 6.8(b)). Finally, the main memesds the data word from the
memory bus and stores the bits in the DRAM (Figure 6.8(c)).

6.1.2 Disk Storage

Disks are workhorse storage devices that hold enormous amourdataf on the order of hundreds to
thousands of gigabytes, as opposed to the hundreds or tiutsuehmegabytes in a RAM-based memory.
However, it takes on the order of milliseconds to read infation from a disk, a hundred thousand times
longer than from DRAM and a million times longer than from SRA

540 CHAPTER 6. THE MEMORY HIERARCHY

Register file

Yheax <\':| ALU

iI Main memory

1/0 bridge A 0

Bus interface M A

(a) CPU places addresson the memory bus.
Register file

%eax ALU

iI Main memory

I/0 bridge X 0

N\
Bus interface X A

(b) Main memory readsl from the bus, retrieves worg, and places it on the bus.

Register file

Yoeax . Cj ALU
Main memory
I/O bridge 0
Bus interface <:> <,‘::> X A

(c) CPU reads worda from the bus, and copies it into regisééeax.

Figure 6.7:Memory read transaction for a load operation: novl A, %eax.

6.1. STORAGE TECHNOLOGIES 541

Register file

Ypeax > <\':|: ALU
iI Main memory
1/0 bridge 0

R L A

Bus interface

(a) CPU places addresson the memory bus. Main memory reads it and waits for the data.w

Register file

Yheax VI <\':| ALU
ilI Main memory
1/0 bridge 0

i / N\ y

Bus interface

(b) CPU places data worglon the bus.

Register file

Yoeax Cj ALU
iI Main memory

1/0 bridge 0

Bus interface <:> <:> v A

(c) Main memory reads data wogdfrom the bus and stores it at addrets

Figure 6.8:Memory write transaction for a store operation: novl %sax, A

542 CHAPTER 6. THE MEMORY HIERARCHY

Disk Geometry

Disks are constructed fromlatters Each platter consists of two sides, surfaces that are coated with
magnetic recording material. A rotatirgpindlein the center of the platter spins the platter at a fixed
rotational rate typically between 5400 and 15,008volutions per minute (RPMA disk will typically
contain one or more of these platters encased in a sealegimemnt

Figure 6.9(a) shows the geometry of a typical disk surfacachEsurface consists of a collection of con-
centric rings calledracks Each track is partitioned into a collection séctors Each sector contains an
equal number of data bits (typically 512 bytes) encoded emtiagnetic material on the sector. Sectors are
separated bgapswhere no data bits are stored. Gaps store formatting bitsdbatify sectors.

Tracks
Surface
Track k Gaps

/’_ \</ Cylinder k
/ \ Surface 0
Platter 0
Surface 1
\ / Surface 2
Platter 1
\ / Surface 3
- Surface 4
T T Surface 5 Platter 2
Sectors
Spindle
(a) Single-platter view. (b) Multiple-platter view.

Figure 6.9:Disk geometry.

A disk consists of one or more platters stacked on top of etodr @and encased in a sealed package, as
shown in Figure 6.9(b). The entire assembly is often refetoeas adisk drive although we will usually
refer to it as simply adisk We will sometime refer to disks astating disksto distinguish them from
flash-basedolid state disks (SSDs)hich have ho moving parts.

Disk manufacturers describe the geometry of multipletptadrives in terms ofylinders where a cylinder

is the collection of tracks on all the surfaces that are asaidt from the center of the spindle. For example,
if a drive has three platters and six surfaces, and the t@atleach surface are numbered consistently, then
cylinder & is the collection of the six instances of trakk

Disk Capacity

The maximum number of bits that can be recorded by a disk is/kras itsmaximum capacityor simply
capacity Disk capacity is determined by the following technologgttas:

e Recording densitgbits/in): The number of bits that can be squeezed into a 1-inch sdgvharirack.

e Track density(tracks/in): The number of tracks that can be squeezed into a 1-inch esegof the
radius extending from the center of the platter.

6.1. STORAGE TECHNOLOGIES 543

e Areal density(bits/in?): The product of the recording density and the track density

Disk manufacturers work tirelessly to increase areal dgifand thus capacity), and this is doubling every
few years. The original disks, designed in an age of low adeakity, partitioned every track into the
same number of sectors, which was determined by the numbszobbrs that could be recorded on the
innermost track. To maintain a fixed number of sectors pekirthe sectors were spaced farther apart on
the outer tracks. This was a reasonable approach when amesitids were relatively low. However, as
areal densities increased, the gaps between sectors (Whel&ta bits were stored) became unacceptably
large. Thus, modern high-capacity disks use a techniqueikasmultiple zone recordingvhere the set of
cylinders is partitioned into disjoint subsets knowrr@sording zonesEach zone consists of a contiguous
collection of cylinders. Each track in each cylinder in a edras the same number of sectors, which is
determined by the number of sectors that can be packed iatmttermost track of the zone. Note that
diskettes (floppy disks) still use the old-fashioned apphoavith a constant number of sectors per track.

The capacity of a disk is given by the following formula:

bytes>< average # sector>s< # tracks>< # surfaces>< # platters
sector track surface platter disk

Disk capacity=

For example, suppose we have a disk with five platters, 51&stpdr sector, 20,000 tracks per surface, and
an average of 300 sectors per track. Then the capacity oishesd
512 bytes>< 300 sectors>< 20,000 tracks>< 2 surfaces>< 5 platters
sector track surface platter disk
= 30,720,000,000 bytes
= 30.72GB

Disk capacity =

Notice that manufacturers express disk capacity in unitiggbytes (GB), wheré GB = 10° bytes.

Aside: How much isa gigabyte?

Unfortunately, the meanings of prefixes such as kitg,(mega (/), giga (), and tera{’) depend on the context.
For measures that relate to the capacity of DRAMs and SRAMscally K = 2'°, M = 2%°, ¢ = 2%°, and
T = 2%, For measures related to the capacity of 1/O devices suclisks dnd networks, typicallf¢ = 107,
M =10°% G = 10°, andT = 10'2. Rates and throughputs usually use these prefix values &s wel

Fortunately, for the back-of-the-envelope estimateswratypically rely on, either assumption works fine in prac-
tice. For example, the relative difference betw@h = 1,048,576 and 10° = 1,000,000 is small: (22° —
10%)/10° ~ 5%. Similarly for 2°° = 1,073, 741, 824 and10° = 1, 000, 000, 000: (2*° — 10)/10° ~ 7%. End
Aside.

Practice Prablem 6.2:
What is the capacity of a disk with two platters, 10,000 ayéirs, an average of 400 sectors per track,

and 512 bytes per sector?
Disk Operation

Disks read and write bits stored on the magnetic surfacegusiead/write headconnected to the end of
anactuator arm as shown in Figure 6.10(a). By moving the arm back and fddhgaits radial axis, the

544 CHAPTER 6. THE MEMORY HIERARCHY

drive can position the head over any track on the surfaces mieichanical motion is known aseek Once

the head is positioned over the desired track, then as etoh lie track passes underneath, the head can
either sense the value of the bit (read the bit) or alter theevaf the bit (write the bit). Disks with multiple
platters have a separate read/write head for each surfashoan in Figure 6.10(b). The heads are lined
up vertically and move in unison. At any point in time, all deare positioned on the same cylinder.

The disk surface
. . 7
spins at a fixed .~

rotational rate,, ‘
’

The read/write head

is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air
Read/write heads

Arm
By moving radially, the arm
can position the read/write
head over any track
(a) Single-platter view (b) Multiple-platter view

Figure 6.10:Disk dynamics.

The read/write head at the end of the arm flies (literally) dhima cushion of air over the disk surface at a

height of about 0.1 microns and a speed of about 80 km/h. $tisalogous to placing the Sears Tower on
its side and flying it around the world at a height of 2.5 cm (@hinabove the ground, with each orbit of the

earth taking only 8 seconds! At these tolerances, a tinyepidéaust on the surface is like a huge boulder.
If the head were to strike one of these boulders, the headdwamase flying and crash into the surface (a
so-calledhead crash For this reason, disks are always sealed in airtight ppeka

Disks read and write data in sector-sized blocks. dteess timdor a sector has three main components:
seek timerotational latency andtransfer time

e Seek time: To read the contents of some target sector, the arm firstiqusithe head over the track
that contains the target sector. The time required to moweit is called theseek time The seek
time, T, depends on the previous position of the head and the spagtihéharm moves across the
surface. The average seek time in modern dri¥gs, ..., measured by taking the mean of several
thousand seeks to random sectors, is typically on the ofd@nt@ 9 ms. The maximum time for a
single seekl},qz seek» CAN be as high as 20 ms.

e Rotational latency: Once the head is in position over the track, the drive wait$he first bit of the
target sector to pass under the head. The performance aféipislepends on both the position of the
surface when the head arrives at the target sector and tgoral speed of the disk. In the worst
case, the head just misses the target sector and waits fdisthéo make a full rotation. Thus, the
maximum rotational latency, in seconds, is given by

1 60 secs
Tma:v rotation — m X 1 min

6.1. STORAGE TECHNOLOGIES 545

The average rotational laten,.; rotation, iS simply half ofT},,.. rotation -

e Transfer time: When the first bit of the target sector is under the head, tive dan begin to read
or write the contents of the sector. The transfer time for eeor depends on the rotational speed

and the number of sectors per track. Thus, we can roughiypatithe average transfer time for one
sector in seconds as

1 " 1 y 60 secs
RPM (average # sectors/track 1 min

Tavg transfer —

We can estimate the average time to access the contents sk geditor as the sum of the average seek

time, the average rotational latency, and the averagefématisie. For example, consider a disk with the
following parameters:

| Parameter | Value |
Rotational rate 7200 RPM
Tavg seek 9ms
Average # sectors/track 400

For this disk, the average rotational latency (in ms) is

Tavg rotation = 1/2 x Tmaa: rotation

1/2 x (60 secs / 7200 RPMx 1000 ms/sec
~ 4ms

The average transfer time is

Tovgtransfer = ©60/7200 RPMx 1 /400 sectors/track 1000 ms/sec
0.02 ms

Putting it all together, the total estimated access time is

Taccess = Tavg seek T Tavg rotation T T(wg transfer
= 9ms+4ms+ 0.02 ms
13.02 ms

This example illustrates some important points:

e The time to access the 512 bytes in a disk sector is dominatedebseek time and the rotational

latency. Accessing the first byte in the sector takes a lang,tbut the remaining bytes are essentially
free.

e Since the seek time and rotational latency are roughly threeséwice the seek time is a simple and
reasonable rule for estimating disk access time.

