CS:APP2e Guide to Y86 Processor Simulators

W_valE
I 1 W_valM
f
] data out m_valM
read Data
memory

at

Execute

o

icode

A B
Decode RegisterV
file 4 W_valE
—

imem _error : ‘ Instruction PC -

memory increment

Randal E. Bryant
David R. O’Hallaron

May 2, 2011

*Copyright(© 2002, 2010, R. E. Bryant, D. R. O’Hallaron. All rights reseav

This document describes the processor simulators thanguaay the presentation of the Y86 processor
architectures in Chapter 4 @omputer Systems: A Programmer’s Perspective, SeconibidiThese
simulators model three different processor designs: SEHQ-S and PIPE.

1 Installing

The code for the simulator is distributed as a tar format fdeedsi m t ar . You can get a copy of this
file from the CS:APP2e Web site¢app. ¢s. crmu. edu).

With the tar file in the directory you want to install the cogeu should be able to do the following:

uni x> tar xf simtar
uni x> cd sim

uni x> nmake cl ean

uni x> make

By default, this generates GUI (graphic user interfacepioers of the simulators, which require that you
have Tcl/Tk installed on your system. If not, then you havedhtion to install TTY-only versions that emit
their output as ASCII text on stdout. See flREADME for a description of how to generate the GUI and
TTY versions.

The directorysi mcontains the following subdirectories:

m sc Source code files for utilities such ass (the Y86 assembler);is (the Y86 instruction set simula-
tor), andHcL2c (HCL to C translator). It also contains thesa. ¢ source file that is used by all of
the processor simulators.

seq Source code for the SEQ and SEQ+ simulators. Contains the fittlClor homework problems 4.49
and 4.50. See filREADVME for instructions on compiling the different versions of timulator.

pi pe Source code for the PIPE simulator. Contains the HCL filebfonework problems 4.52-4.57. See
file READVE for instructions on compiling the different versions of gieulator.

y86- code Y86 assembly code for many of the example programs showreinthpter. You can automat-
ically test your modified simulators on these benchmark rnog. See fillREADVE for instructions
on how to run these tests. As a running example, we will us@iibgramasum ys in this subdirec-
tory. This program is shown as CS:APP2e Figure 4.8. The dechpersion of the program is shown
in Figure 1.

pt est Scripts that generate systematic regression tests of ffexeadhit instructions, the different jump
possibilities, and different hazard possibilities. Thesgpts are very good at finding bugs in your
homework solutions. See fiIREADVE for instructions on how to run these tests.

© 00 N o b~ WDN PP

AN DD DD DAEDWWWWWWWWWWNNMNNNNNNONNNNERERERRRRRRR PR
N O 0O DhWNROOOMNOOGADNWNRO®©ONO®UDSWNERO®OOW-NOONWNLEO

Figure 1:Sample object code file.

0x000:
0x000:
0x006:
0x00c:
0x011:

0x014:
0x014:
0x018:
0Ox01c:
0x020:

0x024:
0x026:
0x028:
0x02e:
0x030:
0x036:
0x038:
0x03d:
0x03f:
0x041:

0x042:
0x044:
0x046:
0x04c:
0x052:
0x054:
0x056:
0x05b:
0x061:
0x063:
0x069:
0x06b:
0x071:
0x073:
0x078:
Ox07a:
0x07c:

0x100:
0x100:

30f 400010000
30f 500010000
8024000000
00

0d000000
c0000000
000b0000
00a00000

a05f

2045

30f 004000000
a0of

30f 214000000
a02f
8042000000
2054

bO5f

90

a05f

2045
501508000000
50250c000000
6300

6222
7378000000
506100000000
6060

30f 304000000
6031
30f3ffffffff
6032
745b000000
2054

b05f

90

Execution begins at address 0O

init:

Array

array:

Sum

Loop:

End:

.pos O

i rnmovl Stack,
i rmovl St ack,
call Min
hal t

%esp
%ebp

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.l ong 0xb0O
.l ong 0xa000

pushl
rrnovl
i rnovl
pushl
i rnovl
pushl
call Sum

rrmovl %ebp, %esp
popl %ebp

ret

Y%ebp

Y%esp, Yebp
$4, Y%eax
Yeax

array, %edx
Y%edx

int Sunm(int =Start,
pushl %bp

rrmovl %esp, %ebp
nrmovl 8(%ebp), %ecx
nrmovl 12(%bp), Yedx
xorl|l % ax, Yeax

and| %edx, Yedx
je End
nrmovl (%ecx), %es
addl %esi , %eax

i rmovl $4, %ebx
addl %ebx, %ecx

i rmovl $-1, %ebx
addl %ebx, %edx

j ne Loop
rrnovl %bp, Y%esp
popl %ebp

ret

H H HH

i nt

H H HH

HoHHHHHH

The stack starts here and grows

St ack:

. pos 0x100

Set up stack pointer
Set up base pointer
Execut e main program
Term nate program

Push 4

Push array

Sun(array, 4)

Count)

Start

edx Count

sum = 0

Set condition codes

ecx

get *Start
add to sum

Start ++

Count - -
St op when 0O

to | ower addresses

This code is in the file asum yo in the y86- code subdirectory.

2 Utility Programs
Once installation is complete, time sc directory contains two useful programs:

YAS The Y86 assembler. This takes a Y86 assembly code file wihnsidn. ys and generates a file with
extension yo. The generated file contains an ASCII version of the objedecsuch as that shown
in Figure 1 (the same program as shown in CS:APP2e Figure 418 easiest way to invoke the
assembler is to use or create assembly code files iy 8@ code subdirectory. For example, to
assemble the program in filssum ys in this directory, we use the command:

uni x> make asum yo

YIS The Y86 instruction simulator. This program executes thgrirctions in a Y86 machine-level pro-
gram according to the instruction set definition. For exanplppose you want to run the program
asum yo from within the subdirectory86- code. Simply run:

uni x> ../ msc/yis asumyo

Y1s simulates the execution of the program and then prints dstwany registers or memory loca-
tions on the terminal, as described in CS:APP2e Section 4.1.

3 Processor Simulators

For each of the three processors, SEQ, SEQ+, and PIPE, wephavided simulatorssim, ssim+, and
PSIM respectively. Each simulator can be run in TTY or GUI mode:

TTY mode Uses a minimalist, terminal-oriented interface. Printergthing on the terminal output. Not

very convenient for debugging but can be installed on anyesysand can be used for automated
testing. The default mode for all simulators.

GUI mode Has a graphic user interface, to be described shortly. Velpftl for visualizing the processor
activity and for debugging modified versions of the desigowidver, it requires installation of Tcl/Tk
on your system. Invoked with theg command line option.

3.1 Command Line Options
You can request a number of options from the command line:

- h Prints a summary of all of the command line options.

- g Run the simulator in GUI mode (default TTY mode).

-t Runs both the processor and the ISA simulators, comparegeulting values of the memory, register
file, and condition codes. If no discrepancies are foundjitg the message “ISA Check Succeeds.”
Otherwise, it prints information about the words of the stgi file or memory that differ. This feature
is very useful for testing the processor designs.

-1 m Sets the instruction limit, executing at mostinstructions before halting (default 10000 instruc-
tions).

-v n Sets the verbosity level to, which must be between 0 and 2 with a default value of 2.

Simulators running in GUI mode must be invoked with the narn@noobject file on the command line. In
TTY mode, the object file name is optional, coming fremndi n by default.

Here are some typical invocations of the simulators (froeytB6- code subdirectory):

uni x> ../seq/ssim-h
uni x> ../seqg/ssim-t < asumyo
uni x> ../pipe/psim-t -g asumyo

The first case prints a summary of the command line options$ok. The second case runs the SEQ
simulator in TTY mode, reading object filssum yo from st di n. The third case runs the PIPE simulator
in GUI mode, executing the instructions object ileum yo. In both the second and third cases, the results
are compared with the results from the higher-level ISA datar.

3.2 SEQ and SEQ+ Simulators

The GUI version of the SEQ processor simulator is invokedhait object code filename on the command
line:

uni x> ../seqg/ssim-g asumyo &

where the & at the end of the command line allows the simulator to run atkground mode. The
simulation program starts up and creates three windowdluatrated in Figures 2—4.

The first window (Figure 2) is the main control panel. If the Hftle was compiled byHcL2c with the
- n narme option, then the title of the main control window will appear Y86 Processor: nane”
Otherwise it will appear as simply¥86 Pr ocessor .”

The main control window contains buttons to control the datar as well as status information about the
state of the processor. The different parts of the windowatreled in the figure:

Control: The buttons along the top control the simulator. Clicking @uit button causes the simulator to
exit. Clicking theGo button causes the simulator to start running. ClickingSkep button causes the
simulator to stop temporarily. Clicking tt&tep button causes the simulator to execute one instruction
and then stop. Clicking thReset button causes the simulator to return to its initial statehthe
program counter at address 0, the registers set to 0s, themearased except for the program, the
condition codes set withF = 1, CF = 0, andOF = 0, and the program status set tACK.

!& ¥86 Processor: seg-std.hcl ﬂﬁ
Quit | Go | Swop | Step | Reset | / Controls

Simulator Speed (10%log Hz)
4

| 4

Processor State

newFC

Stage

00000071 :
PC Update Stage signals
walbd
00000000

Chul walE

Memory Stage
H FFFFFFFF
Execute Stage

vald valB dstE dstM srcA srcB
00000000 /00000000 | 2ehx —-—- —--~|----
Decode Stage

Instr T, rB walC walP
irmovl| ---- %ehx FFFFFFFF 00000071

Fetch Stage

FE
{0D0000EE!
Register File Register
e
Eean Eecx Eedx Zebx Zesp Zebp Zesi Zedi file
cd e 3 4 e e cll
Stat Aok Condition Codes 205000 Condition

- S JJ codes

~
N Status

Figure 2: Main control panel for SEQ simulator

!ﬁ Program Code e |:(E]
File .. /786-code /asum, yo Load Control

Ox0 30£40001000 init: imewl stack, %esp # set wp stack pointer
OxE F0E50001000 immowl Stack, %ebp # set wp base pointer

Oxec G024000000 call Main # Execute main program
Oxil o0 halt # Teminate progroam

Oxi14 Odooooon arcap: . long Mxd

Oxi1g cO000000 lomg Oxed

Oxle 000bOOOD long OxbOo

Ox20 00a00000 clomg Oxalon

Ox24 a05f Main: pushl %ebp 1
Ox2E 2045 comowl %esp, %ebp

028 20£00400000 lmowl 4, %eax

OxZe a00f pushl %eax # Push 4

Ox30 20£21400000 immowl arcap, %edx

Ox36 alZf pushl %edx # Push arcrap

Ox38& a04z000000 call Sum # Sum{accap, 43

Ox3d 2054 comowl %ebp, %esp

Ox3f bOGE popl %ebp

Ox41 a0 et

Ox42 a0Gf S pushl %ebp

Oxd44 2045 comowl %esp, %ebp

Ox4E ES01E0800000 mmowl & {%ebp) , Becx # ecx = Start ’ Assembly
Dde 5025000000 momowl 12(%ebp),sedx # edx = Count Code
Ox52 E200 xorl %ean, e # zam = 0

Ox54 EB222 andl %edx, %edx # set condition codes
056 7378000000 je End

OxSh SOE10000000 Loop: momoewl {%ecx), %esi # get Fatart

Ox&l EOED addl %esi, %eax # add to sum

062 20£30400000 immowl 54, %ebx #

OxE3 E031 L~ addl %ebo, secx # stact++

OxEh ZOEIEEEEELER + iomowl -1, %ebx #

0x71 E0O3Z ? addl %ebo, %sedx # count--

0x73 45hO0000O0 jne Loop # Stop when 0

1 O0x78& 2054 End: comowl %ebp, %esp
0x7a bOGE popl %ebp
Ox?c 90 et
i S — —— |
Currently executing instruction

Object code

Figure 3: Code display window for SEQ simulator

k% Memory Contents =HACIH[X

(z—--10 Oz---4 (x---8 lx-—-c

Oz00f- 14 4 100 11

Oz00e- 1]] fa 3d
0x00e0 0x00ed4 0x00e8 0x00ec

Figure 4: Memory display window for SEQ simulator

The slider below the buttons controls the speed of the simwahen it is running. Moving it to the
right makes the simulator run faster.

Stage signals: This part of the display shows the values of the differentcpssor signals during the cur-
rent instruction evaluation. These signals are almostticinto those shown in CS:APP2e Figure
4.23. The main difference is that the simulator displaysntume of the instruction in a field labeled
Instr, rather than the numeric values iobde andifun. Similarly, all register identifiers are shown
using their names, rather than their numeric values, with-- ” indicating that no register access is
required.

Reqgister file: This section displays the values of the eight program regist The register that has been
updated most recently is shown highlighted in light blue.giB&r contents are not displayed until
after the first time they are set to nonzero values.

Remember that when an instruction writes to a program registe register file is not updated until
the beginning of the next clock cycle. This means that youtrsiep the simulator one more time to
see the update take place.

Stat: This shows the status of the current instruction being exelculrhe possible values are:

AOK: No problem encountered.

ADR An addressing error has occurred either trying to read atnucasson or trying to read or write
data. Addresses cannot excé&edFFF.

I NS: Anillegal instruction was encountered.
HLT: A hal t instruction was encountered.

Condition codes: These show the values of the three condition cod&s:SF, andOF.

Remember that when an instruction changes the conditioes;dtle condition code register is not
updated until the beginning of the next clock cycle. This nsethat you must step the simulator one
more time to see the update take place.

The processor state illustrated in Figure 2 is for the se@@atution of line 38 of thesum yo program
shown in Figure 1. We can see that the program counter(x@6b, that it has processed the instruction
addl %ebx %ecx, that registeeax holdsOxcd, the sum of the first two array elements, a¥eldx
holds 3, the count that is about to be decremented. Re§fstex holdsOx 1c, the address of the third array
element. Registé¥ebx still holds the value 4 (from line 36) but there is a pendingievof Ox FFFFFFFF

to this register (sincestE is set to%ebx andvalE is set toOx FFFFFFFF). This write will take place at
the start of the next clock cycle.

The window depicted in Figure 3 shows the object code fileithlaging executed by the simulator.The edit
box identifies the file name of the program being executed. céouedit the file name in this window and
click theLoad button to load a new program. The left hand side of the disgkes the object code being
executed, while the right hand side shows the text from tkerably code file. The center has an asterisk
(*) to indicate which instruction is currently being simuldtd his corresponds to line 38 of thesum yo
program shown in Figure 1.

The window shown in Figure 4 shows the contents of the menisiiows only those locations between the
minimum and maximum addresses that have changed sincedpgpr began executing. Each row shows
the contents of four memory words. Thus, each row shows 1éshyt the memory, where the addresses
of the bytes differ in only their least significant hexadeairdigits. To the left of the memory values is the

“root” address, where the least significant digit is showri-ds Each column then corresponds to words
with least significant address digidx 0, 0x4, 0x8, andOxc. The example shown in Figure 4 has arrows
indicating memory location8x00e0, 0x00e4, 0x00e8, andOx00ec.

The memory contents illustrated in the figure show the stacitents of theasum yo program shown in
Figure 1 during the execution of tfimprocedure. Looking at the stack operations that have taleep
so far, we see th&®sp and%ebp were initialized to0Ox100 (lines 3 and 4). The call téki n on line 5
pushes the return point@x 011, which is written to addresBx00f c. Procedurédvhi n starts by pushing
%ebp, writing 0x100 to 0x00f 8. It then pushes the value &kax (line 18), writing0x4 to 0x00f 4
and%edx (line 20), writing0x 14 (the address of the array) @< 00f 0. The call toSumon line 21 causes
the return pointe0x3d to be written to addred3x00ec. Within Sum pushingebp causefxf 8 to be
written to addres®x00e8. That accounts for all of the words shown in this memory digpand for the
stack pointer being set toxe8.

Figure 5 shows the control panel window for the SEQ+ simujathen executing the same object code file
and when at the same point in this program. We can see thanthaifference is in the ordering of the
stages and the different signals listed. These signalegpond to those in CS:APP2e Figure 4.40. The
SEQ+ simulator also generates code and memory windows. eTieage identical format to those for the
SEQ simulator.

3.3 PIPE Simulator

The PIPE simulator also generates three windows. Figureo@sithe control panel. It has the same set
of controls, and the same display of the register file and itimmdcodes. The middle section shows the
state of the pipeline registers. The different fields cqroesl to those in CS:APP2e Figure 4.52. At the
bottom of this panel is a display showing the number of cythas have been simulated (not including the
initial cycles required to get the pipeline flowing), the rugn of instructions that have completed, and the
resulting CPI.

As illustrated in the close-up view of Figure 7, each pipeliegister is displayed with two parts. The
upper values in white boxes show the current values in thelipg register. The lower values with a gray
background show the inputs to pipeline register. Thesehwilloaded into the register on the next clock
cycle, unless the register bubbles or stalls.

The flow of values through the PIPE simulator is quite différieom that for the SEQ or SEQ+ simulator.
With SEQ and SEQ+, the control panel shows the values raguttbm executing a single instruction. Each
step of the simulator performs one complete instructiorcetien. With PIPE, the control panel shows the
values for the multiple instructions flowing through theglipe. Each step of the simulator performs just
one stage’s worth of computation for each instruction.

Figure 8 shows the code display for the PIPE simulator. Tha#bis similar to that for SEQ and SEQ+,
except that rather than a single marker indicating whickriresion is being executed, the display indicates
which instructions are in each state of the pipeline, ushmayacters-, D, E, M andW for the fetch, decode,

B v86 Processor: seq+-stdhl i. M
Quit | Go Stop Step Reset / Controls
Simulator Speed (10"log Hz)
4
| s
Processor State
) Stage
00000000] — 9
signals
Memory Stage
Chd walE
H FFFEFFFFF
Execute Stage
vald valB dstE dstM sreA secB
00000000/ 00000000 2ehse —=—=|———=|———=
Decode Stage
Instr ré&, rB walC walP
irmovl|----%ebx FFFFFFFF 00000071
Fetch Stage
FC
0000006E |
PC Stage
pChnd plnstr phfalC fal phfalP
N || addl |00000000 00000000 000000EE
Register File Register
Eean Eecx Eedx Eehx Zesp Zehp Zesi Zedi = file
cd 1c 3 4] ef| ed c0
Stat amx Condition Codeg 2 05000 Condition
- codes
N status

Figure 5: Main control panel for SEQ+ simulator

10

E Y86 Processor: pipe-std.hd I =nEC. ﬁ

qut | Go | Sstop | Step | Reset | f€ Controls
Simulator Speed (10"log Hz)

3
| 2jsd

Pipeline Registers

Stat Inatr valE vl dstE dstM & Pipeline
W State A0K jne 00000000 00000000 —--- ---—- stages
Input A0E memovl 00000018 000000CO ---- Zesi

Memory Stage

Stat Instr Cnd valE vald dstE st
A0E mrmovl, ¥ |00000018(00000000)----|%esi
EUE nop ¥ 00000000 00000000 ---- -——-

Execute Stage

Stat Instr valC wald walB dstE dstM srcaA sreB
E State BUE nop 00000000 00000000 00000000 —--= === === —==—
Input A0K addl 00000000 000000cO 00000000 %eax ---- Zesl %eax

Decode Stage

Stat Instr r rB walC walP
) State 20¥ addl %esi %easx 00000000 DOODO0G3
Input A0 irmowl ---- Zebx 00000004 00000069

j Fetch Stage

Stat predPC
F State A0K 00000063
Input A0E 00000069

. Register
Register File | file
e BeoxK Eedx #ehx esp Zehp Zesl Zedi Status &
d 1a 3| EEEFEFEE el el d | condition
Stat aok Condition Codes =z 050010 — codes
L
Performance cycles 27 Instructions | 24 CP1 1.12 Performance
| monitor

Figure 6: Main control panel for PIPE simulator

11

W

Stat lh=tr

walE

vl i

dstE dsth

| State |20E| qne

gooooooo ooaoool) --—--|----

Current state

Mnput BOE memowl 00000018 OOOOOOCD —-——- Zesi |« Redister inputs

Figure 7: View of single pipe register in control panel foPB simulator

[h;‘:} Program Code

— |3

File

Ox0 20£40001000
Ox& 20£50001000
Oxec 2024000000
0xi1 00

Ox14 Odooooon
Ox12 cOO00000
Oxdc O000bLOOOOD
OxZ0 00a00000
Ox24 alSf

OxZE 2045

OxZd SUfUU4UUUUU]

inik:

arrcap:

OxZe alOf

0x30 20£21400000
Ox36 al2f

0x38 8042000000
Ox3d 2054

O0x3f hOSE

Ox41 390

Oxd42 alSf Sum:
Oxdd 2045

Ox4€ 50150800000
Oxde SEIZSEIGEIEIEIEIEI]
0xE2 E200

OxE4 EB222

0xE6 7278000000
O0xEb SOE100000000)w
Oxel E0ED

OxE3 20£30400000
OxEd 6031

OxEL B0£3£LE££££F
0x71 6032

0x73 ?45b000000 W
0x78 2054
Ox7a bOSE
0x7c 90

Loop:

End:

Object code

oo ijE—cndefasum. yo

Load

imevl Stack, %esp
immevl Stack, %ebp
call Main

halt

clong Dxd

clong Dxed

clong Dxb0o

clong Dxaloo

pushl %ebp

comowvl %esp, %ebp
immowl 3§54, %eax
pushl %eax

imeowl arrap, %edx
pushl %edx

call Sum

ool %ebp, Sesp
popl %ebp

ret

pushl %ebp

ool %esp, %ebp
momovl 8 {%ebph, Geox
mmowl 12 {%ebp), %edx
xorl Geeam, %eax
andl %edi, %edn
je End

ool (%ecw), %esi
addl %eszi, %eax
immovl 54, %ebx
addl %ebx, %ecx
dimowl $-1,%ebx
addl %ebx, %edx

jne Loop

comowvl %ebp, Hesp
popl %ebp

et

* % o

4 # 4

o4 # o o o

Set up stack pointer
Set up base pointer
Execute main program

Teminate program

Puszh 4

Push arrap

Sumfarrap, 43

ecx = Start

edx = Count

sum = 0

set condition codes

get Fstart
add te sum

Start++

connt--
Stop when 0

Currently executing instructions

Control

Assembly
code

Figure 8: Code display window for PIPE simulator

execute, memory, and write-back stages.

The PIPE simulator also generates a window to display theaneoontents. This has an identical format
to the one shown for SEQ (Figure 4).

The example shown in Figures 6 and 8 show the status of thén@p&hen executing the loop in lines
34-40 of Figure 1. We can see that the simulator has beguretiong iteration of the loop. The status of
the stages is as follows:

Write back: The loop-closing ne instruction (line 40) is finishing.

Memory: Thenr novl instruction (line 34) has just redak 0CO from addres©x018. We can see the
address ivalE of pipeline register M, and the value read from memory atipeit ofvalM to pipeline
register W.

Execute: This stage contains a bubble. The bubble was inserted die todad-use dependency between
thenr novl instruction (line 34) and thaddl instruction (line 35). It can be seen that this bubble
acts like anop instruction. This explains why there is no instruction igtiie 8 labeled with “E.”

Decode: Theadd! instruction (line 35) has just redik 00D from registel@eax. It also readdx00Dfrom
register¥esi , but we can see that the forwarding logic has instead usedallne 0x0CO0 that has
just been read from memory (seen as the inputai in pipeline register W) as the new value of
valA (seen as the input talA in pipeline register E).

Fetch: Thei r movl instruction (line 38) has just been fetched from add®s363. The new value of the
PC is predicted to b&x069.

Associated with each stage is its status flaicht This field shows the status of the instruction in that stage
of the pipeline. Statu&OK means that no exception has been encountered. StatusBRldBiendicates
that a bubble is in this stage, rather than a normal instsoctOther possible status values af®R when

an invalid memory location is referencddNS when an illegal instruction code is encounterBdP when

a problem arose in the pipeline (this occurs when both tHeastd the bubble signals for some pipeline
register are set to 1), artld_T when a halt instruction is encountered. The simulator widpsvhen any of
these last four cases reaches the write-back stage.

Carrying the status for an individual instruction throudpe tpipeline along with the rest of the informa-
tion about that instruction enables precise handling ofdifferent exception conditions, as described in
CS:APP2e Section 4.5.9.

4 Some Advice

The following are some miscellaneous tips, learned fromegrpce we have gained in using these simula-
tors.

e Get familiar with the simulator operatior.ry running some of the example programs inyt&6- code

directory. Make sure you understand how each instructids gecessed for some small examples.
Watch for interesting cases such as mispredicted brantdaesijnterlocks, and procedure returns.

13

e You need to hunt around for informatiorseeing the effect of data forwarding is especially tricky.
There are seven possible sources for sigiradh in pipeline register E, and six possible sources for
signalvalB. To see which one was selected, you need to compare the mtheége pipeline register
fields to the values of the possible sources. The possiblespare:

R[d_srcA] The source register is identified by the inputstgA in pipeline register E. The register
contents are shown at the bottom.

R[d_srcB | The source register is identified by the inputstaB in pipeline register E. The register
contents are shown at the bottom.

D_valP This value is part of the state of pipeline register D.
e_valE This value is at the input to fieldlIE in pipeline register M.
M_valE This value is part of the state of pipeline register M.
m_valM This value is at the input to fielalM in pipeline register W.
W_valE This value is part of the state of pipeline register W.
W_valM This value is part of the state of pipeline register M.

e Do not overwrite your codeSince the data and code share the same address space, it t® eas
have a program overwrite some of the code, causing comphetescwhen it attempts to execute the
overwritten instructions. It is important to set up the &téw be far enough away from the code to
avoid this.

e Avoid large address valuesThe simulators do not allow any addresses greater ¢he®FFF. In
addition, the memory display becomes unwieldy if you modifgmory locations spanning a wide
range of addresses.

e Be aware of some “features” of the GUI-mode simulat@sifv, ssiM+, andPSIM.)

— You must must execute the programs from their home direzgorin other words, to ruasim
or ssiM+, you must be in theeq directory, while you must be in thei pe subdirectory to run
PSIM. This requirement arises due to the way the Tcl interpreteates the configuration file
for the simulator.

— If you are running in GUI mode on a Unix box, remember to itiitia the DISPLAY environ-
ment variable:

uni x> setenv DI SPLAY nyhost. edu: 0
— With some Unix X Window managers, the “Program Code” windoggibs life as a closed

icon. If you don'’t see this window when the simulator stay,)’ll need to expand the expand
manually by clicking on it.

— With some Microsoft Windows X servers, the “Memory Contémntsndow does not automat-
ically resize itself when the memory contents change. Isdtmases, you'll need to resize the
window manually to see the memory contents.

— The simulators will terminate with a segmentation faultauyask them to execute a file that is
not a valid Y86 object file.

14

