CS:APP Web Aside DATA:TMIN: Writing TMin in C*

Randal E. Bryant
David R. O'Hallaron

December 29, 2014

Notice

The material in this document is supplementary material to the book Computer Systems, A Programmer's Perspective, Third Edition, by Randal E. Bryant and David R. O'Hallaron, published by Prentice-Hall and copyrighted 2016. In this document, all references beginning with "CS:APP3e" are to this book. More information about the book is available at csapp. cs . cmu. edu.

This document is being made available to the public, subject to copyright provisions. You are free to copy and distribute it, but you must give attribution for any use of this material.

1 The Situation

In Figure CS:APP3e-2.19 and in Problem CS:APP3e-2.21, we carefully wrote the value of TMin $_{32}$ as $-2147483647-1$. Why not simply write it as either -2147483648 or 0×80000000 ? Looking at the C header file limits.h, we see that they use a similar method as we have to write TMin $_{32}$ and TMax $_{32}$:

```
/* Minimum and maximum values a 'signed int' can hold. */
#define INT_MAX 2147483647
#define INT_MIN (-INT_MAX - 1)
```

Unfortunately, a curious interaction between the asymmetry of the two's complement representation and the conversion rules of C force us to write TMin $_{32}$ in this unusual way. Although understanding this issue requires us to delve into one of the murkier corners of the C language standards, it will help us appreciate some of the subtleties of integer data types and representations.
Consider the case of writing TMin $_{32}$ as -2147483648 and compiling the code as a 32 -bit program, using the data sizes shown in Figure CS:APP3e-2.9. When the compiler encounters a number of the form $-X$, it first determines the data type and value for X and then negates it. The value 2,147,483,648 is too large to

[^0]| ISO C90 | | ISO C99 | |
| :---: | :---: | :---: | :---: |
| Decimal | Hexadecimal | Decimal | Hexadecimal |
| ```int long unsigned unsigned long``` | ```int unsigned long unsigned long``` | int
 long
 long long | ```int unsigned long unsigned long long long unsigned long long``` |

Figure 1: Data types for representing integer constants. According to the language version and format (decimal or hexadecimal), the data type for a constant is given by the first type in the appropriate list that can represent the value.

Word Size	ISO C90		ISO C99	
Expression	-2147483648	0×80000000	-2147483648	0×80000000
32	unsigned	unsigned	long long	unsigned
64	long	unsigned	long	unsigned

Figure 2: Data types resulting from constant expressions for TMin $_{32}$. According to the language version and format (decimal or hexadecimal), we can get three different data types for the two expressions, including cases where the value is positive.
represent as an int, since this value is one larger than $T M a x_{32}$ (the asymmetry strikes!). The compiler tries to determine a data type that can represent this value properly. It proceeds down one of the lists shown for the decimal cases in Figure 1, depending on the language version. ${ }^{1}$ For the case of ISO C90, it proceeds from int to long to unsigned, only then finding a data type that can represent the number 2,147,483,648. As we will see in CS:APP3e-2.3.3, values 2,147,483,648 and $-2,147,483,648$ have the same bit representations as 32 -bit numbers, and so the resulting constant has data type unsigned and value 2147483648 . For the case of ISO C99, the compiler proceeds from int to long to long long, finally finding a data type that can represent the number $2,147,483,648$. With 64 bits, we can uniquely represent both $2,147,483,648$ and $-2,147,483,648$, and so the resulting constant has data type long long and value -2147483648 .
When compiling hexadecimal constant 0×80000000 in a 32 -bit program, the compiler proceeds in a similar fashion, following one of the lists for the hexadecimal cases in Figure 1. For both language versions, it first compares the number to $T M a x_{32}$ (0×7 FFFFFFF) and, since it is larger, decides that the value cannot be represented as an int. It next compares the number to $U M a x_{32}$ ($0 \times \mathrm{FFFFFFFF}$) and, since it is smaller, chooses an unsigned representation. It therefore yields a constant with data type unsigned and value 0×80000000 (or, equivalently, $2,147,483,648$).

Things work a bit differently with a 64-bit program. For both language versions, the decimal form yields a constant with data type long (64 -bits) and value $-2,147,483,648$, while the hexadecimal form yields a constant with type unsigned and value 0×80000000 (or, equivalently, 2,147,483,648).

[^1]All of these variations can be summarized by the table shown in Figure 2. For the cases where the result has type long or long long, the constant is negative, but it is 64 bits long. For the cases where the result has type unsigned, the constant is positive and 32 bits long. These outcomes can be demonstrated by the following code:

```
int dpos32 = (-2147483648 > 0);
int hpos32 = (0x80000000 > 0);
```

These lines of code attempt to express TMin $_{32}$ as a decimal or hexadecimal constant and test whether the value is greater than zero. Depending on the compiler version and word size, we find that the value of dpos 32 can be either 1 or 0 , indicating that the decimal constant can be either positive or nonnegative, while the value of hpos 32 is consistently 1 , indicating that the hexadecimal constant is consistently positive. Our seemingly simple task of writing TMin_{32} as a constant is more difficult than might be expected!

Practice Problem 1:

Consider the following code:

```
int dtmin32 = -2147483648;
int dpos32a = (dtmin32 > 0);
int htmin32 = 0x80000000;
int hpos32a = (htmin32 > 0);
```

We compile this code as both 32 -bit and 64 -bit programs on a machine using two's complement representations of integers, and we try it for both language standards ISO-C90 and ISO-C99. In all cases, we consistently get value 0 for both dpos32a and hpos32a, and further tests verify that dtmin32 and htmin32 indeed equal $T M i n_{32}$. Explain why this code does not have the compiler and language sensitivities we saw for the earlier code example.

2 Implications

For many programs, the ambiguities caused by different word sizes and language standards would not affect program behavior (for example, see Problem 1.) Nonetheless, we can now appreciate why the convention of writing TMin $_{32}$ as $-2147483647-1$ yields a more desirable result. Since 2147483647 is the value of $T M a x_{32}$, it can be represented as an int, and hence there is no need to invoke the conversion rules of Figure 1.

Practice Problem 2:

Suppose we try to write TMin $_{32}$ as -0×7 FFFFFFFF-1. Would the C compiler generate a constant of type int for both 32- and 64-bit programs and for both versions of the C language standard? Explain.

Practice Problem 3:

You wish to write a succinct expression for $T M i n_{w}$, where w is the number of bits in data type long int. Since the size of this data type varies depending on the machine and the compiler settings (see

Figures CS:APP3e-2.9 and CS:APP3e-2.10), you decide to make use of the sizeof operation, so that the expression will yield TMin_{w} as long as w is a multiple of 8 . You also use a trick, to be covered in Section CS:APP3e-2.3.6, that shifting a number left by 3 is the same as multiplying it by 8 .
Your first attempt at this code is:

```
/* WARNING: This code is buggy */
/* Shift 1 over by 8*sizeof(long) - 1 */
1L << sizeof(long)<<3 - 1
```

You compile your code as a 32-bit program and find that the expression evaluates to 64 .
A. Explain why this happened.
B. What value would the expression yield for a 64-bit program?
C. Make minimal modifications to the expression so that it evaluates correctly.

Practice Problem 4:

Suppose we try to write the value of TMin_{64} as decimal and hexadecimal constants. Fill in the following table using the rules shown in Figure 1 to determine what type the resulting value should be. You may find some cases where the rules do not define a valid representation for the constant. Indicate such cases with the entry "undefined."

Word Size	C Version	-9223372036854775808	$0 \times 8000000000000000$
32	C90		
32	C99		
64	C90		
64	C99		

Solutions to Practice Problems

Problem 1 Solution: [Pg. 3]

In making the assignment to integer variables $d \operatorname{tmin} 32$ and htmin32, we implicitly cast the value to a 32 -bit, two's complement integer. This yields the value $-2,147,483,648$ regardless of whether or not the constant value is signed or unsigned, or whether it is 32 or 64 bits.

Problem 2 Solution: [Pg. 3]

Yes, this would work as expected regardless of word size and language standard. Since 0×7 FFFFFFF is equal to TMax_{32}, it will represent this value with data type int. The resulting expression therefore has data type int.

Problem 3 Solution: [Pg. 3]

This is a classic example of failing to consider the operator precedence rules in C. As mentioned in Section CS:APP3e-2.1.9, addition and subtraction have higher precedence than shifting, and shifting associates to the left.
A. Consider the case where data type long requires 4 bytes. Then the expression is equivalent to $1 \ll 4 \ll 3-1$, which evaluates as $(1 \ll 4) \ll 2$, yielding 64 .
B. When long requires 8 bytes, we would have $1 \ll 8 \ll 3-1$ which evaluates as $(1 \ll 8) \ll 2$, yielding 1024.
C. The problem can be fixed with just one set of parentheses:

```
/* Shift 1 over by 8*sizeof(long) - 1 */
1L << (sizeof(long)<<3) - 1
```

We could also replace sizeof (long) <<3 by $8 *$ sizeof (long), and the higher precedence of multiplication would ensure correct expression evaluation. In fact, this would make the code more readable, and the resulting machine-level code would be identical.

Problem 4 Solution: [Pg. 4]

This problem uncovers some quirky aspects about the rules shown in Figure 1:

Word Size	C Version	-9223372036854775808	$0 \times 8000000000000000$
32	C90	undefined	undefined
32	C99	undefined	unsigned long long
64	C90	unsigned long	unsigned long
64	C99	undefined	unsigned long

Here are explanations of the entries:
32 / C90: None of the data types in C90 can represent TMin_{64}, and so neither the decimal nor the hexadecimal expression yields a valid constant.

32 / C99: The decimal value 9223372036854775808 cannot be represented with any of the data types, including long long, and so this also does not yield a valid constant. On the other hand, the hexadecimal value $0 \times 8000000000000000$ can be represented with data type unsigned long long.

64 / C90: Both the decimal value 9223372036854775808 and the hexadecimal value $0 \times 8000000000000000$ can be represented as unsigned long.

64 / C99: The decimal value 9223372036854775808 cannot be represented with any of the data types, and so this also does not yield a valid constant. On the other hand, the hexadecimal value $0 \times 8000000000000000$ can be represented with data type unsigned long.

[^0]: * Copyright (c) 2015, R. E. Bryant, D. R. O'Hallaron. All rights reserved.

[^1]: ${ }^{1}$ Data type long long is not covered in CS:APP3e. It was introduced in ISO C99 as a data type that is at least 64 bits long.

