
CS:APP Web Aside DATA:TMIN:
Writing TMin in C∗

Randal E. Bryant
David R. O’Hallaron

December 29, 2014

Notice

The material in this document is supplementary material to the book Computer Systems, A Programmer’s
Perspective, Third Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall and
copyrighted 2016. In this document, all references beginning with “CS:APP3e ” are to this book. More
information about the book is available at csapp.cs.cmu.edu.

This document is being made available to the public, subject to copyright provisions. You are free to copy
and distribute it, but you must give attribution for any use of this material.

1 The Situation

In Figure CS:APP3e-2.19 and in Problem CS:APP3e-2.21, we carefully wrote the value of TMin32 as
-2147483647-1. Why not simply write it as either -2147483648 or 0x80000000? Looking at the
C header file limits.h, we see that they use a similar method as we have to write TMin32 and TMax 32:

/* Minimum and maximum values a ‘signed int’ can hold. */
#define INT_MAX 2147483647
#define INT_MIN (-INT_MAX - 1)

Unfortunately, a curious interaction between the asymmetry of the two’s complement representation and
the conversion rules of C force us to write TMin32 in this unusual way. Although understanding this issue
requires us to delve into one of the murkier corners of the C language standards, it will help us appreciate
some of the subtleties of integer data types and representations.

Consider the case of writing TMin32 as -2147483648 and compiling the code as a 32-bit program, using
the data sizes shown in Figure CS:APP3e-2.9. When the compiler encounters a number of the form -X , it
first determines the data type and value for X and then negates it. The value 2,147,483,648 is too large to

∗Copyright c© 2015, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

ISO C90 ISO C99
Decimal Hexadecimal Decimal Hexadecimal

int int int int
long unsigned long unsigned
unsigned long long long long
unsigned long unsigned long unsigned long

long long
unsigned long long

Figure 1: Data types for representing integer constants. According to the language version and format
(decimal or hexadecimal), the data type for a constant is given by the first type in the appropriate list that
can represent the value.

Word Size ISO C90 ISO C99
Expression -2147483648 0x80000000 -2147483648 0x80000000
32 unsigned unsigned long long unsigned
64 long unsigned long unsigned

Figure 2: Data types resulting from constant expressions for TMin32. According to the language
version and format (decimal or hexadecimal), we can get three different data types for the two expressions,
including cases where the value is positive.

represent as an int, since this value is one larger than TMax 32 (the asymmetry strikes!). The compiler tries
to determine a data type that can represent this value properly. It proceeds down one of the lists shown for the
decimal cases in Figure 1, depending on the language version.1 For the case of ISO C90, it proceeds from
int to long to unsigned, only then finding a data type that can represent the number 2,147,483,648. As
we will see in CS:APP3e-2.3.3, values 2,147,483,648 and −2,147,483,648 have the same bit representations
as 32-bit numbers, and so the resulting constant has data type unsigned and value 2147483648. For
the case of ISO C99, the compiler proceeds from int to long to long long, finally finding a data type
that can represent the number 2,147,483,648. With 64 bits, we can uniquely represent both 2,147,483,648
and −2,147,483,648, and so the resulting constant has data type long long and value -2147483648.

When compiling hexadecimal constant 0x80000000 in a 32-bit program, the compiler proceeds in a
similar fashion, following one of the lists for the hexadecimal cases in Figure 1. For both language versions,
it first compares the number to TMax 32 (0x7FFFFFFF) and, since it is larger, decides that the value cannot
be represented as an int. It next compares the number to UMax 32 (0xFFFFFFFF) and, since it is smaller,
chooses an unsigned representation. It therefore yields a constant with data type unsigned and value
0x80000000 (or, equivalently, 2,147,483,648).

Things work a bit differently with a 64-bit program. For both language versions, the decimal form yields
a constant with data type long (64-bits) and value −2,147,483,648, while the hexadecimal form yields a
constant with type unsigned and value 0x80000000 (or, equivalently, 2,147,483,648).

1Data type long long is not covered in CS:APP3e . It was introduced in ISO C99 as a data type that is at least 64 bits long.



3

All of these variations can be summarized by the table shown in Figure 2. For the cases where the result has
type long or long long, the constant is negative, but it is 64 bits long. For the cases where the result
has type unsigned, the constant is positive and 32 bits long. These outcomes can be demonstrated by the
following code:

int dpos32 = (-2147483648 > 0);
int hpos32 = (0x80000000 > 0);

These lines of code attempt to express TMin32 as a decimal or hexadecimal constant and test whether
the value is greater than zero. Depending on the compiler version and word size, we find that the value of
dpos32 can be either 1 or 0, indicating that the decimal constant can be either positive or nonnegative, while
the value of hpos32 is consistently 1, indicating that the hexadecimal constant is consistently positive. Our
seemingly simple task of writing TMin32 as a constant is more difficult than might be expected!

Practice Problem 1:
Consider the following code:

int dtmin32 = -2147483648;
int dpos32a = (dtmin32 > 0);
int htmin32 = 0x80000000;
int hpos32a = (htmin32 > 0);

We compile this code as both 32-bit and 64-bit programs on a machine using two’s complement rep-
resentations of integers, and we try it for both language standards ISO-C90 and ISO-C99. In all cases,
we consistently get value 0 for both dpos32a and hpos32a, and further tests verify that dtmin32
and htmin32 indeed equal TMin32. Explain why this code does not have the compiler and language
sensitivities we saw for the earlier code example.

2 Implications

For many programs, the ambiguities caused by different word sizes and language standards would not affect
program behavior (for example, see Problem 1.) Nonetheless, we can now appreciate why the convention
of writing TMin32 as -2147483647-1 yields a more desirable result. Since 2147483647 is the value
of TMax 32, it can be represented as an int, and hence there is no need to invoke the conversion rules of
Figure 1.

Practice Problem 2:
Suppose we try to write TMin32 as -0x7FFFFFFF-1. Would the C compiler generate a constant of
type int for both 32- and 64-bit programs and for both versions of the C language standard? Explain.

Practice Problem 3:
You wish to write a succinct expression for TMinw, where w is the number of bits in data type long
int. Since the size of this data type varies depending on the machine and the compiler settings (see



4

Figures CS:APP3e-2.9 and CS:APP3e-2.10), you decide to make use of the sizeof operation, so that
the expression will yield TMinw as long as w is a multiple of 8. You also use a trick, to be covered in
Section CS:APP3e-2.3.6, that shifting a number left by 3 is the same as multiplying it by 8.

Your first attempt at this code is:

/* WARNING: This code is buggy */
/* Shift 1 over by 8*sizeof(long) - 1 */
1L << sizeof(long)<<3 - 1

You compile your code as a 32-bit program and find that the expression evaluates to 64.

A. Explain why this happened.

B. What value would the expression yield for a 64-bit program?

C. Make minimal modifications to the expression so that it evaluates correctly.

Practice Problem 4:
Suppose we try to write the value of TMin64 as decimal and hexadecimal constants. Fill in the following
table using the rules shown in Figure 1 to determine what type the resulting value should be. You may
find some cases where the rules do not define a valid representation for the constant. Indicate such cases
with the entry “undefined.”

Word Size C Version -9223372036854775808 0x8000000000000000
32 C90
32 C99
64 C90
64 C99

Solutions to Practice Problems

Problem 1 Solution: [Pg. 3]

In making the assignment to integer variables dtmin32 and htmin32, we implicitly cast the value to a
32-bit, two’s complement integer. This yields the value −2,147,483,648 regardless of whether or not the
constant value is signed or unsigned, or whether it is 32 or 64 bits.

Problem 2 Solution: [Pg. 3]

Yes, this would work as expected regardless of word size and language standard. Since 0x7FFFFFFF is
equal to TMax 32, it will represent this value with data type int. The resulting expression therefore has
data type int.

Problem 3 Solution: [Pg. 3]

This is a classic example of failing to consider the operator precedence rules in C. As mentioned in Section
CS:APP3e-2.1.9, addition and subtraction have higher precedence than shifting, and shifting associates to
the left.



5

A. Consider the case where data type long requires 4 bytes. Then the expression is equivalent to
1 << 4 << 3 - 1, which evaluates as (1 << 4) << 2, yielding 64.

B. When long requires 8 bytes, we would have 1 << 8 << 3 - 1which evaluates as (1 << 8) << 2,
yielding 1024.

C. The problem can be fixed with just one set of parentheses:

/* Shift 1 over by 8*sizeof(long) - 1 */
1L << (sizeof(long)<<3) - 1

We could also replace sizeof(long)<<3 by 8*sizeof(long), and the higher precedence of
multiplication would ensure correct expression evaluation. In fact, this would make the code more
readable, and the resulting machine-level code would be identical.

Problem 4 Solution: [Pg. 4]

This problem uncovers some quirky aspects about the rules shown in Figure 1:

Word Size C Version -9223372036854775808 0x8000000000000000
32 C90 undefined undefined
32 C99 undefined unsigned long long
64 C90 unsigned long unsigned long
64 C99 undefined unsigned long

Here are explanations of the entries:

32 / C90: None of the data types in C90 can represent TMin64, and so neither the decimal nor the hex-
adecimal expression yields a valid constant.

32 / C99: The decimal value 9223372036854775808 cannot be represented with any of the data types,
including long long, and so this also does not yield a valid constant. On the other hand, the
hexadecimal value 0x8000000000000000 can be represented with data type unsigned long
long.

64 / C90: Both the decimal value 9223372036854775808 and the hexadecimal value 0x8000000000000000
can be represented as unsigned long.

64 / C99: The decimal value 9223372036854775808 cannot be represented with any of the data types,
and so this also does not yield a valid constant. On the other hand, the hexadecimal value 0x8000000000000000
can be represented with data type unsigned long.


