CS:APP Web Aside ASM:IA32:
[A32 Programming*

Randal E. Bryant
David R. O’Hallaron

January 21, 2015

Notice

The material in this document is supplementary material to the book Computer Systems, A Programmer’s
Perspective, Third Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall and
copyrighted 2016. In this document, all references beginning with “CS:APP3e ” are to this book. More
information about the book is available at csapp.cs.cmu.edu.

This document is being made available to the public, subject to copyright provisions. You are free to copy
and distribute it, but you must give attribution for any use of this material.

1 Introduction

Starting with the introduction of the Intel 1386 in 1985, processors in the x86 family have been able to
execute 32-bit programs in a machine language known as IA32 (for “Intel architecture, 32 bits”). With these
programs, all pointers are 32 bits long, and hence the addressable range of the code and data in a program
is 4 gigabytes.

CS:APP3e Chapter [3| describes the x86-64 machine language, the 64-bit extension to IA32 introduced by
AMD in 2000 (first implemented with their Opteron processor in 2003) and adopted by Intel with the
Pentium 4E in 2004. Even though most x86 processors manufactured today are designed to execute x86-64
programs, they can also execute IA32 programs in a compatibility mode. Both IA32 and x86-64 programs
can coexist on a single machine. GCC will generate IA32 code when given command-line option —m32,
and it will generate x86-64 code when given command-line option —m64. Many application programs are
still compiled for IA32, since most programs require far less than 4 gigabytes of memory, and the 32-bit
pointers make IA32 data structures more compact.

In this document, we describe IA32 programs based on the assumption that you, the reader, are already
familiar with x86-64. Although this reverses the order in which these two machine languages were devised,

*Copyright © 2015, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

31 15 7 0

Seax $ax $al Return value (Caller saved)
Secx $cx $cl Caller saved

$edx $dx $dl Caller saved

$ebx $bx $bl Callee saved

Sesi $si Callee saved

$edi $di Callee saved

$esp $sp Stack pointer

Sebp Shp Frame pointer (Callee saved)

Figure 1: 1A32 integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits
(double word). The low-order bytes of the first four registers can be accessed independently.

you will find that having a background in x86-64 makes understanding 1A32 fairly straightforward.

This document does not provide a comprehensive coverage of all aspects of IA32, but rather those features
that are most prevalent in machine-language programs generated by GCC. The authoritative reference to
IA32 is the documentation provided by Intel [1].

2 Registers

Figure [T] illustrates the set of 8 general-purpose registers used to hold both integer data and pointers. We
see that, in several respects, these registers are a subset of those available in x86-64 programs (CS:APP3e

Figure[3.2):
e There are only 8 registers instead of 16.

e The maximum register size is 32 bits.

e The low-order register bytes are only directly accessible for the first 4 registers.
There are many similarities between how registers are used in IA32 and x86-64:

e Both have a designated register to serve as the stack pointer—%esp for [A32 and %$rsp for x86-64.
This register should only be altered in accordance with the stack discipline used by programs.

e Both have a designated register that can optionally serve as the frame pointer—%ebp for IA32 and
$rbp for x86-64. We will describe the use of frame pointers as part of our discussion of procedures
in Section]

e Both use a designated register ($eax for IA32 and $rax for x86-64) for returning pointer or integer
values from procedures.

e With Linux, some of the registers are used according to a caller-saved stack discipline, while others
follow a callee-saved discipline.

3 Instructions

As one would expect, IA32 assembly has the same overall form as does x86-64. For the most part, the
instructions are a subset of those available in x86-64. In particular, the ‘g’ variants of the data movement
and arithmetic instructions are not available, but the other versions are. So, for example, programs can use
instructions mov1 (move double word), movw (move word), and movb (move byte), but not movqg (move
quad word).

For instruction arguments that reference memory locations, the base and index registers must be one of the
8 double-word registers shown in Figure|l} Thus, typical memory referencing instructions include:

movl %eax, 8 (%esp)
addl $1, (%edx, %eax, 4)
movsbl -8 (%ebp), %eax

IA32 has several instructions that are not allowed in x86-64, as well as others that have slightly different ef-
fects, due to the convention that addresses are 4 bytes rather than 8. Other differences for these instructions,
of course, are that the stack pointer is $esp rather than $rsp, and the frame pointer (used and modified by
the 1eave instruction) is $ebp rather than $rbp.

e Rather than leaq, the load effective address is called 1eal. The destination must be one of the
double-word registers of Figure

e The push instruction is called push or pushl, and the pop instruction is called either pop or popl.
They decrement and increment the stack pointer by 4, respectively.

e Procedure calls and returns use the call and ret instructions, but these decrement and increment
the stack pointer by 4.

e The leave instruction (described in CS:APP3e Section [3.10.5] for x86-64) operates on registers
%esp and %ebp. It has no arguments and is equivalent to the IA32 instruction sequence

movl %ebp, %esp Set stack pointer to beginning of frame
popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

It is used in procedures that make use of a frame pointer, as is described in Subsection @.1]

Instruction | Effect Description

imull S | R[%edx]:R[%eax] + S x R[%eax] Signed full multiply

mull S | R[%edx|:R[%eax] « S x R[%eax] Unsigned full multiply

cltd R[%edx]:R[%eax] < SignExtend(R[%eax]) | Convert to quad word

idivl S | R[%edx] < R[%edx|:R[%eax] mod S; Signed divide
R[seax] « R[%edx]:R[%eax]|+

divl S| R[¢edx| < R[%edx]:R[%eax] mod S; Unsigned divide
R[%eax] + R[%edx|:R[%eax]|+

Figure 2: Special arithmetic operations. These operations provide full 64-bit multiplication and division,
for both signed and unsigned numbers. The pair of registers $edx and $eax are viewed as forming a single
64-bit quad word.

Figure 2| shows the IA32 instructions for arithmetic operations that involve 64-bit quantities. These include
signed and unsigned multiplication instructions that compute the full 64-bit product of two 32-bit numbers.
They also include signed and unsigned division, where the dividend is 64 bits. In both cases, the 64-bit
quantity is held in registers $edx and $eax. The instruction c1td provides a way to extend the sign bit of
%$eax into $edx. Note the similarities to the x86-64 instructions that involve 128-bit quantities (CS:APP3e

Figure[3.12)).

4 TA32 Procedures

Perhaps the most striking difference between IA32 and x86-64 concerns the structure of procedure calls.
Most significantly, IA32 requires all arguments to be passed on the stack, whereas x86-64 requires use of
the stack for argument passing only if there are more than 6 arguments. As we saw in in CS:APP3e Chapter
[l many x86-64 procedures do not require passing arguments on the stack, and indeed they often use the
stack only for saving the return pointer. IA32 programs also require greater use of the stack to hold local
variables, due to the small number of registers.

We split our presentation of IA32 procedures into two forms, depending on whether or not the code makes
use of the frame pointer $ebp. Traditionally, all IA32 code used frame pointers, and so we refer to this
approach as classic IA32. More recent versions of GCC generate IA32 code that does not use frame pointers,
and so we refer to this approach as modern IA32. Whichever approach is the default for a particular compiler,
it is possible to force the other convention using command-line argument —fomit-frame-pointer
(modern) or —fno-omit-frame-pointer (classic). Code using frame pointers can be freely mixed
with code that does not, as long as $ebp follows a callee-saved convention. That is, any function that
modifies $ebp must restore it to its former value before returning.

In addition to presenting general concepts, we will demonstrate how procedures are implemented in IA32
using the two C functions defined in Figure [3| These functions both have two arguments, but they differ

slightly in their argument types. Function call_fun has both arguments of type int as given by the
following prototype:

int call_fun(int x, int y);

(a) C code for function call_fun

int call_fun(int x, int y) {
return fun(x, &y);

}
(b) C code for function fun

int fun(int a, int *bp) {
return a + *bp;

}
Figure 3: C code for example functions.

Function fun, on the other hand, has one argument of type int and the other of type int =*.
int fun(int a, int xbp);

Both functions return values of type int as results.

4.1 Classic IA32: Using Frame Pointers

The concept of a frame pointer is to have a designated register holding the address of the beginning of the
stack frame for the currently executing function. With the stack pointer indicating the end of the stack, these
two registers bracket the stack frame. Figure 4] shows the overall organization of the IA32 runtime stack,
illustrating the case where a procedure P has called a procedure Q. This figure uses the same conventions
as we showed for the x86-64 runtime stack (CS:APP3e Figure [3.25). In particular, both x86-64 and IA32
frames grow toward lower addresses. We draw our stack with the addresses increasing from bottom to top.
This has the peculiar effect that the stack “top” is shown at the bottom of the diagram.

In this figure, register $ebp indicates the beginning of the stack frame for Q. By convention, the previous
value of $ebp (in this case, the one for procedure P) is stored on the stack at the position indicated by
%$ebp. Having this value on the stack enables it to be restored as the current procedure (in this case Q)
returns. Before calling Q, procedure P stores the arguments in its stack frame. These are retrieved within Q
with memory references that use the appropriate offset from register $ebp. Such references are indicated
in Figure [by the notation $ebp + k.

Within the stack frame for Q, there may be space for saved registers, local variables, and to store the argu-
ment values for any procedure to be called by Q. Typical IA32 procedures save and restore registers using the
pushl and popl instructions, and they allocate additional stack space by explicitly decrementing the stack
pointer. Local variables are typically accessed with memory references having offsets to the frame pointer
(indicated in the figure by the notation $ebp — k), and newly generated argument values are written with
memory references having offsets to the stack pointer (indicated in the figure by the notation $esp + k).

We can see how IA32 programs make use of the stack and the stack and frame pointers by studying the
assembly code for function call_fun, as is shown in Figure[S[a). Figure[6]diagrams the state of the stack
at two points in the execution of this function.

Stack “bottom”

- |r

Earlier frames

Increasing - '<
address °
Argument n
] ”
) Frame for calling
function p
sebp + k Argument 1

Return address y,
Frame pointer
Sebp ——— Saved %ebp

By |

Saved registers

[e=———————————

%ebp — k
> Frame for
R .
. executin
Local variables function gQ
Sesp + k

™ Argument
i build area

Stack “top”

Figure 4: General 1A32 stack-frame structure with frame pointers. The frame pointer, held in register
$ebp, indicates the base of the current stack frame. Stack references are given as offsets to either the
frame pointer or the stack pointer.

Upon entry, the state of the stack is illustrated in Figure[6[a). The call instruction has just pushed the return
address onto the stack. Prior to that, the function that called call_fun put the values of arguments y and
x on the stack. Each of the 3 topmost stack elements: the return address, x and y are 4 bytes long. Note
also the ordering of the arguments on the stack—those that are earlier in the list of procedure parameters are
closer to the top to the stack.

The first three instructions of call_fun (Figure [5[a)) set up its stack frame to construct the structure
illustrated in Figure[6(b). The first instruction saves the current value of $ebp on the stack, and the second
updates $ebp to point to this position. This combination establishes the convention for the frame pointer
illustrated in Figure[d] The third instruction decrements the stack pointer by 8, allocating enough space on
the stack to hold the two 4-byte arguments for function fun.

At this point, we can see that arguments x and y are stored at the stack at offsets 8 and 12 from %$ebp,
respectively, and that the arguments a and bp for fun should be stored on the stack at offsets 0 and 4 from

(a) Assembly code for call_fun

int call_fun(int x, int y)
x at %ebp+8, y at %ebp+l2
1 call_fun:

2 pushl %ebp Save %ebp

3 movl %esp, %ebp Set frame pointer

4 subl $8, %esp Allocate 8 bytes
Store arguments at offsets 0 and 4 from %esp

5 leal 12 (%ebp), %eax Compute &y

6 movl %eax, 4 (%esp) Store as 2nd argument

7 movl 8 (%ebp), %eax Get x

8 mov1l %$eax, (%esp) Store as lst argument

9 call fun fun (x, &y)

10 leave Deallocate & restore %ebp

11 ret

(b) Assembly code for fun

int fun(int a, int xbp)
a at %ebp+8, bp at %ebp+l12

1 fun:

2 pushl %ebp Save %ebp

3 mov1l %$esp, %ebp Set frame pointer
4 movl 12 (%ebp), %eax Get bp

5 movl (%eax), %eax Get #bp

6 addl 8 (%ebp), %eax Add a

7 popl sebp Restore $ebp

8 ret

Figure 5: 1A32 assembly code for example functions using frame pointers. Arguments are passed to
the functions on the stack.

(a) Onentrytocall fun (b) Before call to fun
y 12 y
X 8 X
%esp — Return address Return address
%ebp 0| Saved %ebp
4 &—
%esp —E 0 Copy of x

Figure 6: Stack-frame structure for function call fun using frame pointers. The function allocates
space on the stack and manages the frame pointer.

%esp, respectively. (These conventions follow those illustrated in Figure [for accessing the arguments
to call_fun, as well as the argument build area.) The instructions at lines [SH8] then perform the actions
specified in the code for call_fun. The leal instruction computes the address of argument y, and the
following mov1 stores this address at the location for address bp. We show this in Figure (b) as an arrow
from the memory location at offset 4 from %esp to the location of y. The next two mov1 instructions (lines
then read the value of x from memory and store a copy at offset O from the stack pointer.

Function call_fun can now call function fun (line [0). We will examine how this function operates
shortly. Suffice it to say here that when fun, the stack will still have the same structure as is illustrated in
Figure d))(b), and that the value returned by fun will be stored in register $eax. The 1eave function (line
will then restore $ebp by (1) copying the value of $ebp to $esp, effectively deallocated 8 bytes of
storage, and (2) popping the value at the new top of stack to $ebp. The result is therefore to return the stack
state to that shown in Figure d))(a), with the return address at the top of the stack. The ret instruction (line
[IT)) will then cause the program to return back to the calling point.

(a) Onentryto fun (b) Within fun
Yy Yy
X X
Return address Return address
$ebp — | Saved Sebp Saved %ebp
bp @— 12 bp @—
a 8 a
%$esp —>| Return address Return address
%$ebp 0| Saved $ebp@-
sesp

Figure 7: Stack-frame structure for function fun using frame pointers. The function manages the
frame pointer and uses it to reference the function arguments.

Figure [5(b) shows the assembly code for function fun, while Figure [7] diagrams the stack at two points

during the execution of the function—when the function first begins execution (a), and after the first two
instructions have set up the stack-frame structure for the function (b). The code for fun starts with the stack
structure set up by call_fun, as shown in Figure[6[b), along with the return address pushed onto the stack
by the call instruction. The first two instructions then set up register $ebp as the frame pointer, with the
old value of the frame pointer stored on the stack. The function requires no additional storage, and so $esp
and %ebp have the same value. Function arguments a and bp are now at offsets 8 and 12 from %ebp,
respectively.

Implementing the expression xbp in fun requires two memory references—one (line [) to retrieve the
value of bp and the second (line [5)) to dereference this pointer. The effect for this particular example will
be to retrieve the value of y. The addl instruction (line [6)) will read the value of a from the stack (which
for this example is a copy of x), add it to the result of the earlier pointer dereference and store the value in
register $eax, where it will serve as the return value for the function. The function completes by restoring
%ebp (line[7) and executing the ret function.

These two examples illustrate the conventions followed by IA32 code at the beginning of a procedure call,
for the case when a frame pointer is used. The general sequence is as follows:

1. A pushl instruction is used to push the value of the frame pointer onto the stack.

2. A movl instruction is used to copy the value of the stack pointer to the frame pointer, establishing
the frame pointer for this procedure.

3. If any callee-saved registers need to be saved, these are pushed onto the stack via push1 instructions.
(Neither of our examples require this.)

4. If any space needs to be allocated for local variables or for an argument build area, the stack pointer
is decremented by the appropriate amount.

We also can see general patterns for how the final part of a procedure deallocates its stack frame and restores
the register values. The details differ according to whether or not additional stack space was allocated and
whether or not the values of callee-saved registers were pushed onto the stack, but the general idea is to
restore all registers—%esp, $ebp, and any callee-saved registers to the values they had at the beginning of
the procedure. The return address will then be at the top of the stack, ready for the ret instruction.

As a final illustration of IA32 code with frame pointers, the function a fun, shown as both C code (a) and
assembly code (b) in Figure |8} demonstrates the referencing of local variables. This function has a locally
declared array a storing two values of type int. The stack structure for this function is diagrammed in
Figure [9) We can see that the assembly code decrements the stack pointer by 16 (line), which would
provide sufficient storage for 4 values of type int. We can see that the next two lines store the values
33 and 515 at offsets —8 and —4 from the frame pointer. We can therefore identify these locations as
holding array elements a [0] and a [1], respectively. The other two allocated locations are not used. The
expression a [t] is then implemented with the mov1 instruction of line@ using offset —8 from the frame
pointer. These referencing patterns are consistent with the general rule of referencing local variables using
negative offsets from the frame pointer, as is illustrated in Figure 4]

Practice Problem 1:

10

(a) C code for function afun

int afun(int t) {
int a[2] = {33, 515};
return alt];

}
(b) Generated assembly code

int afun(int t)
t at %ebp+8

1 afun:

2 pushl %ebp Save %ebp

3 movl %esp, %ebp Set frame pointer

4 subl $16, %esp Allocate 16 bytes
Allocate: a[0] at %ebp-4, al[l] at %ebp-8

5 movl $33, -8 (%ebp) al[0] = 33

6 movl $515, -4 (%ebp) all] = 515

7 movl 8 (%ebp), %eax Get t

8 movl -8 (%ebp, %eax,4), %eax Get alt]

9 leave Deallocate & restore $%ebp

10 ret

Figure 8: Code for function afun using frame pointers. Local array a is referenced relative to the frame
pointer.

Figure [I0[a) shows C code for a function proc with 6 arguments. It is a simplified version of the
program shown in CS:APP3e Figure [3.29] When compiled for IA32 using frame pointers, the following
assembly code is generated:

void proc (int a2, int =#alp, short a3, short =a3p, char a4, char =*a4dp)

1 proc:

2 pushl %ebp

3 movl %esp, %ebp

4 pushl %ebx

5 movl 12 (%ebp), S%ecx
6 movl 20 (%ebp), %edx
7 movl 28 (%ebp), %eax
8 movl 8 (%ebp), %ebx
9 addl %$ebx, (%ecx)

10 movl 16 (%ebp), %ecx
11 addw %$cx, (%edx)

12 movl 24 (%ebp), %edx
13 addb %dl, (%eax)

14 popl sebx

15 popl sebp

16 ret

A. What offsets, relative to $ebp does the function use in retrieving the arguments from the stack?

11

Return address

$ebp —1— 0| Saved %ebp

— —4 all]
——8 al0]
Unused

$esp —

Unused

Figure 9: Stack-frame structure for function afun using frame pointers. Space for array a is allocated
on the stack.

B. Annotate the assembly code to describe the match between its instructions and the actions de-
scribed by the C code.

Practice Problem 2:

Figure[T0(b) shows C code for a function that calls the function proc (Figure[I0fa)). When compiled
for IA32 using frame pointers, the following assembly code is generated:

int call_proc()
1 call_proc:

2 pushl %ebp

3 movl %esp, %ebp

4 subl $40, %esp

5 movl $2, —4(%ebp)

6 Mmovw $3, —6(%ebp)

7 movb $4, -7 (%ebp)

8 leal -7 (%ebp), %eax
9 movl %eax, 20 (%esp)
10 movl $4, 16 (%esp)

11 leal -6 (%ebp), %eax
12 movl %$eax, 12 (%esp)
13 movl $3, 8 (%esp)

14 leal -4 (%ebp), %eax
15 movl %eax, 4(%esp)
16 movl $2, (%esp)

17 call proc

18 movswl -6 (%ebp), %eax
19 movsbl -7 (%ebp), %edx
20 subl $edx, %eax

21 imull -4 (%ebp), %eax
22 leave

23 ret

A. How much space is allocated on the stack for the local variables and argument build area?

12

(a) C code for proc

void proc (int a2, int *alp,
short a3, short =a3p,
char a4, char =<adp)

*azp += az;

*al3p += a3;

~*adp += a4;
}

(b) C code for call _proc

int call_proc()
{
int x2 = 2;
short x3 = 3; char x4 4;
proc (x2, &x2, x3, &x3, x4, &x4);

return x2+ (x3-x4);

Figure 10: C Code for practice problems. These functions illustrate a number of issues regarding param-
eter passing.

B. What local variables are generated and where are they stored within the stack frame, relative to
$ebp?

)

Where is each of the six arguments stored on the stack?

D. Annotate the assembly code to describe the match between its instructions and the actions de-
scribed by the C code.

4.2 Modern IA32: No Frame Pointers

More recent versions of GCC generate IA32 code without frame pointers. Figure|l1|diagrams the general
structure of the stack when following this convention. There is no need to save register $ebp at the be-
ginning of the stack frame. Instead, $ebp can be used as a callee-saved program register, pushed onto the
stack by any procedure that uses it, and popped back off before the procedure returns. As indicated along
the left-hand side of the figure, all references to elements of the stack frame—arguments, local variables,
and the argument build area are done using offsets relative to the stack pointer.

Figure [12| shows the IA32 code generated for functions call_fun and fun, defined by the C code in
Figure [3] Compared to the code using frame pointers (Figure [5), we can see that omitting frame pointers
reduces the number of instructions required at the beginning and end of procedures.

Figure [13|shows the stack-frame structure for function call_fun. At the entry to the function (a), we see
that the return address and the two arguments are at the top of the stack. The function decrements the stack
pointer by 8 (line [2), having the effect of shifting the offsets for accessing arguments x and y to 12 and 16,

13

Stack “bottom”

> Earlier frames

V4
\
Argument n
Frame for calling
. function p
Increasing r*
address !
i Argument 1
i Return address
| <
1
! .
. Saved registers
i
1
! Frame for
! .
> . executing
! | Local variables function 0
:
L
. "] Argument
Stack pointer i build area
Sesp =———)
Stack “top”

Figure 11: General 1A32 stack-frame structure without any frame pointers. All stack references are
relative to the stack pointer, held in register $esp.

respectively (b). We follow a practice of documenting such shifts in our annotated assembly code. In the
subsequent code (lines [3H6), we see references to the arguments at offsets 12 and 16, and to the argument
build area with offsets 0 an 4.

The generated assembly code for function fun (Figure[I2[b)) is especially simple, since it does not need to
allocate any additional space. We leave it to the reader to study this code.

Figure [T4]shows the generated assembly code for our function having a local, two-element array. The stack
structure for this function is illustrated in Figure [I3]after the stack pointer has been decremented by 16 (line
(), and the array has been initialized with its two elements (lines [3H4)). The main point to note here is that
the references to both argument t and the two array elements are done relative to the stack pointer.

We can see by these examples that frame pointers are not necessarily required to support procedures. Com-
pilers can readily keep track of the changing offsets of procedure arguments, local variables, and temporary
items as stack space is allocated and deallocated. Omitting frame pointers reduces the number of instruc-

(a) Assembly code for call_fun

int call_fun(int x, int y)
x at %espt4, y at %esp+8

1 call_ fun:

2 subl $8, %esp Allocate 8 bytes
Now: x at $%esp+l2, y at %esp+l6

Store arguments at offsets 0 and 4 from %esp

3 leal 16 (%esp), %eax Compute &y

4 movl %eax, 4 (%esp) Store as 2nd argument
5 movl 12 (%esp), %eax Get x

6 movl %$eax, (%esp) Store as 1st argument
7 call fun fun(x, &y)

8 addl $8, %esp Deallocate 8 bytes

9 ret

(b) Assembly code for fun

int fun(int a, int #*bp)
a at %esp+4, bp at %esp+8

1 fun:

2 movl 8 (%esp), %eax Get bp
3 movl (%eax), %eax Get #bp
4 addl 4 (%esp), %eax Add a

5 ret

Figure 12: 1A32 assembly code for example functions without frame pointers pointers
are passed to the functions on the stack.

14

. Arguments

(a) Onentrytocall fun

y

X

Sesp —>

Return address

(b) Before call to fun

15

16 y
12 x
Return address
.—
%esp 0 Copy of x

Figure 13: Stack-frame structure for function call_fun without frame pointers. The function allocates
space on the stack.

tions to implement procedures, and it allows register $ebp to be used for other program data. It makes
sense that modern compilers follow this convention when they can. The only case where frame pointers are
truly needed is when the amount of stack space required for a procedure varies from one call to another, as
we saw in CS:APP3e Section [3.10.31

Practice Problem 3:

When the C code of Figure [I0{a) is compiled for IA32 without frame pointers, the following assembly
code is generated:

void proc (int a2, int =#alp, short a3, short =a3p, char a4, char =*a4dp)

proc:
pushl %ebx
movl 12 (%esp), %ecx
movl 20 (%esp), %edx
movl 28 (%esp), %eax
movl 8 (%esp), %ebx
addl %ebx, (%ecx)
movl 16 (%esp), %ecx
addw $cx, (%edx)
movl 24 (%esp), %edx
addb %$dl, (%eax)
propl %ebx
ret

A. What offsets, relative to $esp, does the function use in retrieving the arguments from the stack?

B. Annotate the assembly code to describe the match between its instructions and the actions de-

scribed by the C code.

Practice Problem 4:

When the C code of Figure [T0fb) is compiled for IA32 without frame pointers, the following assembly
code is generated:

int call_proc()

(a) C code for function afun

int afun(int t) {

}

int al[2]

= {33,

return al[t];

515};

(b) Generated assembly code

1
2

0 3 o U W

int afun(int t)

t at %esp+4

afun:
subl

$le,

Now: t at %esp+20
al0] at $%esp+8, al[l] at %esp+l2
8 (%esp)

12 (%esp)
20 (%esp),

Allocate:
movl
movl
mov1l
movl
addl
ret

$33,
$515,

%esp

$eax

8 (%esp, %eax,4), %eax

$le,

%esp

Allocate 16 bytes

al0] = 33
all] = 515
Get t

Get alt]

Deallocate 16 bytes

16

Figure 14: Code for function afun without frame pointers. Local array a is referenced relative to the
stack pointer.

— 20

—12

— 8

t

Return address

alll

al0]

Unused

%esp

Unused

Figure 15: Stack-frame structure for function afun without frame pointers. Space for array a is allo-
cated on the stack.

1 call_proc:

17

2 subl $40, %esp

3 movl $2, 36 (%esp)

4 movw $3, 34 (%esp)

5 movb $4, 33 (%esp)

6 leal 33 (%esp), %eax
7 movl %eax, 20 (%esp)
8 movl $4, 16 (%esp)

9 leal 34 (%esp), %eax
10 movl %eax, 12 (%esp)
11 mov1l $3, 8 (%esp)

12 leal 36 (%esp), %eax
13 movl %eax, 4 (%esp)
14 movl $2, (%esp)

15 call proc

16 movswl 34 (%esp), %eax
17 movsbl 33 (%esp), %edx
18 subl %$edx, %eax

19 imull 36 (%esp), %eax
20 addl $40, %esp

21 ret

A. How much space is allocated on the stack for the local variables and argument build area?

B. What local variables are generated and where are they stored within the stack frame, relative to
%esp?

9

Where is each of the six arguments stored on the stack?

D. Annotate the assembly code to describe the match between its instructions and the actions de-
scribed by the C code.

S Summary

IA32 machine code is still widely used, both on small processors that only support 32-bit operation, and
on x86-64 machines running in compatibility mode. As has been demonstrated in this document, people
experienced in reading x86-64 code can rapidly gain the expertise needed to read and understand IA32 code.
The most significant difference is that IA32 code tends to make much greater use of the stack, due to the
argument-passing convention and to the fact that there are only eight general-purpose registers.

We have seen two variants: the classic approaching using a frame pointer and the more modern approach of
relying solely on the stack pointer to reference objects within the stack frame.

Answers to Practice Problems

Problem (1] Solution: [Pg.[9]

Here is an annotated version of the code. The answers to all of the questions can be gleaned from the

annotations.

void proc(int a2, int =alp, short a3,
a2 at %ebpt8, alp at %ebp+l2, a3 at %ebp+l6,

a4 at %ebp+24, adp at %ebp+28

1 proc:

2 pushl
3 mov1l
4 pushl
5 movl
6 movl
7 movl
8 movl
9 addl
10 movl
11 addw
12 movl
13 addb
14 popl
15 popl
16 ret

%ebp

%$esp, %ebp
$ebx

12 (%ebp), %ecx
20 (%ebp), %edx
28 (%ebp), %eax
8 (%ebp), %ebx
%$ebx, (%ecx)
16 (%ebp), %ecx
$cx, (%edx)

24 (%ebp), %edx
$dl, (%eax)
$ebx

%ebp

Problem 2| Solution: [Pg. [I1]]

Here is an annotated version of the code:

int call_proc()

1 call_proc:

2 pushl
3 movl
4 subl
Allocation:
5 movl
6 movw
7 movb
8 leal
9 mov1l
10 movl
11 leal
12 movl
13 movl
14 leal

15 movl
16 movl

17 call
18 movswl
19 movsbl
20 subl

%ebp

%esp, %ebp

$40, %esp

x2 at %ebp-4, x3 at

Arguments at offsets O,

$2, —4 (%ebp)
$3, —6(%ebp)
$4, -7 (%ebp)
-7 (%ebp), %eax
%$eax, 20 (%esp)
$4, 16 (%esp)
-6 (%ebp), %eax
%eax, 12 (%esp)
$3, 8(%esp)

-4 (%ebp), %eax
%eax, 4 (%esp)
$2, (%esp)
proc

-6 (%ebp), %eax
-7 (%ebp), %edx
$edx, %eax

short #a3p, char a4, char =*adp)

alp at %ebp+20

Save %$ebp
Set frame pointer
Save %ebx
Get alp

Get a3p

Get adp

Get a2

*alp += a2
Get a3

*al3p += a3
Get a4

*adp += a4
Restore %ebx

Restore %ebp

Save %ebp
Set frame pointer
Allocate 40 bytes

x4 at %ebp-7
12, 16, and 20 to %esp

Set x2 = 2
Set x3 = 3
Set x4 = 4

Compute &x4

Store as 6th argument
Store 4 as 5th argument
Compute &x3

Store as 4th argument
Store 3 as 3rd argument
Compute &x2

Store as 2nd argument
Store 2 as 1lst argument
proc(x2, &x2, x3, &x3, x4, &x4)
Get x3

Get x4

Compute x3-x4

18

21
22
23

imull
leave
ret

-4 (%ebp), %eax

Problem [3| Solution: [Pg. [13]

Here is an annotated version of the code:

Multiply by x2

Deallocate & restore %ebp

void proc(int a2, int #*alp, short a3, short #a3p, char a4, char =*adp)

a2 at %espt+4, alp at %esp+8, a3 at

a4 at %esp+20, adp at %esp+24

1 proc:

2 pushl
Now: a2 at

a4 at

3 movl

4 mov1l

5 movl

6 movl

7 addl

8 movl

9 addw

10 movl

11 addb

12 popl

13 ret

$ebx

esp+8, alp at %esp+l2,
%esp+24, adp at %esp+28

12 (%esp), %ecx
20 (%esp), %edx
28 (%esp), %eax
8 (%esp), %ebx
%$ebx, (%ecx)
16 (%esp), %ecx
$cx, (%edx)

24 (%esp), %edx
%dl, (%eax)
$ebx

Problem [Solution: [Pg.[15]

Here is an annotated version of the code:

1 call_proc:

2

0w ~J o b W

11
12
13
14
15
16
17

subl

Allocation:

movl
movw
movb
leal
movl
movl
leal
movl
mov1l
leal
movl
movl
call
movswl
movsbl

$40, %esp

x2 at %esp+36, x3 at

Arguments at offsets 0,

$2, 36 (%esp)
$3, 34 (%esp)
$4, 33 (%esp)
33 (%esp), %eax
%eax, 20 (%esp)
$4, 16 (%esp)
34 (%esp), %eax
%eax, 12 (%esp)
$3, 8 (%esp)

36 (%esp), %eax
%eax, 4 (%esp)
$2, (%esp)
proc

34 (%esp), %eax
33 (%esp), %edx

%esp+12, a3p at %esp+16

Save %ebx

a3 at %esp+l6, a3p at Sesp+20

Get alp
Get a3p
Get adp
Get a2
*alp += a2
Get a3
*al3p += a3
Get a4
*adp += a4

Restore %ebx

Allocate 40 bytes

%esp+34, x4 at %esp+33

4, 8, 12, 16, and 20 to %esp

Set x2 = 2
Set x3 = 3
Set x4 = 4

Compute &x4

Store as 6th argument
Store 4 as 5th argument
Compute &x3

Store as 4th argument
Store 3 as 3rd argument
Compute &x2

Store as 2nd argument
Store 2 as 1st argument
proc(x2, &x2, x3, &x3, x4,
Get x3

Get x4

&x4)

19

20

18 subl $edx, %eax Compute x3-x4
19 imull 36 (%esp), %eax Multiply by x2
20 addl $40, %esp Deallocate 40 bytes
21 ret
References

[1] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture. Available at http://www.1intel.com/content/www/us/en/processors/
architectures—-software—-developer—-manuals.html.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

	Introduction
	Registers
	Instructions
	IA32 Procedures
	Classic IA32: Using Frame Pointers
	Modern IA32: No Frame Pointers

	Summary

