
CS:APP3e Web Aside ASM:EASM:
Combining Assembly Code with C Programs∗

Randal E. Bryant
David R. O’Hallaron

December 29, 2014

Notice

The material in this document is supplementary material to the book Computer Systems, A Programmer’s
Perspective, Third Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall and
copyrighted 2016. In this document, all references beginning with “CS:APP3e ” are to this book. More
information about the book is available at csapp.cs.cmu.edu.

This document is being made available to the public, subject to copyright provisions. You are free to copy
and distribute it, but you must give attribution for any use of this material.

1 Combining Assembly Code with C Programs

In the early days of computing, most programs were written in assembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.
Frederick Brooks, Jr., a pioneer in computer systems wrote a fascinating account of the development of OS/360,
an early operating system for IBM machines [1] that still provides important object lessons today. He became a
devoted believer in high-level languages for systems programming as a result of this effort. End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level data representations, as is often required by systems programmers. Programs

∗Copyright c© 2015, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

2

requiring maximum performance or requiring low-level access to data structures were still often written in
assembly code. Nowadays, however, optimizing compilers have largely removed performance optimization
as a reason for writing in assembly code. Code generated by a high quality compiler is generally as good
or even better than what can be achieved manually. The C language has largely eliminated low-level data
structure access as a reason for writing in assembly code. The ability to access low-level data representations
through unions and pointer arithmetic, along with the ability to operate on bit-level data representations,
provide sufficient access to the machine for most programmers. For example, almost all of the code for
modern operating systems, including Linux, Windows, and MacOS, are written in C.

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when
implementing an operating system. For example, there are a number of special registers storing process state
information that the operating system must access. There are either special instructions or special memory
locations for performing input and output operations. Even for application programmers, there are some
machine features, such as the values of the condition codes, that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly
language. In this document, we will describe two such mechanisms. The first is to write a few key functions
in assembly code, using the same conventions for argument passing and register usage as are followed by the
C compiler. The linker then serves to combine the two forms of code into a single program. This approach
is often feasible for simple functions, and it does not require any GCC-specific constructs. An alternative
to writing an entire function in C is to embed assembly code within a C program. GCC supports inline
assembly via the asm directive. Inline assembly allows the user to insert assembly code directly into the
code sequence generated by the compiler. Features are provided to indicate to the compiler how to interface
to the inserted code. The resulting code, of course, only runs on a specific class of machines, but we will
see, for example, that it is often possible to have inline assembly that compiles properly on both IA32 and
x86-64 machines. The asm directive is also specific to GCC, creating an incompatibility with many other
compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code to an
absolute minimum.

Our presentation is drawn from the GCC documentation [2]. This is the authoritative reference, but it is
fairly terse and contains very few examples.

2 Program Example

For our presentation, we will develop several implementations of functions with the following prototypes.
These examples provide real-life cases where gaining access to the condition codes will enable us to monitor
the status of a computation.

/* Multiply x and y. Store result at dest.
Return 1 if multiplication did not overflow

*/
int tmult_ok(long x, long y, long *dest);

/* Multiply x and y. Store result at dest.
Return 1 if multiplication did not overflow

3

*/
int umult_ok(unsigned long x, unsigned long y, unsigned long *dest);

Each function is to compute the product of arguments x and y and store the result in the memory location
specified by argument dest. As return values, they should return 0 when the multiplication overflows,
requiring more than 64 bits to represent the true product, and 1 when it does not. We have separate func-
tions for signed and unsigned multiplication, since their overflow conditions differ. We examined ways to
determine whether a multiplication has overflowed using C (see CS:APP2eProblem 2.35 and 2.36), but all
of these methods require performing additional operations to check the result of a multiplication.

Examining the documentation for the x86 multiply instructions mull and imull, we see that both set
the carry flag CF when they overflow. Thus, by inserting code that checks this flag after performing a
multiplication of x and y, we should be able to easily test for multiplicative overflow.

3 Handwritten Assembly-Code Functions

Although writing complex programs entirely in assembly code is a daunting task, we can often narrow the
amount of functionality that needs to be expressed in assembly code to a small amount and then write this
code as functions in a separate file. The compiled C code is combined with the assembled assembly code
by the linker. For example, if file p1.c contains C code and file p2.s contains assembly code, then the
compilation command

linux> gcc -o p p1.c p2.s

will cause file p1.c to be compiled, file p2.s to be assembled, and the resulting object code to be linked
to form an executable program p.

In order for the assembler to generate information required by the linker about a function, we must declare
the function to be global. Whereas in C, any function is global unless it is declared to be static, the assembler
assumes that a file is only locally available to functions within the same file, unless it is declared global. If
we have assembly code for a function fun in a file, then we should precede it with the declaration

.globl fun

We have found that even when writing functions in assembly code, it is best to let GCC do as much of the
work as possible. Toward that end, it often helps to write a function in C similar to the desired functionality
and then generate an initial version of the assembly code by running GCC with the command-line option
‘-S.’ This code provides a good starting point for fetching arguments, allocating and deallocating the stack
frame, and so forth. It is much easier to edit existing assembly code than to start from scratch.

As an example, consider the following approximation to our function tmult_ok_asm:

1 /* Starter function for tmult_ok */
2 /* Multiply arguments and indicate whether it did not overflow */
3 int tmult_ok_asm(long x, long y, long *dest) {
4 long p = x*y;
5 *dest = p;

4

6 return p > 0;
7 }

This function does much of what we want for tmult_ok—it multiplies arguments x and y, stores the
product at dest, and returns a 0 or 1 based on the result. Its only shortcoming is that it checks the wrong
property, but this is just one part of the overall computation.

GCC generates the following assembly code for the initial function We show this code in the exact form it
appears in the file, rather than the more stylized way we have presented assembly code in the book, since
we will want to edit the assembly code.

1 .globl tmult_ok_asm
2 tmult_ok_asm:
3 imulq %rdi, %rsi
4 movq %rsi, (%rdx)
5 testq %rsi, %rsi
6 setg %al
7 movzbl %al, %eax
8 ret

Note the presence of the .globl declaration in this code. Only two lines of this code need to be changed.
Line 5 sets condition codes based on the 64-bit product of x and y. We want to eliminate this instruction
and instead rely on the condition-code values set by the imulq instruction. Line 6 sets the low-order byte
of register %eax based on the zero and sign flags. We want to set the byte based on the carry flag.

Examining CS:APP3e Figure 3.14, we see that the instruction setae can be used to set the low-order byte
of a register to 0 when the carry flag is set and to 1 otherwise. We can therefore make small edits to the
assembly code to get the desired function:

1 # Hand-generated code for tmult_ok
2 .globl tmult_ok_asm
3 # int tmult_ok_asm(long x, int y, long *dest);
4 # x in %rdi, y in %rsi, dest in %rdx
5 tmult_ok_asm:
6 imulq %rdi, %rsi
7 movq %rsi, (%rdx)
8 # Deleted code
9 # testq %rsi, %rsi
10 # setg %al
11 # Inserted code
12 setae %al # Set low-order byte
13 # End of inserted code
14 movzbl %al, %eax
15 ret

As this example shows, it helps to add annotations to the assembly code as documentation. Anything to the
right of the symbol ‘#’ is treated as a comment by the assembler.

Unfortunately, this approach of prototyping and modifying does not work for the implementation of umult_ok_asm,
where unsigned arithmetic is required. We attempt to create an approximate version with the C code

5

1 /* Multiply arguments and indicate whether it did not overflow */
2 int umult_ok_asm(unsigned long x, unsigned long y, unsigned long *dest) {
3 unsigned long p = x*y;
4 *dest = p;
5 return p > 0;
6 }

GCC generates the following assembly code for the initial function:

1 .globl umult_ok_asm
2 umult_ok_asm:
3 imulq %rdi, %rsi
4 movq %rsi, (%rdx)
5 testq %rsi, %rsi
6 setne %al
7 movzbl %al, %eax
8 ret

The code is nearly identical to that for signed data! In particular, it still uses the signed multiply instruction
imulq. As discussed in CS:APP3e Chapter 2, the low-order 64 bits of the product of two 64-bit products
is identical, and so this code computes the correct product, but it does not set the condition codes in a way
that will let us detect overflow.

Instead, we must write code that uses the unsigned multiply instruction mulq, but this instruction is only
available in a one-operand format (CS:APP3e Figure 3.12). With the one-operand form, the other argument
to the multiplication must be in register %rax, and the product is stored in registers %rdx (high-order 8
bytes) and %rax (low-order 8 bytes). Using this instruction requires writing code that looks very different
from that generated by GCC:

1 # Hand-generated code for umult_ok
2 .globl umult_ok_asm
3 # int umult_ok_asm(unsigned long x, unsigned long y, unsigned long *dest);
4 # x in %rdi, y in %rsi, dest in %rdx
5 umult_ok_asm:
6 movq %rdx, %rcx # Save copy of dest
7 movq %rsi, %rax # Copy y to %rax
8 mulq %rdi # Unsigned multiply by x
9 movq %rax, (%rcx) # Store product at dest
10 setae %al # Set low-order byte
11 movzbl %al, %eax
12 ret

In both of these examples, we can see that our study of assembly code gives us the ability to write our own
assembly-code functions.

4 Basic Inline Assembly

Using inline assembly lets GCC do more of the work in integrating hand-generated assembly code into a
program.

6

The basic form of inline assembly is to write code that looks like a procedure call:

asm(code-strings);

The term code-strings denotes an assembly code sequence given as one or more quoted strings (with no
delimiters between them.) The compiler will insert these strings verbatim into the assembly code being
generated, and hence the compiler-supplied and the user-supplied assembly will be combined. The compiler
does not check the string for errors, and so the first indication of a problem might be an error report from
the assembler.

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement
tmult_ok with the following code:

1 /* First attempt. Does not work */
2 int tmult_ok1(long x, long y, long *dest)
3 {
4 long result = 0;
5 *dest = x*y;
6 asm("setae %al");
7 return result;
8 }

The strategy here is to exploit the fact that register %eax is used to store the return value. Assuming the
compiler uses this register for variable result, our intention is that the first line of the C code will set the
register to 0. The inline assembly will insert code that sets the low-order byte of this register appropriately,
and the register will be used as the return value.

Unfortunately, the generated code does not work as desired. In running tests, it returns 0 every time it is
called. On examining the generated assembly code for this function, we find the following:

int tmult_ok1(long x, long y, long *dest)

x at %rdi, y at %rsi, dest at %rdx

1 tmult_ok1:
2 imulq %rsi, %rdi Compute x * y

3 movq %rdi, (%rdx) Store at dest

Code generated by asm

4 setae %al Set low-order byte of %eax

End of asm-generated code */

5 movl $0, %eax Set %eax to 0

6 ret

GCC has its own ideas of code generation. Instead of setting register %eax to 0 at the beginning of the
function, the generated code does so at the very end (line 5), and so the function always returns 0. The
fundamental problem is that the compiler has no way to know what the programmer’s intentions are, and
how the assembly code should interface with the rest of the generated code. Clearly, more sophisticated
mechanisms are required to embed assembly code within C code.

7

5 Extended Form of asm

GCC provides an extended version of asm that allows the programmer to specify which program values are
to be used as operands to an assembly code sequence, and which registers are overwritten by the assembly
code. With this information the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa-
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

The general syntax of an extended asm directive is

asm(code-strings [: output-list [: input-list [: overwrite-list]]]);

where the square brackets denote optional arguments. As with basic asm, the extended form contains one or
more strings giving stylized versions of the lines of assembly code. These are followed by optional lists of
outputs (i.e., results generated by the assembly code), inputs (i.e., source values for the assembly code), and
registers that are overwritten by the assembly code. These lists are separated by the colon (‘:’) character.
As the square brackets show, we only include lists up to the last nonempty list.

The syntax for a code string is reminiscent of that for the format string in a printf statement. It consists an
assembly code instruction, but the operands are written in a symbolic form, with references to the operand
expressions in the output and input lists. Within the assembly code, we give names to the operands. Earlier
versions of GCC required these names to be of the from %0, %1, and so on, up to %9, based on the order of
the operands in the two lists. Since GCC version 3.1, a more descriptive naming convention is supported,
where names are written with the notation %[name]. Register names such as %eax must be written with
an extra ‘%’ symbol, such as %%eax.

If multiple instructions are given, it is critical that return characters be inserted between them. The conven-
tional method of doing this is to finish all but the final string with the sequence \n\t, so that the generated
assembly code follows the normal formatting conventions for assembly code.

The output input list is a comma-separated list, with each list element containing three components in the
form [name] tag (expr), giving the name of the operand, the output constraint, and the C expression
indicating the destination for the instruction result. The field tag specifies constraints on the use and
location of the output operand, in the form of one of the following quoted strings:

Constraint Meaning
"=r" Update value stored in a register
"+r" Read and update value stored in a register
"=m" Update value stored in memory
"+m" Read and update value stored in memory
"=rm" Update value stored in a register or in memory
"+rm" Read and update value stored in a register or in memory

The expression expr can be any assignable value (known in C as an lvalue). The compiler will generate
the necessary code sequence to perform the assignment.

8

The input list entries have the same format, except that the tags are of the form tag "r", "m", or "rm",
indicating that the operand will be read from a register, memory, or either, respectively. Each input operand
can be any C expression. The compiler will generate the necessary code to evaluate the expression. The
overwrite list consists of a comma-separated list of register names, with each in double quotes.

As an illustration, the following is a better implementation of tmult_ok using the extended assembly
directive to indicate to the compiler that the assembly code generates the value for the variable result:

1 int tmult_ok2(long x, long y, long *dest)
2 {
3 int result;
4

5 *dest = x*y;
6 asm("setae %%bl # Set low-order byte\n\t"
7 "movzbl %%bl,%[val] # Zero extend to be result"
8 : [val] "=r" (result) /* Output */
9 : /* No inputs */
10 : "%bl" /* Overwrites */
11);
12 return result;
13 }

We see that the asm directive has two code strings: one for the setae instruction, and one to zero-extend
the low-order byte to form the result. We can see that we have chosen register %bl as the destination of
the setae instruction and as the source of the movzbl instruction. The register operand must be written
as %%bl. Observe also that we can add comments to our code, and that all but the last lines are terminated
with \n\t. We have given the name val to indicate the final value generated by the code. This is shown in
the output list as corresponding to program variable result. We also indicate that our code will overwrite
register %bl.

When we compile this code for x86-64, GCC generates the following assembly code:

int tmult_ok2(long x, long y, long *dest)

x at %rdi, y at %rsi, dest at %rdx

1 tmult_ok2:
2 pushq %rbx Save %rbx

3 imulq %rsi, %rdi Compute x * y

4 movq %rdi, (%rdx) Store at dest

Code generated by asm

5 setae %bl Set low-order byte

6 movzbl %bl,%eax Zero extend %eax

End of asm-generated code

7 popq %rbx Restore %rbx

8 ret

We see that the program saves the value of %rbx on the stack (line 2) and restores it at the end (line 7.)
Since this register is a callee-saved register, and we have indicated that our code will overwrite its low-order
byte (register %bl), GCC takes the necessary steps to preserve its value.

9

As a further refinement, we can simplify the code even more and make use of GCC’s ability to work with
different data types. GCC uses the type information for an operand when determining which register to
substitute for an operand name in the code string. In the version given as function tmult_ok2, it used
a 32-bit register %eax, based on the fact that variable result has data type int. Instead, we can use a
variable bresult of type unsigned char in the output list, and have this operand be the destination of
the setae instruction:

1 /* Uses extended asm to get reliable code */
2 int tmult_ok3(long x, long y, long *dest)
3 {
4 unsigned char bresult;
5 *dest = x*y;
6

7 asm("setae %[b] # Set result"
8 : [b] "=r" (bresult) /* Output */
9);
10

11 return (int) bresult;
12 }

The compiler will use a single-byte register identifier as the destination for the setae instruction, and then
use this register as the source operand of a movzbl instruction to implement the casting of bresult to
data type int. This simplified form also avoids the need for us to make use of a specific register, and hence
we need not specify any overwritten registers.

Writing inline assembly to implement umult_ok is more involved. We must set up, use, and obtain the
result from the one-operand mulq instruction, as follows:

1 int umult_ok(unsigned long x, unsigned long y, unsigned long *dest)
2 {
3 unsigned char bresult;
4

5 asm("movq %[x],%%rax # Get x\n\t"
6 "mulq %[y] # Unsigned long multiply by y\n\t"
7 "movq %%rax,%[p] # Store low-order 8 bytes at dest\n\t"
8 "setae %[b] # Set result"
9 : [p] "=m" (*dest), [b] "=r" (bresult) /* Outputs */
10 : [x] "r" (x), [y] "r" (y) /* Inputs */
11 : "%rax", "%rdx" /* Overwrites */
12);
13

14 return (int) bresult;
15 }

This code makes use of many of the features of the extended asm directive. The two output operands are
given symbolic names p (the product) and b (the status byte), while the two input operands have symbolic
names x and y. We can see that output operand p is associated with the expression *dest and is specified

10

as being stored to memory, while b is associated with local variable bresult and is specified as being
held in a register. We need to list both registers %rax and %rdx on the overwrite list.

To see how the compiler generates code in connection with an asm directive, here is the code generated for
umult_ok:

int umult_ok(unsigned long x, unsigned long y, unsigned long *dest)

x at %rdi, y at %rsi, dest at %rdx

1 umult_ok:
2 movq %rdx, %rcx Save dest

Code generated by asm

3 movq %rdi,%rax Get x

4 mulq %rsi Unsigned long multiply by y

5 movq %rax,(%rcx) Store low-order 8 bytes at dest

6 setae %dil Set low-order byte

End of asm-generated code

7 movzbl %dil, %eax Zero-extend result

8 ret

We can see that GCC has chosen the following register allocations for the operands: %rdi for x, %rsi for
y, %rdi, and %dil for b.

6 Concluding Remarks

We have explored two ways to combine assembly code with C code to generate a program. Writing a
complete function in assembly code as a separate file has the advantage that it uses existing and familiar
technology: the assembler and the linker. Using the facility for GCC to insert assembly code directly in a C
function has the advantage that we can greatly limit the amount of machine-specific code.

Although the syntax of the asm directive is somewhat arcane, and its use makes the code less portable, it can
be very useful for writing programs that access machine-level features using a minimal amount of assembly
code. We have found that a certain amount of trial and error is required to get code that works. The best
strategy is to compile the code with the -S command-line option and then examine the generated assembly
code to see if it will have the desired effect. It is important to note that in processing an asm directive, GCC

has no real understanding of the assembly code it is generating. It merely follows a set of syntactic rules for
replacing the symbolic names of operands with different register identifiers and memory references. The
code should be tested with different settings of switches such as with different levels of optimization.

Practice Problem 1:

Use extended asm to write a version of tmult_ok that includes the imulq instruction as part of the
assembly code. (It can be argued that this approach will be more robust across different versions of GCC
and optimization levels, since it will guarantee that the correct form of multiplication is being used.) Try
to write the asm code in a way that compiles to machine code that does not involve any unnecessary
movement of data among registers.

11

Practice Problem 2:
Use the asm directive to implement an x86-64 function with the prototype

/* Multiply two 64-bit numbers to get 128-bit result,

*/
void umult_full(unsigned long x, unsigned long y, unsigned long *dest);

This function should compute the full 128-bit product of its arguments and store the result in the destina-
tion array, with dest[0] having the low-order eight bytes and dest[1] having the high-order eight
bytes.

Practice Problem 3:
As is described in CS:APP3e Chapter 13, a program consisting of multiple independent threads of con-
trol requires special attention when these threads read and write a single program variable. This can lead
to data races, where the different threads interfere with one another.

For example, suppose a program has t threads running, each of which invokes the following function n
times, and where the argument ptr for every thread points to a single global variable cnt:

1 void bad_incr(int *ptr)
2 {
3 (*ptr)++;
4 }

Assuming cnt is initially 0, one would expect its final value to be t · n. Instead, it is typically less,
because not all of the updates have the effect of incrementing cnt.

Executing the addl instruction in the function involves three steps:

Read: Read the value stored in memory into the CPU
Modify: Increment the value
Write: Store the incremented value back to memory

Suppose that two threads both execute their respective addl instructions around the same time. Then
they may both read the same value C of cnt. Each will then compute C + 1 and store this value back
to cnt. So, even though two addl instructions have been executed, the net effect is to only increment
cnt by 1.

CS:APP3e Chapter 13 describes how to use special synchronization primitives to ensure that only one
thread has access to shared program state at a time. These primitives involve calls to the operating system
and incur a significant overhead.

A more direct solution is to take advantage of a feature implemented in x86 processors that allows some
instructions, including addl to be executed atomically, guaranteeing that the read-modify-write steps
of the instruction take place without any other thread being able to read or write the memory location
while these steps are taking place. The implementation of this atomicity is done completely in hardware
and so is significantly faster than using synchronization primitives.

To specify that an instruction should be executed atomically, a special lock prefix byte (with code 0xF0)
is included in the machine code immediately before the instruction. This is written in assembly by
writing lock as if it were an instruction on a separate line before the instruction that is to be executed
atomically. Use the extended asm in a function lock_incr such that the generated assembly code
will be exactly like that for bad_incr, except that the addl instruction will be executed atomically.

12

Practice Problem 4:

X86 machines have a parity flag PF as one of the condition codes. Every arithmetic or logical operation
sets this flag when the low-order eight bits of a result have even parity, meaning that they contain an even
number of ones. Whether the operation computes an 8-bit result or a larger one, the parity flag depends
only on the low-order 8 bits.

Consider the following function prototype:

int odd_parity(unsigned long x);

This function should determine whether its argument has odd parity, meaning that it contains an odd
number of ones. We want this function to operate correctly when compiled for either IA32, in which
case the argument is 32 bits, or for x86-64, in which case the argument is 64 bits.

Write a C function including an asm directive to implement this function, using the parity flag to com-
pute the parity 8 bits at a time.

Practice Problem 5:

Extended asm can be used for inserting floating-point instructions into a program. In the constraint field,
the character ‘x’ is used to indicate an XMM register as either input or output.

Write code for the following function:

/* Return minimum of x and y */
double dmin(double x, double y);

Your code should use the vminsd instruction (see CS:APP3e Figure 3.48) to perform the computation.

Practice Problem 6:

Write code for the following function:

/* Return sqrt(x) */
double dsqrt(double x);

Your code should use the sqrtsd instruction (see CS:APP3e Figure 3.48) to perform the computation.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 10]

The trick to writing this in a way that doesn’t involve additional data movement is to designate either x or y
as the destination of the multiplication operation, and use the constraint "+r":

13

1 /* Uses extended asm with explicit inclusion of imulq instruction */
2 int tmult_ok4(long x, long y, long *dest)
3 {
4 unsigned char bresult;
5

6 asm("imulq %[x],%[y] # Compute y = x * y\n\t"
7 "setae %[b] # Set result"
8 : [y] "+r" (y), [b] "=r" (bresult) /* Outputs */
9 : [x] "r" (x) /* Inputs */
10);
11 *dest = y;
12 return (int) bresult;
13 }

Problem 2 Solution: [Pg. 11]
This function bears many similarities to the function umult_ok, except that we want to store both the high
and the low-order words of the product:

1 void umult_full(unsigned long x, unsigned long y, unsigned long *dest)
2 {
3 asm("movq %[x],%%rax # Get x\n\t"
4 "mulq %[y] # Unsigned multiply by y\n\t"
5 "movq %%rax,%[lo] # Store low-order 8 bytes\n\t"
6 "movq %%rdx,%[hi] # Store high-order 8 bytes"
7 : [lo] "=m" (dest[0]), [hi] "=m" (dest[1]) /* Outputs */
8 : [x] "r" (x), [y] "r" (y) /* Inputs */
9 : "%rax", "%rdx" /* Overwrites */
10);
11 }

Problem 3 Solution: [Pg. 11]

This problem demonstrates a case where inline assembly can tap into a feature of the hardware that cannot
be done with normal C code. In our experiments with two threads, we found that using hardware locking
slows down execution by 6.4X compared to bad_incr. Using synchronization primitives slows down
execution by 31X or more.

Our solution uses the constraint "+m" to specify that the value of *ptr will be both read and used as an
output.

1 void lock_incr(int *ptr)
2 {
3 asm("lock # Insert lock prefix\n\t"
4 "addl $1, %[p] # Increment *ptr"
5 : [p] "+m" (*ptr) /* Output */
6);
7 }

14

Problem 4 Solution: [Pg. 12]
There are many solutions to this problem. This one is perhaps the simplest. It simply shifts the successive
bytes of argument x into the low-order byte and thereby tests the parity of each non-zero byte. We use the
testb instruction to test each byte, since the parity flag depends only on the low-order byte, and this makes
the code portable between IA32 and x86-64.

1 /* Using ASM to access parity flag */
2 int odd_parity(unsigned long x) {
3 int result = 0;
4 while (x != 0) {
5 char bresult;
6 unsigned char bx = x & 0xff;
7 asm("testb %[bx],%[bx] # Test value of low-order byte\n\t"
8 "setnp %[v] # Set if odd parity"
9 : [v] "=r" (bresult) /* Output */
10 : [bx] "r" (bx) /* Input */
11);
12 result ˆ= (int) bresult;
13 x = x >> 8;
14 }
15 return result;
16 }

Problem 5 Solution: [Pg. 12]

This is another demonstration of tapping into hardware features of the processor in ways that cannot be done
with normal C code.

1 /* Return minimum of x and y */
2 double dmin(double x, double y) {
3 double result;
4 asm("vminsd %[x], %[y], %[r] # Compute r = min(x,y)\n\t"
5 : [r] "=x" (result) /* Outputs */
6 : [x] "x" (x), [y] "x" (y) /* Inputs */
7);
8 return result;
9 }

Problem 6 Solution: [Pg. 12]

Normally, this operation is implemented in C by calling the library function sqrt. This function uses the
sqrtsd instruction to perform the computation.

1 /* Return sqrt(x) */
2 double dsqrt(double x) {
3 double result;
4 asm("sqrtsd %[x], %[r] # Compute r = sqrt(x)\n\t"

15

5 : [r] "=x" (result) /* Output */
6 : [x] "x" (x) /* Input */
7);
8 return result;
9

10 }

References

[1] Jr. F. P. Brooks. The Mythical Man-Month, Second Edition. Addison-Wesley, 1995.

[2] GCC Online Documentation. Available at http://gcc.gnu.org/.

http://gcc.gnu.org/

	Combining Assembly Code with C Programs
	Program Example
	Handwritten Assembly-Code Functions
	Basic Inline Assembly
	Extended Form of asm
	Concluding Remarks

