CS 213, Fall 2002
Lab Assignment L5: Writing Your Own Unix Shell
Assigned: Oct. 24, Due: Thu., Oct. 31, 11:59PM

Harry Bovik (bovi k@s. crmu. edu)is the lead person for this assignment.

Introduction

The purpose of this assignment is to become more familidr thié concepts of process control and sig-
nalling. You'll do this by writing a simple Unix shell progmathat supports job control.

Logistics

You may work in a group of up to two people in solving the praofdefor this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions toet assignment will be posted on the course Web

page.

Hand Out Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how the instructor will hand out
the shl ab- handout . t ar file to the students. Here are the directions we use at CMU.

Start by copying the filshl ab- handout . t ar to the protected directory (tHab directory) in which
you plan to do your work. Then do the following:

e Type the commantar xvf shl ab-handout .t ar to expand the tarfile.
e Type the commandeke to compile and link some test routines.

e Type your team member names and Andrew IDs in the header cohantie top ot sh. c.

Looking at thet sh. ¢ (tiny shel) file, you will see that it contains a functional skeleton cfimple Unix
shell. To help you get started, we have already implememigdess interesting functions. Your assignment

is to complete the remaining empty functions listed belows &sanity check for you, we've listed the
approximate number of lines of code for each of these funstia our reference solution (which includes
lots of comments).

e eval : Main routine that parses and interprets the command liflifes]

e bui |l ti n.cnd: Recognizes and interprets the built-in commangisi t , f g, bg, andj obs. [25
lines]

e do_bgf g: Implements thdg andf g built-in commands. [50 lines]
e wai t f g: Waits for a foreground job to complete. [20 lines]
e si gchl d_handl er: Catches SIGCHILD signals. 80 lines]
e si gi nt _handl er: Catches SIGINTdt r | - ¢) signals. [15 lines]

e si gt st p_handl er: Catches SIGTSTR(r | - z) signals. [15 lines]

Each time you modify yout sh. c file, type nake to recompile it. To run your shell, typesh to the
command line:

uni x> . /tsh
tsh> [type commands to your shell here]

General Overview of Unix Shells

A shellis an interactive command-line interpreter that runs oty on behalf of the user. A shell repeat-
edly prints a prompt, waits for eommand linen st di n, and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimitgedvhitespace. The first word in the
command line is either the name of a built-in command or thlerzane of an executable file. The remaining
words are command-line arguments. If the first word is a{imittommand, the shell immediately executes
the command in the current process. Otherwise, the wordsig@ad to be the pathname of an executable
program. In this case, the shell forks a child process, thadd and runs the program in the context of the
child. The child processes created as a result of intengetisingle command line are known collectively
as gjob. In general, a job can consist of multiple child processemeoted by Unix pipes.

If the command line ends with an ampersaigd, then the job runs in th&ackground which means that
the shell does not wait for the job to terminate before priptihe prompt and awaiting the next command
line. Otherwise, the job runs in tHereground which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any poininire t at most one job can be running in the
foreground. However, an arbitrary number of jobs can ruméntdackground.

For example, typing the command line

tsh> j obs

causes the shell to execute the buil{-imbs command. Typing the command line
tsh> /bin/ls -1 -d

runs thel s program in the foreground. By convention, the shell enstlias when the program begins
executing its main routine

int main(int argc, char xargv[])

thear gc andar gv arguments have the following values:

e argc == 3,

e argv[0] == *‘/bin/ls ",
eargv[l]=="‘"-1"",
eargv[2]==""-d .

Alternatively, typing the command line

tsh> /bin/ls -I -d &

runs thel s program in the background.

Unix shells support the notion gdb control which allows users to move jobs back and forth between back-
ground and foreground, and to change the process statan(grstopped, or terminated) of the processes
in ajob. Typingct r | - ¢ causes a SIGINT signal to be delivered to each process imtbground job. The
default action for SIGINT is to terminate the process. Samyi typingct r| - z causes a SIGTSTP signal
to be delivered to each process in the foreground job. Theuttedction for SIGTSTP is to place a process
in the stopped state, where it remains until it is awakenethéyeceipt of a SIGCONT signal. Unix shells
also provide various built-in commands that support jobtrmdnFor example:

e | obs: List the running and stopped background jobs.
e bg <j ob>: Change a stopped background job to a running background job
e f g <j ob>: Change a stopped or running background job to a runningeifiditeground.

e ki ll <job>:Terminate a job.

Thet sh Specification
Your t sh shell should have the following features:

e The prompt should be the strinysh> .

The command line typed by the user should consistridiiee and zero or more arguments, all sepa-
rated by one or more spacesnkne is a built-in command, thehsh should handle it immediately
and wait for the next command line. Otherwisesh should assume thatane is the path of an
executable file, which it loads and runs in the context of atimirchild process (In this context, the
termjob refers to this initial child process).

t sh need not support pipes Y or I/O redirection € and>).

Typingctrl -c (ctrl -2z)should cause a SIGINT (SIGTSTP) signal to be sent to thesotifore-
ground job, as well as any descendents of that job (e.qg., il mrocesses that it forked). If there is
no foreground job, then the signal should have no effect.

If the command line ends with an ampersafdthent sh should run the job in the background.
Otherwise, it should run the job in the foreground.

Each job can be identified by either a process ID (PID) or a®BJID), which is a positive integer
assigned by sh. JIDs should be denoted on the command line by the prébix-or example, %%”
denotes JID 5, and5” denotes PID 5. (We have provided you with all of the routiges need for
manipulating the job list.)

t sh should support the following built-in commands:

— Thequi t command terminates the shell.
— Thej obs command lists all background jobs.

— Thebg <j ob>command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the background. Thej ob> argument can be either a PID or a JID.

— Thef g <j ob>command restartsj ob> by sending it a SIGCONT signal, and then runs it in
the foreground. The&j ob> argument can be either a PID or a JID.

e t sh should reap all of its zombie children. If any job terminabesause it receives a signal that
it didn’t catch, thert sh should recognize this event and print a message with the D and a
description of the offending signal.

Checking Your Work

We have provided some tools to help you check your work.

Reference solution.The Linux executablé shr ef is the reference solution for the shell. Run this program
to resolve any questions you have about how your shell shmidve.Your shell should emit output that is
identical to the reference solutidexcept for PIDs, of course, which change from run to run).

Shell driver. Thesdri ver. pl program executes a shell as a child process, sends it corsraaddignals
as directed by #&race file and captures and displays the output from the shell.

Use the -h argument to find out the usagesdf i ver. pl :

uni x> ./sdriver.pl -h
Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args>

Opt i ons:
-h Print this nessage
-V Be nore verbose
-t <trace> Trace file
-s <shel |l > Shell programto test
-a <args> Shel | argunents
-g Generate out put for autograder

We have also provided 16 trace fileg @ce{01- 16}. t xt) that you will use in conjunction with the shell
driver to test the correctness of your shell. The lower-nerad trace files do very simple tests, and the
higher-numbered tests do more complicated tests.

You can run the shell driver on your shell using traceffiteace01. t xt (for instance) by typing:

uni x> ./sdriver.pl -t traceOl.txt -s ./tsh -a "-p
(the-a "-p" argument tells your shell not to emit a prompt), or
uni x> make testO1

Similarly, to compare your result with the reference shailj can run the trace driver on the reference shell
by typing:

uni x> ./sdriver.pl -t traceOl.txt -s ./tshref -a "-p

or

uni x> nmake rtest01

For your referencet shr ef . out gives the output of the reference solution on all races. Tiight be
more convenient for you than manually running the shellairon all trace files.

The neat thing about the trace files is that they generateathe sutput you would have gotten had you run
your shell interactively (except for an initial commentttigentifies the trace). For example:

bass> nmake test15

./sdriver.pl -t tracelb.txt -s ./tsh -a "-p
#

tracelb5.txt - Putting it all together
#

tsh> . /bogus

./ bogus: Command not found.

tsh> ./myspin 10

Job (9721) term nated by signal 2

tsh> ./myspin 3 &

[1] (9723) ./nyspin 3 &

tsh> ./nyspin 4 &

[2] (9725) ./nyspin 4 &

tsh> j obs

[1] (9723) Running ./Imyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> fg %

Job [1] (9723) stopped by signal 20
tsh> j obs

[1] (9723) Stopped ./Imyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> bg %3

%3: No such job

tsh> bg %

[1] (9723) ./nyspin 3 &

tsh> j obs

[1] (9723) Running ./Imyspin 3 &
[2] (9725) Running .Inmyspin 4 &
tsh> fg %

tsh> quit

bass>

Hints

e Read every word of Chapter 8 (Exceptional Control Flow) inryextbook.

e Use the trace files to guide the development of your shell.rtiBgawith t r aceOl. t xt , make
sure that your shell produces titentical output as the reference shell. Then move on to trace file
trace02. t xt,and soon.

e Thewai tpi d,kill,fork,execve,set pgi d,andsi gpr ocrmask functions will come in very
handy. The WUNTRACED and WNOHANG optionswai t pi d will also be useful.

e When you implement your signal handlers, be sure to §rld NT andS| GTSTP signals to the en-
tire foreground process group, usinggi d” instead of pi d” in the argument to th&i | | function.
Thesdri ver. pl program tests for this error.

e One of the tricky parts of the assignment is deciding on tleeation of work between theai t f g
andsi gchl d_handl er functions. We recommend the following approach:

— Inwai t f g, use a busy loop around tké eep function.
— Insi gchl d_handl er, use exactly one call teai t pi d.

While other solutions are possible, such as calliagt pi d in bothwai t f g andsi gchl d_handl er,
these can be very confusing. It is simpler to do all reapinipénhandler.

e In eval , the parent must usel gpr ocnask to block SI GCHLD signals before it forks the child,
and then unblock these signals, again usngpr ocrmask after it adds the child to the job list by
callingaddj ob. Since children inherit thbl ocked vectors of their parents, the child must be sure
to then unblockSl GCHLD signals before it execs the new program.

6

The parent needs to block t&& GCHLDsignals in this way in order to avoid the race condition where
the child is reaped bgi gchl d_handl er (and thus removed from the job lidteforethe parent
callsaddj ob.

e Programs such asor e, | ess, vi , andenacs do strange things with the terminal settings. Don’t
run these programs from your shell. Stick with simple tex$dd programs such adi n/ | s,
/ bi n/ ps, and/ bi n/ echo.

e When you run your shell from the standard Unix shell, youtlseeunning in the foreground process
group. If your shell then creates a child process, by detaalt child will also be a member of the
foreground process group. Since typitigr | - ¢ sends a SIGINT to every process in the foreground
group, typingct r | - ¢ will send a SIGINT to your shell, as well as to every procesg ftour shell
created, which obviously isn’t correct.

Here is the workaround: After thkor k, but before theexecve, the child process should call
set pgi d(0, 0), which puts the child in a new process group whose group IDbestical to the
child’s PID. This ensures that there will be only one procgssir shell, in the foreground process
group. When you typet rl - ¢, the shell should catch the resulting SIGINT and then fodnitar
to the appropriate foreground job (or more precisely, tlee@ss group that contains the foreground
job).

Evaluation

Your score will be computed out of a maximum of 90 points basmethe following distribution:

80 Correctness: 16 trace files at 5 points each.

10 Style points. We expect you to have good comments (5 pts) aotdck the return value of EVERY
system call (5 pts).

Your solution shell will be tested for correctness on a Limaxchine, using the same shell driver and trace
files that were included in your lab directory. Your shell gliboproducedentical output on these traces as
the reference shell, with only two exceptions:

e The PIDs can (and will) be different.

e The output of the bi n/ ps commands irt racell. t xt,tracel2.txt,andtracel3. t xt
will be different from run to run. However, the running statef anynyspl i t processes in the
output of the/ bi n/ ps command should be identical.

Hand In Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how the students should hand in
their t sh. c files. Here are the directions we use at CMU.

e Make sure you have included your names and Andrew IDs in thddrecomment af sh. c.
e Create a team name of the form:

— “ID" where ID is your Andrew ID, if you are working alone, or

— “ID+1ID5” where ID; is the Andrew ID of the first team member aff, is the Andrew 1D
of the second team member.

We need you to create your team names in this way so that weutagrade your assignments.

e To hand in yout sh. c file, type:

make handi n TEAM=Et eammane

wheret eammane is the team name described above.

e After the handin, if you discover a mistake and want to sulanévised copy, type

make handi n TEAMFt eamrmane VERSI ON=2

Keep incrementing the version number with each submission.

¢ You should verify your handin by looking in

[af s/ cs. cnu. edu/ acadeni c/ cl ass/ 15213-f 01/ L5/ handi n

You have list and insert permissions in this directory, butead or write permissions.

Good luck!

