
Introducing Computer Systems  
from a  

Programmer’s Perspective
Randal E. Bryant, David R. O’Hallaron

Computer Science, Electrical & Computer Engineering
Carnegie Mellon University

– 2 – ICS

Outline
Introduction to Computer Systems

n  Course taught at CMU since Fall, 1998
n  Some ideas on labs, motivations, …

Computer Systems: A Programmer’s Perspective
n  Our textbook, now in its third edition
n  Ways to use the book in different courses

– 3 – ICS

Background
1995-1997: REB/DROH teaching computer

architecture course at CMU.
n  Good material, dedicated teachers, but students hate it
n  Don’t see how it will affect their lives as programmers

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

CS Average

REB: Computer Architecture

– 4 – ICS

Computer Arithmetic  
Builder’s Perspective

n  How to design high performance arithmetic circuits

32-bit
Multiplier

– 5 – ICS

Computer Arithmetic  
Programmer’s Perspective

n  Numbers are represented using a finite word size
n  Operations can overflow when values too large

l  But behavior still has clear, mathematical properties

void show_squares()
{
 int x;
 for (x = 5; x <= 5000000; x*=10)
 printf("x = %d x^2 = %d\n", x, x*x);
}

x = 5 x2 = 25
x = 50 x2 = 2500
x = 500 x2 = 250000
x = 5000 x2 = 25000000
x = 50000 x2 = -1794967296
x = 500000 x2 = 891896832
x = 5000000 x2 = -1004630016

– 6 – ICS

Memory System  
Builder’s Perspective
Builder’s Perspective

n  Must make many difficult design decisions
n  Complex tradeoffs and interactions between components

Main
memory Disk

L1 i-cache

L1 d-cacheRegs L2
unified
cacheCPU

Write
through or
write back?

Direct
mapped or

set
indexed?

How many
lines?

Virtual or
physical
indexing?

Synchronous
or

asynchronous?

– 7 – ICS

Memory System  
Programmer’s Perspective

n  Hierarchical memory organization
n  Performance depends on access patterns

l  Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

4.3 ms 81.8 ms

19 times slower!
(Measured on 2 GHz
Intel Core i7 Haswell)

– 8 – ICS

The Memory Mountain

– 9 – ICS

Background (Cont.)
1997: OS instructors complain about lack of

preparation
n  Students don’t know machine-level programming well

enough
l  What does it mean to store the processor state on the run-

time stack?
n  Our architecture course was not part of prerequisite

stream

– 10 – ICS

Birth of ICS
1997: REB/DROH pursue new idea:

n  Introduce them to computer systems from a programmer's
perspective rather than a system designer's perspective.

n  Topic Filter: What parts of a computer system affect the
correctness, performance, and utility of my C programs?

1998: Replace architecture course with new course:
n  15-213: Introduction to Computer Systems

Curriculum Changes
n  Sophomore level course
n  Eliminated digital design & architecture as required

courses for CS majors

– 11 – ICS

15-213: Intro to Computer Systems
Goals

n  Teach students to be sophisticated application programmers
l  Immediate value, even if never take another systems course

n  Prepare students for upper-level systems courses

Taught every semester to 400+ students
n  All CS undergrads (core course)
n  All ECE undergrads (core course)
n  Many masters students

l  To prepare them for upper-level systems courses
n  Variety of others from math, physics, statistics, …

Preparation
n  Optional: Introduction to CS in Python or Ruby
n  Imperative programming in C subset

– 12 – ICS

ICS Feedback
Students

Faculty
n  Prerequisite for most upper level CS systems courses
n  Also required for ECE embedded systems, architecture, and

network courses

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

REB: Intro. Comp. Systems

CS Average

REB: Computer Architecture

– 13 – ICS

Lecture Coverage
Data representations [3]

n  It’s all just bits.
n  int’s are not integers and float’s are not reals.

x86-64 machine language [5]
n  Analyzing and understanding compiler-generated machine

code.

Program optimization [2]
n  Understanding compilers and modern processors.

Memory Hierarchy [3]
n  Caches matter!

Linking [1]
n  With DLL’s, linking is cool again!

– 14 – ICS

Lecture Coverage (cont)
Exceptional Control Flow [2]

n  The system includes an operating system that you must
interact with.

Virtual memory [4]
n  How it works, how to use it, and how to manage it.

Application level concurrency [3]
n  Processes and threads
n  Races, synchronization

I/O and network programming [4]
n  Programs often need to talk to other programs.

Total: 27 lectures, 14 week semester

– 15 – ICS

Labs
Key teaching insight:

n  Cool Labs ⇒ Great Course

A set of 1 and 2 week labs define the course.

Guiding principles:
n  Be hands on, practical, and fun.
n  Be interactive, with continuous feedback from automatic

graders
n  Find ways to challenge the best while providing worthwhile

experience for the rest
n  Use healthy competition to maintain high energy.

– 16 – ICS

Lab Exercises
Data Lab (2 weeks)

n  Manipulating bits.
Bomb Lab (2 weeks)

n  Defusing a binary bomb.
Attack Lab (1 week)

n  Buffer overflow and return-oriented programming exploits
Cache Lab (2 weeks)

n  Write basic cache simulator and then optimize application
Shell Lab (1 week)

n  Writing your own shell with job control.
Malloc Lab (2-3 weeks)

n  Writing your own malloc package.
Proxy Lab (2 weeks)

n  Writing your own concurrent Web proxy.

– 17 – ICS

Data Lab
Goal: Solve some “bit puzzles” in C using a limited set

of logical and arithmetic operators.
n  Examples: absval(x), greaterthan(x,y), log2(x)

Lessons:
n  Information is just bits in context.
n  C int’s are not the same as integers.
n  C float’s are not the same as reals.

Infrastructure
n  Configurable source-to-source C compiler that checks for

compliance.
n  Instructor can automatically select from 45 puzzles.
n  Automatic testing using formal verification tools

– 18 – ICS

Let’s Solve a Bit Puzzle!

/*
 * abs - absolute value of x (except returns TMin for TMin)
 * Example: abs(-1) = 1.
 * Legal ops: ! ~ & ^ | + << >>
 * Max ops: 10
 * Rating: 4
 */
int abs(int x) {
 int mask = x>>31;

 return ____________________________;
}

11…12, = –1, x < 0
00…02, = 0, x ≥ 0

(x^mask)

–x – 1, x < 0
x, x ≥ 0

 + 1+~mask

1, x < 0
0, x ≥ 0

–x, x < 0
x, x ≥ 0+ =

– 19 – ICS

Verifying Solutions

Do these functions produce
identical results?

How could you find out?

int abs(int x) {
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

int test_abs(int x) {
 return (x < 0) ? -x : x;
}

– 20 – ICS

Bit-Level Program Model

n  View computer word as 32 separate bit values
n  Each output becomes Boolean function of inputs

abs

x0

x1

x2

•

•

•

x31

y0

y1

y2

•

•

•

y31

•

•

•

•

•

•

x0

x1

x2

•

•

•

x31

•

•

•

yiabsi

int abs(int x) {
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

– 21 – ICS

Bit-Level Program Verification

n  Determine whether functions equivalent for all outputs j
n  Exhaustive checking:

l  Single input:

l  Two input: 264 cases è 8,800 years!
n  Other approaches

l  BDDs, SAT solvers
l  Easily handle these functions (< 1.0 seconds)

232 cases X 50 cycles
2 X 109 cycles / second

≈ 60 seconds

– 22 – ICS

Verification Example

Almost Correct
n  Valid for all but one input value
n  Overlooked by our test suite

int iabs(int x) {
 if (x == 1234567) x++;
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

– 23 – ICS

Counterexample Generation

Detected By Checking Code
n  Since covers all cases
n  Generate counterexample to demonstrate problem

int iabs(int x) {
 if (x == 1234567) x++;
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

int main()
{
 int val1 = iabs(1234567);
 int val2 = test_iabs(1234567);
 printf("iabs(1234567) --> %d [0x%x]\n", val1, val1);
 printf("test_iabs(1234567) --> %d [0x%x]\n", val2, val2);
 if (val1 == val2) {

 printf(".. False negative\n");
 } else

 printf(".. A genuine counterexample\n");
}

– 24 – ICS

Bomb Lab
n  Idea due to Chris Colohan, TA during inaugural offering

Bomb: C program with six phases.
Each phase expects student to type a specific string.

n  Wrong string: bomb explodes by printing BOOM! (- ½ pt)
n  Correct string: phase defused (+10 pts)
n  In either case, bomb sends message to grading server
n  Server posts current scores anonymously and in real time on

Web page

Goal: Defuse the bomb by defusing all six phases.
n  For fun, we include an unadvertised seventh secret phase

The challenge:
n  Each student get only binary executable of a unique bomb
n  To defuse their bomb, students must disassemble and

reverse engineer this binary

– 25 – ICS

Properties of Bomb Phases
Phases test understanding of different C constructs

and how they are compiled to machine code
n  Phase 1: string comparison
n  Phase 2: loop
n  Phase 3: switch statement/jump table
n  Phase 4: recursive call
n  Phase 5: pointers
n  Phase 6: linked list/pointers/structs
n  Secret phase: binary search (biggest challenge is figuring

out how to reach phase)

Phases start out easy and get progressively harder

– 26 – ICS

Let’s defuse a bomb phase!
0000000000400a6c <phase_2>:
 ... # function prologue not shown
 400a72: mov %rsp,%rsi
 400a75: callq 4010ba <read_six_numbers>
 400a7a: cmpl $0x1,(%rsp)
 400a7e: je 400a85 <phase_2+0x19>
 400a80: callq 400f6d <explode_bomb>
 400a85: lea 0x4(%rsp),%rbx
 400a8a: lea 0x18(%rsp),%rbp
 400a8f: mov -0x4(%rbx),%eax
 400a92: add %eax,%eax
 400a94: cmp %eax,(%rbx)
 400a96: je 400a9d <phase_2+0x31>
 400a98: callq 400f6d <explode_bomb>
 400a9d: add $0x4,%rbx
 400aa1: cmp %rbp,%rbx
 400aa4: jne 400a8f <phase_2+0x23>
 ... # function epilogue not shown
 400aac: c3 retq

else explode!

LOOP: v = buf[0]

then goto LOOP:

rd 6 ints into buffer

then goto OK:

YIPPEE!

p = &buf[1]

v = 2*v
if v == *p

OK: p++

pend = &buf[6]

if p != pend

– 27 – ICS

Source Code for Bomb Phase
/*
 * phase2b.c - To defeat this stage the user must enter the geometric
 * sequence starting at 1, with a factor of 2 between each number
 */
void phase_2(char *input)
{
 int i;
 int numbers[6];

 read_six_numbers(input, numbers);

 if (numbers[0] != 1)
 explode_bomb();

 for(i = 1; i < 6; i++) {
 if (numbers[i] != numbers[i-1] * 2)
 explode_bomb();
 }
}

– 28 – ICS

The Beauty of the Bomb
For the Student

n  Get a deep understanding of machine code in the context of
a fun game

n  Learn about machine code in the context they will encounter
in their professional lives
l  Working with compiler-generated code

n  Learn concepts and tools of debugging
l  Forward vs backward debugging
l  Students must learn to use a debugger to defuse a bomb

For the Instructor
n  Self-grading
n  Scales to different ability levels
n  Easy to generate variants and to port to other machines

– 29 – ICS

Attack Lab

Task
n  Each student assigned “cookie”

l  Randomly generated 8-digit hex string
n  Generate string that will cause getbuf to return cookie

l  Instead of 1

int getbuf()
{
 char buf[4];
 /* Read line of text and store in buf */
 gets(buf);
 return 1;
}

– 30 – ICS

Buffer Code

n  Calling function gets(p) reads characters up to ‘\n’
n  Stores string + terminating null as bytes starting at p
n  Assumes enough bytes allocated to hold entire string

void getbuf() {
 char buf[4];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return
address

Stack when gets called

Increasing
addresses

Return	Address	
(8	bytes)	

%rsp

Stack	Frame	
for	test

[3] [2] [1] [0] buf

20	bytes	unused

– 31 – ICS

Buffer Code: Good case

n  Fits within allocated storage
l String is 23 characters long + 1 byte terminator

void getbuf() {
 char buf[4];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return
address

Input string
“01234567890123456789012”

Increasing
addresses

Return	Address	
(8	bytes)	

%rsp

Stack	Frame	
for	test

33 32 31 30 buf

20	bytes	unused

00 40 06 f6
00 00 00 00

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
00 32 31 30

– 32 – ICS

Buffer Code: Bad case

n  Overflows allocated storage
l Corrupts saved frame pointer and return address

n  Jumps to address 0x400034 when getbuf attempts to return
l Program executes some instruction and then segfaults

void getbuf() {
 char buf[4];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return
address

Input string
“0123456789012345678901234”

Increasing
addresses

Return	Address	
(8	bytes)	

%rsp

Stack	Frame	
for	test

33 32 31 30 buf

20	bytes	unused

00 00 00 00

37 36 35 34
31 30 39 38
35 34 33 32
39 38 37 36
33 32 31 30
00 40 00 34

– 33 – ICS

Malicious Use of Buffer Overflow

n  Input string contains byte representation of executable code
n  Overwrite return address with address of buffer
n  When getbuf() executes return instruction, will jump to exploit

code

void getbuf() {
 char buf[4];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return
address

Stack	a:er	call	to	gets()

B	

	
	

test
stack	frame	

getbuf
stack	frame	

B	

exploit	
code	

pad	data	wri>en	
by	gets()

– 34 – ICS

Exploit String Example

n  Sets 0x59b997fa as function
argument

n  Invokes function touch2

/* Byte code for shell code
 movq $0x59b997fa,%rdi; ret */
48 c7 c7 fa 97 b9 59 c3
/* Pad with 16 bytes */
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
/* Address of shellcode */
78 dc 61 55 00 00 00 00
/* Address of touch2 */
0c 18 40 00 00 00 00 00

void getbuf() {
 char buf[4];
 gets(buf);
 return 1;
}

Stack	a:er	call	to	gets()

B	

	
	

test
stack	frame	

getbuf
stack	frame	

B	

exploit	
code	

pad	data	wri>en	
by	gets()

– 35 – ICS

Why Do We Teach This Stuff?
Important Systems Concepts

n  Stack discipline and stack organization
n  Instructions are byte sequences
n  Making use of tools

l  Debuggers, assemblers, disassemblers

Computer Security
n  What makes code vulnerable to buffer overflows
n  Common vulnerability in systems

Impact
n  CMU student teams consistently win international Capture

the Flag Competitions

– 36 – ICS

Cache Lab
Goal: Understanding Cache Operations

n  How memory locations map to cache blocks
n  Performance implications for application programs

Activities
n  Write cache simulator

l  Provides full understanding of mapping from memory
address to cache location

n  Minimize cache misses for simple application
l  Matrix transpose

– 37 – ICS

Shell Lab
Goal: Write a Unix shell with job control

n  (e.g., ctrl-z, ctrl-c, jobs, fg, bg, kill)

Lessons:
n  First introduction to systems-level programming and

concurrency
n  Learn about processes, process control, signals, and

catching signals with handlers
n  Demystifies command line interface

Infrastructure
n  Students use a scripted autograder to incrementally test

functionality in their shells

– 38 – ICS

Malloc Lab
Goal: Build your own dynamic storage allocator

void *malloc(size_t size)

void *realloc(void *ptr, size_t size)

void free(void *ptr)

Lessons
n  Sense of programming underlying system
n  Large design space with classic time-space tradeoffs
n  Develop understanding of scary “action at a distance”

property of memory-related errors
n  Learn general ideas of resource management

Infrastructure
n  Trace driven test harness evaluates implementation for

combination of throughput and memory utilization
n  Evaluation server and real time posting of scores

– 39 – ICS

Proxy Lab
Goal: write concurrent Web proxy.

Lessons: Ties together many ideas from earlier
n  Data representations, byte ordering, memory management,

concurrency, processes, threads, synchronization, signals,
I/O, network programming, application-level protocols
(HTTP)

Infrastructure:
n  Plugs directly between existing browsers and Web servers
n  Grading is done via autograders and one-on-one demos
n  Very exciting for students, great way to end the course

Web
Browser

Web
Proxy

Web
Server

– 40 – ICS

ICS Summary
Principle

n  Introduce students to computer systems from the
programmer's perspective rather than the system builder's
perspective

Themes
n  What parts of the system affect the correctness, efficiency,

and utility of my C programs?
n  Makes systems fun and relevant for students
n  Prepare students for builder-oriented courses

l  Architecture, compilers, operating systems, networks,
distributed systems, databases, …

l  Since our course provides complementary view of systems,
does not just seem like a watered-down version of a more
advanced course

l  Gives them better appreciation for what to build

– 41 – ICS

ICS

CMU Courses that Build on ICS
CS

Operating
Systems

Networks

Dist.
Systems

Parallel
Prog.

Software
Engin.

Secure
Coding

Compilers

Databases

Storage
Systems

Robotics

Computer
Graphics

Comp.
Photo.

Cog.
Robotics

ECE

Embedded
Systems

Real-Time
Systems

Embedded
Control

Computer
Arch.

– 42 – ICS

Fostering “Friendly Competition”
Desire

n  Challenge the best without frustrating everyone else

Method
n  Web-based submission of solutions
n  Server checks for correctness and computes performance

score
l  How many stages passed, program throughput, …

n  Keep updated results on web page
l  Students choose own nom de guerre

Relationship to Grading
n  Students get full credit once they reach set threshold
n  Push beyond this just for own glory/excitement

– 43 – ICS

Shameless
Promotion

n  http://csapp.cs.cmu.edu

n  Third edition published 2015
n  In use at 289 institutions

worldwide

– 44 – ICS

International Editions  
(No 3rd edition yet)

– 45 – ICS

Overall Sales
n  All Editions
n  As of 6/30/2015
n  175,835 total

English	

English	/	China	

English	/	India	

Chinese	

Korean	

Russian	

– 46 – ICS

Worldwide Adoptions

289 total

– 47 – ICS

US Adoptions

176 total

– 48 – ICS

Asian Adoptions

– 49 – ICS

European Adoptions

– 50 – ICS

CS:APP3e
Vital stats:

n  12 chapters
n  267 practice problems (solutions in book)
n  226 homework problems (solutions in instructor’s manual)
n  544 figures, 342 line drawings
n  Many C & machine code examples

Turn-key course provided with book:
n  Electronic versions of all code examples.
n  Powerpoint and PDF versions of each line drawing
n  Password-protected Instructors Page

l  Instructor’s Manual
l  Lab Infrastructure
l  Powerpoint lecture notes
l  Exam problems.

– 51 – ICS

Coverage
Material Used by ICS at CMU

n  Pulls together material previously covered by multiple
textbooks, system programming references, and man pages

Greater Depth on Some Topics
n  Dynamic linking
n  I/O multiplexing

Additional Topic
n  Computer Architecture
n  Added to cover all topics in “Computer Organization” course

– 52 – ICS

Architecture
Material

n  Y86-64 instruction set
l  Simplified/reduced x86-64

n  Implementations
l  Sequential
l  5-stage pipeline

Presentation
n  Simple hardware description

language to describe control logic
n  Automatic translation to simulator

and to Verilog

Labs
n  Modify / extend processor design

l  New instructions
l  Change branch prediction policy

n  Optimize application + processor

– 53 – ICS

Web Asides
n  Supplementary material via web
n  Topics either more advanced or more arcane

Examples
n  Boolean algebra & Boolean rings
n  IA32 programming
n  Combining assembly & C code
n  Processor design in Verilog
n  Using SIMD instructions
n  Memory blocking

– 54 – ICS

Courses Based on CS:APP
Computer Organization

ORG Topics in conventional computer organization course,
but with a different flavor

ORG+ Extends computer organization to provide more
emphasis on helping students become better
application programmers

Introduction to Computer Systems
ICS Create enlightened programmers who understand

enough about processor/OS/compilers to be effective
ICS+ What we teach at CMU. More coverage of systems

software

Systems Programming
SP Prepare students to become competent system

programmers

– 55 – ICS

Courses Based on CS:APP
Chapter Topic Course

ORG ORG+ ICS ICS+ SP
1 Introduction Å Å Å Å Å

2 Data representations Å Å Å Å �

3 Machine language Å Å Å Å Å

4 Processor architecture Å Å

5 Code optimization Å Å Å

6 Memory hierarchy � Å Å Å �

7 Linking � � Å

8 Exceptional control flow Å Å Å

9 Virtual memory � Å Å Å Å

10 System-level I/O Å Å

11 Concurrent programming Å Å

12 Network programming Å Å

� Partial Coverage Å Complete Coverage

– 56 – ICS

Conclusions
ICS Has Proved Its Success

n  Thousands of students at CMU over 13 years
n  Positive feedback from alumni
n  Positive feedback from systems course instructors

CS:APP is International Success
n  Supports variety of course styles
n  Many purchases for self study

