Introducing Computer Systems
from a
Programmer’s Perspective

Randal E. Bryant, David R. O’Hallaron

Computer Science, Electrical & Computer Engineering

Carnegie Mellon University

Read throughput (MB/s)

Outline

Introduction to Computer Systems
m Course taught at CMU since Fall, 1998
m Some ideas on labs, motivations, ...

Computer Systems: A Programmer’s Perspective
m Our textbook, now in its third edition
m Ways to use the book in different courses

ICS

Background

1995-1997: REB/DROH teaching computer
architecture course at CMU.

m Good material, dedicated teachers, but students hate it
= Don’t see how it will affect their lives as programmers

Course Evaluations

4.5

CS Awerage N
4 A A

- : /’A\\‘
3.5

\ / REB: Computer Architecture
3 V

25

1995 1996 1997 1998 1999 2000 2001 2002

—_3— ICS

Computer Arithmetic
Builder’s Perspective

Se4545 Sm3%44 SepSeg Ss194z Smp S Sz3Sw S2513 5218z S84 S0 S
1 1|.|J®§315 534 5&3 532 Sos 304 30:3 30:2 3011
.[10

o

3 _Ij?

Seg “}B}
B iy

full
Py Pm\ Pq Ps Ps L adder ¥

Sum

=

= How to design high performance arithmetic circuits

ICS

Computer Arithmetic
Programmer’s Perspective

void show_squares()
{
int x;
for (x = 5; x <= 5000000, x*=10)
printf("x = %d x*2 = %d\n", x, x*x);

[—

X = 5 x2 = 25
X = 50 x°? = 2500
X = 500 x2 = 250000
X = 5000 x? = 25000000
X = 50000 x? = -1794967296
x = 500000 x? = 891896832
x = 5000000 x? = -1004630016

= Numbers are represented using a finite word size

m Operations can overflow when values too large
e But behavior still has clear, mathematical properties

ICS

Memory System
Builder’s Perspective

Builder’s Perspective

Direct Synchronous
] mapped or or
Write set asynchronous?
through or indexed?

write back?

.................

L1 d-cache

Regs L2 Main

unified memorv
CPU L1 i-cache cache y

A

Virtual or
physical
indexing?

How many
lines?

= Must make many difficult design decisions
m Complex tradeoffs and interactions between components

—6— ICS

Memory System
Programmer’s Perspective

void copyij (int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048] [2048]) int dst[2048] [2048])
{ {
int i,3; int i,3;
for (i = 0; i < 2048; i++) —— — for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++r”’—:=><=:::‘* for (i = 0; i < 2048; i++)
dst[i] [J] = src[i][]3]; dst[i] [J] = src[i][]j]’
} }
4.3 ms 81.8 ms
v (Measured on 2 GHz
19 times slower! Intel Core i7 Haswell)

m Hierarchical memory organization

m Performance depends on access patterns
® Including how step through multi-dimensional array

—7- ICS

The Memory Mountain

e
-

16000 -
. 14000
@
o ‘
= 12000 -
= .
2 10000 -
o
g :
2 8000 -
g 6000 - |
o ‘
4000 -
2000 -
0 -+
) o B
Sl g g T 128k
- T 512k
Stride (x8 bytes) s9 reor . 8m Size (bytes)

Background (Cont.)

1997: OS instructors complain about lack of
preparation
m Students don’t know machine-level programming well
enough

® What does it mean to store the processor state on the run-
time stack?

m Our architecture course was not part of prerequisite
stream

—9-— ICS

Birth of ICS

1997: REB/DROH pursue new idea:

m Introduce them to computer systems from a programmer's
perspective rather than a system designer's perspective.

m Topic Filter: What parts of a computer system affect the
correctness, performance, and utility of my C programs?

1998: Replace architecture course with new course:
m 15-213: Introduction to Computer Systems

Curriculum Changes
m Sophomore level course

m Eliminated digital design & architecture as required
courses for CS majors

~10- ICS

15-213: Intro to Computer Systems

Goals

m Teach students to be sophisticated application programmers
o Immediate value, even if never take another systems course

m Prepare students for upper-level systems courses

Taught every semester to 400+ students
m All CS undergrads (core course)
m All ECE undergrads (core course)

= Many masters students
® To prepare them for upper-level systems courses

m Variety of others from math, physics, statistics, ...

Preparation
m Optional: Introduction to CS in Python or Ruby
m Imperative programming in C subset

o ICS

ICS Feedback

Students

4.5

3.5

25

Course Evaluations

REB: Intro. Comp. Systems

CS Awerage
A A

A

A

A

P

/A

A
e

\ / REB: Computer Architecture

1995

1996

1997

1998

1999

2000

2001

2002

Faculty

—12—

m Prerequisite for most upper level CS systems courses

m Also required for ECE embedded systems, architecture, and
network courses

ICS

Lecture Coverage

Data representations [3]
m It’s all just bits.
m int’s are not integers and £1loat’s are not reals.

x86-64 machine language [5]

m Analyzing and understanding compiler-generated machine
code.

Program optimization [2]
m Understanding compilers and modern processors.

Memory Hierarchy [3]
m Caches matter!

Linking [1]

= With DLL’s, linking is cool again!
13— ICS

Lecture Coverage (cont)

Exceptional Control Flow [2]

m The system includes an operating system that you must
interact with.

Virtual memory [4]
= How it works, how to use it, and how to manage it.

Application level concurrency [3]
m Processes and threads
m Races, synchronization

I/0 and network programming [4]
m Programs often need to talk to other programs.

Total: 27 lectures, 14 week semester

—14 — ICS

Labs

Key teaching insight:
m Cool Labs = Great Course

A set of 1 and 2 week labs define the course.

Guiding principles:
m Be hands on, practical, and fun.

m Be interactive, with continuous feedback from automatic
graders

= Find ways to challenge the best while providing worthwhile
experience for the rest

m Use healthy competition to maintain high energy.

— 15— ICS

Lab Exercises

—16 —

Data Lab (2 weeks)
= Manipulating bits.

Bomb Lab (2 weeks)
m Defusing a binary bomb.

Attack Lab (1 week)

m Buffer overflow and return-oriented programming exploits
Cache Lab (2 weeks)

m Write basic cache simulator and then optimize application
Shell Lab (1 week)

m Writing your own shell with job control.

Malloc Lab (2-3 weeks)
= Writing your own malloc package.

Proxy Lab (2 weeks)

m Writing your own concurrent Web proxy.
ICS

Data Lab

Goal: Solve some “bit puzzles” in C using a limited set
of logical and arithmetic operators.

m Examples: absval (x) , greaterthan(x,y), log2(x)

Lessons:
= Information is just bits in context.
m C int’s are not the same as integers.
m C float’s are not the same as reals.

Infrastructure

m Configurable source-to-source C compiler that checks for
compliance.

m Instructor can automatically select from 45 puzzies.
m Automatic testing using formal verification tools

—17 — ICS

Let’s Solve a Bit Puzzie!

/%
* abs - absolute value of x (except returns TMin for TMin)
* Example: abs(-1) = 1.
* Legal ops: ! ~ & * | + << >>
* Max ops: 10
* Rating: 4
*/ 11..1,,=-1, x<0
int abs(int x) { —00...0,,= 0, x=0
int mask = x>>31;
return (x"mask) + 1+~mask
) // /I
—x—-1, x<0 1, x<0 =X x<0
X, x=0 + 0, x=0 — x x=0

~ 18— ICS

Verifying Solutions

—19 —

int abs(int x) {
int mask = x>>31;
return (x * mask) + ~mask + 1;

}

int test abs(int x) ({
return (x < 0) ? -x : x;

}

Do these functions produce
identical results?

How could you find out?

ICS

Bit-Level Program Model

—20 -

int abs(int x) {
int mask = x>>31;
return (x * mask) + ~mask + 1;

Xo Yo Xo
X4 Y1 X4
X, Yo X,
X34 Y31 X34

m View computer word as 32 separate bit values
m Each output becomes Boolean function of inputs

ICS

Yi

Bit-Level Program Verification

m Determine whether functions equivalent for all outputs j

= Exhaustive checking:
e Single input: 232 cases X 50 cycles

= 60 seconds
2 X 10° cycles / second

® Two input: 254 cases = 8,800 years!
m Other approaches
e BDDs, SAT solvers

e Easily handle these functions (< 1.0 seconds)
—21— ICS

Verification Example

int iabs(int x) {
if (x == 1234567) x++;
int mask = x>>31;

}

return (x * mask) + ~mask + 1;

Almost Correct
m Valid for all but one input value
m Overlooked by our test suite

— 22 _

ICS

Counterexample Generation

int iabs(int x) {
if (x == 1234567) x++;
int mask = x>>31;
return (x ~ mask) + ~mask + 1;

}
Detected By Checking Code

m Since covers all cases
m Generate counterexample to demonstrate problem

int main|()
{
int vall = iabs(1234567) ;
int val2 = test iabs(1234567);
printf ("iabs (1234567) --> %d [0x%x]\n", vall, wvall);
printf ("test iabs(1234567) --> %d [0x%x]\n", val2, val2);
if (vall == val2) {
printf(".. False negative\n") ;
} else

printf(".. A genuine counterexample\n");

Bomb Lab

m ldea due to Chris Colohan, TA during inaugural offering
Bomb: C program with six phases.

Each phase expects student to type a specific string.
m Wrong string: bomb explodes by printing BOOM! (- 12 pt)
m Correct string: phase defused (+10 pts)
= In either case, bomb sends message to grading server
m Server posts current scores anonymously and in real time on
Web page
Goal: Defuse the bomb by defusing all six phases.
m For fun, we include an unadvertised seventh secret phase

The challenge:
m Each student get only binary executable of a unique bomb

m To defuse their bomb, students must disassemble and
—24- reverse engineer this binary ICS

Properties of Bomb Phases

Phases test understanding of different C constructs
and how they are compiled to machine code

m Phase 1: string comparison

m Phase 2: loop

m Phase 3: switch statement/jump table
m Phase 4: recursive call

m Phase 5: pointers

m Phase 6: linked list/pointers/structs

|

Secret phase: binary search (biggest challenge is figuring
out how to reach phase)

Phases start out easy and get progressively harder

— 25— ICS

Let’s defuse a bomb phase!

0000000000400a6c <phase 2>:
function prologue not shown

400a72:
400a75:
400a7a:
400a7e:
400a80:
400a85:
400a8a:
400a8f:
400a92:
400a94:
400a96:
400a98:
400a9d:
400aal:
400aald:

#

400aac:

mov
callqg
cmpl
je
callqg
lea
lea
mov
add
cmp
je
callqg
add
cmp
jne

%rsp,srsi

4010ba <read six numbers> #

$0x1, (%rsp)

400a85 <phase 2+0x19>
400f6d <explode bomb>
0x4 (%rsp) , $rbx

0x18 (%rsp) , 3rbp

-0x4 (%rbx) , %eax

%$eax, seax

%$eax, (%rbx)

400a9d <phase 2+0x31>
400f6d <explode bomb>
$0x4,%rbx

%rbp, 3rbx

400a8f <phase 2+0x23>

function epilogue not shown

c3

retq

H H H H HHIHIHIH* HE K

rd 6 ints into buffer

p = &buf[1]
pend = &buf[6]
LOOP: v = buf[0]
v = 2*v
if v == *p
then goto OK:
else explode!

OK: p++
if p !'= pend
then goto LOOP:

YIPPEE!

— 26—

ICS

Source Code for Bomb Phase

/*
* phase2b.c - To defeat this stage the user must enter the geometric
* sequence starting at 1, with a factor of 2 between each number
*/
void phase 2 (char *input)
{
int i;
int numbers[6];

read six numbers (input, numbers) ;

if (numbers[0] !'= 1)
explode bomb () ;

for(i = 1; i < 6; i++) {
if (numbers[i] '= numbers[i-1] * 2)
explode bomb () ;

_ 27— ICS

The Beauty of the Bomb

For the Student

m Get a deep understanding of machine code in the context of
a fun game

m Learn about machine code in the context they will encounter
in their professional lives

e Working with compiler-generated code

= Learn concepts and tools of debugging
® Forward vs backward debugging

e Students must learn to use a debugger to defuse a bomb

For the Instructor
m Self-grading
m Scales to different ability levels
m Easy to generate variants and to port to other machines

— 28 — ICS

Attack Lab

{

int getbuf ()

char buf[4];

/* Read line of text and store in buf */
gets (buf) ;

return 1;

Task

m Each student assigned “cookie”
e Randomly generated 8-digit hex string

— 29—

m Generate string that will cause getbuf to return cookie

® Instead of 1

ICS

Buffer Code

Stack when gets called

Stack Frame
void test () { for test
int v = getbuf();
Return
e
address }
Return Address
(8 bytes)
void getbuf () { 1
char buf[4]; I i
. ncreasing
SINEE ((2BEE)) £ addresses | 20 bytes unused
return 1; |
}
[31|[2]|[1]|[0]]| buf «— %rsp

m Calling function gets (p) reads characters up to ‘\n’
m Stores string + terminating null as bytes starting at p
m Assumes enough bytes allocated to hold entire string

~30-— ICS

Buffer Code: Good case

Input string
“01234567890123456789012”
void test () { Stack Frame
int v = getbuf(); for test
Return
——p
address }
00|j00|00]|00
void getbuf () ({ 1 00]40]06] f6
char buf[4]; _ 0032|3130
gets (buf) ; L’chf::s"gg 39]38|37]36
return 1; | 35|134|33]|32
} 31|30|39]| 38

37|36|35| 34
33|132]|31|30|buf «—%rsp

m Fits within allocated storage
® String is 23 characters long + 1 byte terminator

—31 - ICS

Buffer Code: Bad case

Input string
“0123456789012345678901234”

void test() { Stack Frame

Return e T S gERaeril) f for test

address }

00100]00]00
void getbuf () { 1 00|40 00|32

char buf[4];
gets (buf) ; Increasing| 33|32 31|30
' addresses| 393837 36
return 1;
| 35|34]|33]|32
31|30|39] 38
37|36|35]| 34
33|32|31]| 30| buf «— %rsp

m Overflows allocated storage
e Corrupts saved frame pointer and return address
m Jumps to address 0x400034 when getbuf attempts to return

® Program executes some instruction and then segfaults
—32_ ICS

Malicious Use of Buffer Overflow

Stack after call to gets ()

\
void test() {
int v = getbuf(); tkefst
Return 1, > stack frame
address Co
} 4
—<
void getbuf () ({
char buf[4]; data written pad
gets (buf) ; by gets ()
return 1; - getbuf
} ez(gtljc:t > stack frame
B —
J

m Input string contains byte representation of executable code
m Overwrite return address with address of buffer

m When getbuf () executes return instruction, will jump to exploit
code

—33— ICS

Exploit String Example sz :fter

void getbuf () ({
char buf[4];

gets (buf) ;
return 1;

m Sets 0x59b997fa as function
argument

m Invokes function touch2

/*

48
/*
00
00
/*
78
/*
Oc

Byte code for shell code
movqg $0x59b997fa,%rdi; ret */
c7 c7 £fa 97 b9 59 c3

Pad with 16 bytes */

00 00 00 00 00 00 0O

00 00 00 00 00 00 0O

Address of shellcode */

dc 61 55 00 00 00 0O

Address of touch2 */

18 40 00 00 00 00 0O

(

data written <

by gets ()
B—

pad

exploit
code

all to gets ()
\

test
> stack frame

> getbuf
stack frame

ICS

Why Do We Teach This Stuff?

Important Systems Concepts
m Stack discipline and stack organization
m Instructions are byte sequences

m Making use of tools
® Debuggers, assemblers, disassemblers

Computer Security
= What makes code vulnerable to buffer overflows
= Common vulnerability in systems

Impact

m CMU student teams consistently win international Capture
the Flag Competitions

— 35— ICS

Cache Lab

Goal: Understanding Cache Operations
= How memory locations map to cache blocks
m Performance implications for application programs

Activities
m Write cache simulator

® Provides full understanding of mapping from memory
address to cache location

m Minimize cache misses for simple application
® Matrix transpose

— 36— ICS

Shell Lab

Goal: Write a Unix shell with job control
= (e.g., ctrl-z, ctrl-c, jobs, fg, bg, kill)

Lessons:

m First introduction to systems-level programming and
concurrency

m Learn about processes, process control, signals, and
catching signals with handlers

= Demystifies command line interface

Infrastructure

m Students use a scripted autograder to incrementally test
functionality in their shells

—37-— ICS

Malloc Lab

Goal: Build your own dynamic storage allocator
void *malloc(size t size)
void *realloc(void *ptr, size t size)

void free (void *ptr)

Lessons
m Sense of programming underlying system
m Large design space with classic time-space tradeoffs

m Develop understanding of scary “action at a distance”
property of memory-related errors

m Learn general ideas of resource management

Infrastructure

m Trace driven test harness evaluates implementation for
combination of throughput and memory utilization

m Evaluation server and real time posting of scores

— 38— ICS

Proxy Lab

Goal: write concurrent Web proxy.

Web >® »/ Web
Browser /< @4 Server
Lessons: Ties together many ideas from earlier

m Data representations, byte ordering, memory management,
concurrency, processes, threads, synchronization, signals,
I/0, network programming, application-level protocols
(HTTP)

Infrastructure:
m Plugs directly between existing browsers and Web servers
m Grading is done via autograders and one-on-one demos
m Very exciting for students, great way to end the course

~ 39— ICS

ICS Summary

Principle
m Introduce students to computer systems from the

programmer's perspective rather than the system builder's
perspective

Themes

m What parts of the system affect the correctness, efficiency,
and utility of my C programs?

m Makes systems fun and relevant for students

m Prepare students for builder-oriented courses
® Architecture, compilers, operating systems, networks,
distributed systems, databases, ...
® Since our course provides complementary view of systems,
does not just seem like a watered-down version of a more
advanced course

® Gives them better appreciation for what to build
— 40— ICS

CMU Courses that Build on ICS

—41 -

Parallel
Prog.

Dist.
Systems

Operating
Systems

Storage
Systems

Databases

Robotics

Cog.

Robotics

Comp.
Photo.

Computer
Graphics

ICS

mbeddec
Control

Real-Time
Systems

mbedded
Systems

Computer
Arch.

ICS

Fostering “Friendly Competition”

Desire
m Challenge the best without frustrating everyone else

Method

m Web-based submission of solutions

m Server checks for correctness and computes performance
score
® How many stages passed, program throughput, ...

m Keep updated results on web page
® Students choose own nom de guerre

Relationship to Grading
m Students get full credit once they reach set threshold
m Push beyond this just for own glory/excitement

—42 — ICS

Shameless
Promotion

m http://csapp.cs.cmu.edu
m Third edition published 2015

m In use at 289 institutions
worldwide

—43 —

THIRD EDITION

COMPUTER SYSTEMS

A PROGRAMMER'S PERSPECTIVE

BRYANT ¢ O'HALLARON

ICS

International Editions & 3.
(No 3@ edition yet)

T

B Bl
B #R S

Computer Systems

A PROGRAMMER'S PERSPECTIVE
Second Edition

Randal E. Bryant » David R. O'Hallaron

00000

NS IH RS

(SRR %2R)

===
COMPUTER SYSTEMS
A Programeacs Deripective

COMPUTER SYSTEMS

A Programmer’s Perspective

Bryant - O'Hallaron

Computer Systems
A Proagrammer's Perspective

/' Second Edition

NIk

44— Bryant - O'Hallaron ICS

Overall Sales

m All Editions
m As of 6/30/2015
m 175,835 total

& English
& English / China
“ English / India
i Chinese
“ Korean

" Russian

— 45— ICS

Worldwide Adoptions

Northwestern

NU Passages Greenland
NT
S Hudson Bay
B Me
8C - %
ON
[} ac
North
c Atlantic
AL oA Ocean
& (P
Fl
Guif of b
Mexico, Mexico
Cuba
® | Puerto Rico
Yol
Guatemala
LA, .~ Caribbean Sea
Nn:aragun
{ 4 Venezuela L,
. >l(;uyana v;
4
..:Iombla Y~ 7 Suriname:
~ ARAAT o
Ecuador.
/‘3\)
/
3 M PA MA CE AN
. ol PB
JAC Brazil 1. pE .
L\ ro T0
SE
Peru U 8 5
R co@®
Bolivia 1 e
— £S
] (\f Ms
A Paraguay s @
Chile LP%
{ RS
Is [
(] Uruguay.
(Argentina

.

— 46 —

0 0 4

Russia

— <
g %
5 \\\/ /(\
\ NN .
\. d
03 Ukraine ™, }AJ A~ L
t',;ﬁ' > w\\ p '.\ Kazakhstan \/N:‘ \\ —~
F'a"cg”\“ (\Romama : g
5
Italy j> 7"‘/ y S l PO ~
@ ! Spaln SREAY H‘Uzbekma{yKy,gyzm“}J o /\‘J
Greece o K N 534 " Y) Sea of Japan
Po?ugal Turkey Tur menlslan i’ 2 ® ®
< f (] ’r;y;i:/ 5 | Fr 5 China ° Soutigh®ea Joge
| Tunisia >//’| \ Afghanistan Nt
Morocco™ N/ ALy Iran L ;/ X ° °
/ ¥ o P APak|s(an %, East China Sea
Algeria | Egypt B N : L] . “] o
Westém " , [= r.e \ (<55 /‘ 4 o
Sal}m { Saudi Arabia _[g ® ndia 4 C/Mvanmlar " () (]
\ —) >
';‘ | \ A Oman “(Burma)/‘ﬁ\}. 4
auritania | n LT (HoR
Mal | [L~
o s Y . at? Niger /' sudan /0 W y;éen Thailand., South
o= y T Chad PN Bay of Bengal < China Sea
=y (B“_;";“f . | | r >/Ga"lor Aden Arabian Sea AU Vil etnam Philippines
Gumeu—« \“{ Nigeria /(Ql /”_,\ o~ Y s fof s
/.v {"f Suu(h Sudan P! Ly . b
r‘m!orrmrpa \'3](\ \“'\,V N omalie : ysia ° ?;-'
= bmz ,/ / Kenya‘) ——
I ¢ DR Congo \ Indonesia
22 Tanzanla Banda Sea Papua New
= { Arafura Seal _sSuinea
L | ‘I‘. - - afura §
AN N o
Angola Zambla { N
Mozambique
SN
Namibia | Zimbabwe NT ® s
ab Madagascar Indian
Botawanate Ocean aLo
N~ Australia
South -~ & WA
Atlantic A O -
Ocean South Africa
NSW
Great °
Australian ACT,
Bight vic

289 total

ICS

Vicloria'
0,

Se’ﬂe

(] %—
NORTH
WASHINGTON DAKOTA Québec City
MONTANA () o
MINNESOTA
Poréand \ . Ot(gwa Monotreal
® Mlnnvpolls
SOUTH WISCONSIN ok
) e o MICHIGAN Toronto U
OREGON O) =] NEW
IDAHO .M:Iwaukee ® MPSHIRE
WYOMING Q a ! E"YOHK
L ™) DETroit ® MASS‘ASETT
lowa @ & ® g o° ®
NEBRASKA o PS Cl /i
pe salt Lgge City ® o, o .pENNQLVANlA‘”e 8
4 Dwe, ILLINOISS | INDIANA @® @ g hia
] NEVADA 5 United States]) MASY @D, "
UTAH DE
Sacramento [] L] WEST ;
o COLORADO KANSAS esoun ° VIRGINIA ..Washlngton
San Francisco)) ™)
® KENTUCKY ® @ VIRGAIA
Sangpse (] "
CALIFORNIA Las\éegas e Nasgwlle ()
[J OKLAHOMA TENNESSEE NORTH
Albquerque P W s) @ . ° CAROLINA
q ARKANSAS ® Charlotte
0s *Ies ARIZOgA N MEXICO Atlanta MUTH
Phogghix : MISSISSIPPI CAROLINA
Sangiego Dgjlas ALABAMA
Q—E"- Tucson (] Q GEORGIA
o El Paso
TEXAS o
BAJA @ Jacksonville
CALIFORNIA ZONORN Augtin Hoggon LoUIS A [+
= San onio)
CHIHUAHU\A\/ ' New Orleans)
OrI’do
G Tampa
< COAHUILA opa &
Q,
s FLORIDA
.
%, N.L 1
% Mongerrey = =N Pu “’t“'
ull o
BAJA SINALOA Mexico
CALIFORNIASUR DURANGO o b
AR/ 'TAMAULIPAS

US Adoptions

—JL

176 total

ICS

X2

g;gbﬂ

Asian Adoptions

Y B ;
t7a8 XINJIANG .
1
- .

j
i
!
i ¢

S aINGHAI
r b

= EUNJAB A;il(

=% 5y AR)
“HARYAN, %14

| TemnvaNa S

7_{ ,Nej hi UTTAR T
PRADESH

(’ & ‘I
CcH ”AmseA
2oy
)

;,‘.

WEST. '
WFST QUMATRA KALIMANTAN .

—48- ICS

European Adoptions

— 49 —

ICS

CS:APP3e

— 50—

Vital stats:
m 12 chapters
m 267 practice problems (solutions in book)
m 226 homework problems (solutions in instructor’s manual)
m 544 figures, 342 line drawings
= Many C & machine code examples

Turn-key course provided with book:
m Electronic versions of all code examples.
m Powerpoint and PDF versions of each line drawing

m Password-protected Instructors Page
® Instructor’s Manual
e Lab Infrastructure
® Powerpoint lecture notes
e Exam problems.
ICS

Coverage

Material Used by ICS at CMU

m Pulls together material previously covered by multiple
textbooks, system programming references, and man pages

Greater Depth on Some Topics
m Dynamic linking
= I/O multiplexing

Additional Topic

m Computer Architecture
m Added to cover all topics in “Computer Organization” course

—51— ICS

Architecture

| I
valE I valM -dleIdstM-

Material 1 data out
| Y86'64 InStrUCtlon Set Memory .wme rydmm
e Simplified/reduced x86-64 - ! o
m Implementations nstal Iicode cza ve;IE I valA .dleldstM-
e Sequential "Too AU\ E
e 5-stage pipeline . -
Presentation
m Simple hardware description E stat licodel ifun . valC [valA [valB [dleldstM[srcA schl
language to describe control logic |)
m Automatic translation to simulator **** Regisie™ -
and to Verilog
u stat Iicodel ifl.lm I ri\ | riB kvalc . :aIP _
‘—4 [
Labs i Instruction P'C_-
A = INST_VAS, oo memo increment
m Modify / extend processor design — "

M_valA

® New instructions
e Change branch prediction policy

m Optimize application + processor
— 52— ICS

W_valM

predPC

Web Asides

= Supplementary material via web
m Topics either more advanced or more arcane

Examples
m Boolean algebra & Boolean rings
m |A32 programming
m Combining assembly & C code
m Processor design in Verilog
m Using SIMD instructions
= Memory blocking

— 53—

ICS

Courses Based on CS:APP

Computer Organization

ORG Topics in conventional computer organization course,
but with a different flavor

ORG+ Extends computer organization to provide more
emphasis on helping students become better
application programmers

Introduction to Computer Systems

ICS Create enlightened programmers who understand
enough about processor/OS/compilers to be effective

ICS+ What we teach at CMU. More coverage of systems
software

Systems Programming

SP Prepare students to hecome competent system

programmers
— 54 — ICS

Courses Based on CS:APP

Chapter |Topic Course
ORG |ORG+ |ICS ICS+ |SP

1 Introduction @ @ @ @ @
2 Data representations @ @ @ @ (o
3 Machine language ® ® @ ® ®
£ Processor architecture ® ®
5 Code optimization @ ® ®
6 Memory hierarchy o | ® ® o
7 Linking o o @
8 Exceptional control flow @ @ @
9 Virtual memory o @ @ @ @
10 System-level I/O ® ®
11 Concurrent programming ® @
12 Network programming | |

O Partial Coverage @ Complete Coverage

— 55— ICS

Conclusions

ICS Has Proved Its Success
m Thousands of students at CMU over 13 years
m Positive feedback from alumni
m Positive feedback from systems course instructors

CS:APP is International Success
m Supports variety of course styles
m Many purchases for self study

— 56—

ICS

