15-213/18-213, Fall 2012
Cache Lab: Understanding Cache Memories
Assigned: Tuesday, October 2, 2012
Due: Thursday, October 11, 11:59PM
Last Possible Time to Turn in: Sunday, October 14, 11:59PM

1 Logistics
This is an individual project. You must run this lab on a 64x86-64 machine.

SITE-SPECIFIC: Insert any other logistical items here, sud as how to ask for help.

2 Overview

This lab will help you understand the impact that cache me&saran have on the performance of your C
programs.

The lab consists of two parts. In the first part you will writesraall C program (about 200-300 lines) that
simulates the behavior of a cache memory. In the secondymartwill optimize a small matrix transpose
function, with the goal of minimizing the number of cache seis.

3 Downloading the assignment

SITE-SPECIFIC: Insert a paragraph here that explains how the instructor will hand out
the cachel ab- handout . t ar file to the students.

Start by copyingcachel ab- handout . t ar to a protected Linux directory in which you plan to do your
work. Then give the command

| i nux> tar xvf cachel ab- handout .t ar

This will create a directory calledachel ab- handout that contains a number of files. You will be
modifying two files:csi m ¢ andt r ans. c. To compile these files, type:

1

| i nux> nmake cl ean
i nux> make

WARNING: Do not let the Windows WinZip program open up yourar file (many Web browsers are set
to do this automatically). Instead, save the file to your Kidirectory and use the Linuxar program to
extract the files. In general, for this class you should NEMER any platform other than Linux to modify
your files. Doing so can cause loss of data (and important jvork

4 Description

The lab has two parts. In Part A you will implement a cache &on In Part B you will write a matrix
transpose function that is optimized for cache performance

4.1 Reference Trace Files

Thet r aces subdirectory of the handout directory contains a collectbreference trace filethat we will
use to evaluate the correctness of the cache simulator yiteliwiPart A. The trace files are generated by a
Linux program calledral gri nd. For example, typing

linux> valgrind --1og-fd=1 --tool =l ackey -v --trace-nenryes |s -I
on the command line runs the executable progras *“ | ”, captures a trace of each of its memory accesses
in the order they occur, and prints themsindout .
Val gri nd memory traces have the following form:
| 0400d7d4, 8
M 0421c7f0, 4

L 04f6b868, 8
S 7ff0005c8, 8

Each line denotes one or two memory accesses. The formatiofiaa is
[space] operati on address, si ze

The operationfield denotes the type of memory access: “I” denotes an ictsbru load, “L’ a data load,
“S” a data store, and “M” a data modify (i.e., a data load fakal by a data store). There is never a space
before each “I". There is always a space before each “M”, dd “S”. Theaddresdield specifies a 64-bit
hexadecimal memory address. Tieefield specifies the number of bytes accessed by the operation.

4.2 Part A: Writing a Cache Simulator

In Part A you will write a cache simulator iasi m ¢ that takes aval gri nd memory trace as input,
simulates the hit/miss behavior of a cache memory on thisetrand outputs the total number of hits,
misses, and evictions.

We have provided you with the binary executable eéference cache simulatocalledcsi m r ef , that
simulates the behavior of a cache with arbitrary size anolcietdvity on aval gri nd trace file. It uses the
LRU (least-recently used) replacement policy when chapsihich cache line to evict.

The reference simulator takes the following command-liggiments:

Usage: ./csimref [-hv] -s <s> -E <E> -b -t <tracefile>

e - h: Optional help flag that prints usage info

e - v: Optional verbose flag that displays trace info

e - s <s>: Number of set index bitsy = 2 is the number of sets)
e - E <E>: Associativity (number of lines per set)

e -b : Number of block bits B = 2° is the block size)

e -t <tracefil e>: Name of theval gri nd trace to replay

The command-line arguments are based on the notatiof’,(andb) from page 597 of the CS:APP2e
textbook. For example:

linux> ./csimref -s 4 -E 1 -b 4 -t traces/yi.trace
hits:4 nisses:5 evictions:3

The same example in verbose mode:

linux> ./csimref -v -s 4 -E 1 -b 4 -t traces/yi.trace
L 10,1 nmiss

M 20,1 mss hit

L 22,1 hit

S 18,1 hit

L 110,1 miss eviction

L 210,1 miss eviction

M 12,1 mss eviction hit

hits:4 msses:5 evictions: 3

Your job for Part A is to fill in thecsi m c file so that it takes the same command line arguments and

produces the identical output as the reference simulatoticélthat this file is almost completely empty.
You'll need to write it from scratch.

Programming Rules for Part A

¢ Include your name and loginID in the header commentfirm c.

e Your csi m c file must compile without warnings in order to receive credit

e Your simulator must work correctly for arbitrary, £, andb. This means that you will need to
allocate storage for your simulator’s data structuresgutiermal | oc function. Type “man malloc”
for information about this function.

e For this lab, we are interested only in data cache performase your simulator should ignore all
instruction cache accesses (lines starting with “I”). Hegbat val gr i nd always puts “I” in the first
column (with no preceding space), and “M”, “L", and “S” in tlsecond column (with a preceding
space). This may help you parse the trace.

e To receive credit for Part A, you must call the functipni nt Sunmar y, with the total number of
hits, misses, and evictions, at the end of yoar n function:

printSummary(hit _count, mss_count, eviction_count);

e For this this lab, you should assume that memory accesseaigned properly, such that a single
memory access never crosses block boundaries. By makiagagislimption, you can ignore the
request sizes in theal gr i nd traces.

4.3 Part B: Optimizing Matrix Transpose

In Part B you will write a transpose function iir ans. c that causes as few cache misses as possible.

Let A denote a matrix, and;; denote the component on the ith row and jth column. ffaesposeof A,
denotedAT, is a matrix such thatl;; = Aﬁ

To help you get started, we have given you an example traadpostion int r ans. ¢ that computes the
transpose ofV x M matrix A and stores the results ¥ x N matrix B:

char trans_desc[] = "Sinple roww se scan transpose”;
void trans(int M int N, int AN[M, int BBM[N])

The example transpose function is correct, but it is ineffitbecause the access pattern results in relatively
many cache misses.

Your job in Part B is to write a similar function, calléed anspose_submi t , that minimizes the number
of cache misses across different sized matrices:

char transpose_subnit _desc[] = "Transpose subni ssion";
voi d transpose_submt(int M int N, int AANN[M, int BBM[N]);

Do not change the description stringT(t*anspose submi ssi on”) for your t r anspose_submi t
function. The autograder searches for this string to deterrwhich transpose function to evaluate for
credit.

Programming Rules for Part B

e Include your name and loginID in the header comment foans. c.
e Your code int r ans. ¢ must compile without warnings to receive credit.
¢ You are allowed to define at most 12 local variables of typé per transpose functioh.

e You are not allowed to side-step the previous rule by usingvamiables of typd ong or by using
any bit tricks to store more than one value to a single vagiabl

e Your transpose function may not use recursion.

o If you choose to use helper functions, you may not have mae 12 local variables on the stack
at a time between your helper functions and your top levelspase function. For example, if your
transpose declares 8 variables, and then you call a funetioch uses 4 variables, which calls another
function which uses 2, you will have 14 variables on the stackl you will be in violation of the rule.

e Your transpose function may not modify array A. You may, hegredo whatever you want with the
contents of array B.

e You are NOT allowed to define any arrays in your code or to ugevariant ofmal | oc.

5 Evaluation

This section describes how your work will be evaluated. TiHiestore for this lab is 60 points:

e Part A: 27 Points
e Part B: 26 Points

e Style: 7 Points

5.1 Evaluation for Part A

For Part A, we will run your cache simulator using differeathe parameters and traces. There are eight
test cases, each worth 3 points, except for the last casehw#worth 6 points:

l[inux> ./csim-s 1 -E 1 bl-t traces/yi 2. trace
[inux> ./csim-s 4 -E 2 -b 4 -t traces/yi.trace
l[inux> ./csim-s 2 -E 1 b4-t traces/ dave.trace
l[inux> ./csim-s 2 -E1-b 3 traces/trans.trace

[inux> ./csim-s 2 -E 2 -b 3 —t traces/trans.trace

1The reason for this restriction is that our testing code isatide to count references to the stack. We want you to limiryo
references to the stack and focus on the access patterrssuihce and destination arrays.

[inux> ./csim-s 2 -E 4 -b 3 -t traces/trans.trace
[inux> ./csim-s 5 -E1-b 5 -t traces/trans.trace
l[inux> ./csim-s 5 -E1-b 5 -t traces/long.trace

You can use the reference simulatsi m r ef to obtain the correct answer for each of these test cases.
During debugging, use thev option for a detailed record of each hit and miss.

For each test case, outputting the correct number of cathetisses and evictions will give you full credit

for that test case. Each of your reported number of hits, esissd evictions is worth 1/3 of the credit

for that test case. That is, if a particular test case is w@nploints, and your simulator outputs the correct
number of hits and misses, but reports the wrong number ofiens, then you will earn 2 points.

5.2 Evaluation for Part B

For Part B, we will evaluate the correctness and performafigeurt r anspose_submi t function on
three different-sized output matrices:

e 32 x 32 (M =32, N = 32)
o 64 x 64 (M = 64, N = 64)

e 61 x 67 (M = 61, N = 67)

5.2.1 Performance (26 pts)

For each matrix size, the performance of yauranspose_subnit function is evaluated by using
val gri nd to extract the address trace for your function, and thengusia reference simulator to replay
this trace on a cache with parameters<(5, £ = 1, b = 5).

Your performance score for each matrix size scales lineaitly the number of missesn, up to some
threshold:

e 32 x 32: 8 points ifm < 300, 0 points ifm > 600

e 64 x 64: 8 points ifm < 1,300, 0 points ifm > 2,000

e 61 x 67: 10 points ifm < 2,000, 0 points ifm > 3,000
Your code must be correct to receive any performance pointa particular size. Your code only needs to
be correct for these three cases and you can optimize itf&adlgi for these three cases. In particular, it is

perfectly OK for your function to explicitly check for theput sizes and implement separate code optimized
for each case.

5.3 Evaluation for Style

There are 7 points for coding style. These will be assignedually by the course staff. Style guidelines
can be found on the course website.

The course staff will inspect your code in Part B for illegakgs and excessive local variables.

6 Working on the Lab

6.1 Working on Part A

We have provided you with an autograding program, calledt - csi m that tests the correctness of your
cache simulator on the reference traces. Be sure to conmilesymulator before running the test:

[i nux> make
[inux> ./test-csim
Your simnul at or Ref erence simul at or

Points (s, E b) Hts Msses Evicts Hts Msses Evicts
3(1,1,1) 9 8 6 9 8 6 traces/yi2.trace
3 (4,2,4) 4 5 2 4 5 2 traces/yi.trace
3(2,1,4) 2 3 1 2 3 1 traces/dave.trace
3(2,1,3) 167 71 67 167 71 67 traces/trans.trace
3(2,2,3) 201 37 29 201 37 29 traces/trans.trace
3 (2,4,3) 212 26 10 212 26 10 traces/trans.trace
3 (5,1,5) 231 7 0 231 7 0 traces/trans.trace
6 (5,1,5) 265189 21775 21743 265189 21775 21743 traces/long.trace
27

For each test, it shows the number of points you earned, ttteegaarameters, the input trace file, and a
comparison of the results from your simulator and the refegesimulator.

Here are some hints and suggestions for working on Part A:

e Do your initial debugging on the small traces, suclt aaces/ dave. t race.

e The reference simulator takes an optional argument that enables verbose output, displaying the
hits, misses, and evictions that occur as a result of eachomyeatcess. You are not required to
implement this feature in youwrsi m ¢ code, but we strongly recommend that you do so. It will
help you debug by allowing you to directly compare the bebraof your simulator with the reference
simulator on the reference trace files.

e We recommend that you use tget opt function to parse your command line arguments. You'll
need the following header files:

#i ncl ude <getopt. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

See fran 3 get opt " for details.

e Each data load (L) or store (S) operation can cause at mosiamhe miss. The data modify operation
(M) is treated as a load followed by a store to the same addfdsss, an M operation can result in
two cache hits, or a miss and a hit plus a possible eviction.

o If you would like to use CO-style contracts from 15-122, yamincludecont r act s. h, which we
have provided in the handout directory for your convenience

6.2 Working on Part B

We have provided you with an autograding program, cdlledt - t r ans. c, that tests the correctness and
performance of each of the transpose functions that you iegystered with the autograder.

You can register up to 100 versions of the transpose funatignurt r ans. c file. Each transpose version
has the following form:

[+ Header comment =/

char trans_sinple_desc[] = "A sinple transpose";

void trans_sinmple(int M int N, int AN[M, int BBM[N])
{

}

/* your transpose code here =*/

Register a particular transpose function with the autagrag making a call of the form:
regi sterTransFunction(trans_sinple, trans_sinpl e_desc);

in ther egi st er Functi ons routine int r ans. c. At runtime, the autograder will evaluate each reg-
istered transpose function and print the results. Of course of the registered functions must be the
t ranspose_submi t function that you are submitting for credit:

regi sterTransFuncti on(transpose_subnmit, transpose_subnit_desc);

See the defaultr ans. c function for an example of how this works.

The autograder takes the matrix size as input. It useégr i nd to generate a trace of each registered trans-
pose function. It then evaluates each trace by running fieeergce simulator on a cache with parameters
(s=5FE=1,b=05).

For example, to test your registered transpose functiors3hx 32 matrix, rebuildt est -t r ans, and
then run it with the appropriate values fbf and V:

['i nux> make

[inux> ./test-trans -M 32 -N 32

Step 1: Evaluating registered transpose funcs for correctness:
func 0 (Transpose subm ssion): correctness: 1

[

func
func
func

[SIN\V)

(Sinpl e roww se scan transpose): correctness: 1
(colum-w se scan transpose): correctness: 1
(using a zig-zag access pattern): correctness: 1

Step 2: Generating nmenory traces for registered transpose funcs.

Step
func
func
func
func

WN P O W

Eval uati ng performance of registered transpose funcs (s=5, E=1, b=5)
(Transpose submission): hits:1766, m sses: 287, evictions: 255

(Sinmple roww se scan transpose): hits:870, nmisses:1183, evictions: 1151
(colum-w se scan transpose): hits: 870, m sses: 1183, evictions: 1151
(using a zig-zag access pattern): hits: 1076, m sses: 977, evictions: 945

Sunmary for official subnmission (func 0): correctness=1 m sses=287

In this example, we have registered four different transgogsctions int r ans. c. Thetest-trans
program tests each of the registered functions, displayseults for each, and extracts the results for the

official submission.

Here are some hints and suggestions for working on Part B.

e Thet est -t rans program saves the trace for functiomn file t r ace. f .2 These trace files are
invaluable debugging tools that can help you understandtigxahere the hits and misses for each
transpose function are coming from. To debug a particulactfan, simply run its trace through the
reference simulator with the verbose option:

[inux> ./csimref -v -s 5 -E1-b5 -t trace.f0

68312c, 1
683140, 8
683124, 4
683120, 4
603124, 4
6431a0, 4

mwrrrrrrwm

nm ss
nm ss
hi t
hi t
m ss eviction
nm ss

e Since your transpose function is being evaluated on a dinegiped cache, conflict misses are a
potential problem. Think about the potential for conflictssgs in your code, especially along the
diagonal. Try to think of access patterns that will decreaasenumber of these conflict misses.

e Blocking is a useful technique for reducing cache misses. Se

http://csapp. cs. cmu. edu/ publ i c/wasi de/ wasi de- bl ocki ng. pdf

for more information.

2Becauseval gri nd introduces many stack accesses that have nothing to do withgpde, we have filtered out all stack
accesses from the trace. This is why we have banned locgbaaral placed limits on the number of local variables.

6.3 Putting it all Together

We have provided you with driver program called. / dri ver . py, that performs a complete evaluation
of your simulator and transpose code. This is the same prog@ur instructor uses to evaluate your
handins. The driver usdsest - csi mto evaluate your simulator, and it usesst - t r ans to evaluate
your submitted transpose function on the three matrix siZégn it prints a summary of your results and
the points you have earned.

To run the driver, type:

i nux> ./driver.py

7 Handing in Your Work

Each time you typereke in the cachel ab- handout directory, the Makefile creates a tarball, called
useri d- handi n. t ar, that contains your curregisi m ¢ andt r ans. c files.

SITE-SPECIFIC: Insert text here that tells each student howto hand in their useri d-
handi n. t ar file at your school.

IMPORTANT: Do not create the handin tarball on a Windows or Mac machiné,d® not handin files in
any other archive format, such agi p,. gzi p, or. t gz files.

10

