15-213, Fall 20xx
Lab Assignment L3: The Buffer Bomb
Assigned: XXX, Due: XXX
Last Possible Time to Turn in: XXX

Harry Bovik (bovik@cs.cmu.edu) is the lead person for tlssignment.

I ntroduction

This assignment will help you develop a detailed undersitgnadf 1A-32 calling conventions and stack
organization. It involves applying a serieshafffer overflow attacken an executable filbuf bonb in the
lab directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit
security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafut@soform of security weakness so that you
can avoid it when you write system code. We do not condonedbefithis or any other form of attack to
gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

L ogistics

As usual, this is an individual project.

We generated the lab usirgrc’s - nB2 flag, so all code produced by the compiler follows 1A-32 rules
even if the host is an x86-64 system. This should be enougbrarmce you that the compiler can use any
calling convention it wants, so long as it's consistent.

Hand Out Instructions
You can obtain your buffer bomb by pointing your Web browder a

http://$Bufl ab: : SERVER_NAME: 18213/

The server will return & ar file called buf | ab- handout . t ar to your browser. Start by copying
buf | ab- handout . t ar to a (protected) directory in which you plan to do your workenh give the com-
mand ‘t ar xvf bufl ab- handout.tar”. This will create a directory calletbuf | ab- handout
containing the following three executable files:

bufbomb: The buffer bomb program you will attack.
makecookie: Generates a “cookie” based on your userid.

hex2raw: A utility to help convert between string formats.

In the following instructions, we will assume that you hawpied the three programs to a protected local
directory, and that you are executing them in that localatiney.

Userids and Cookies

Phases of this lab will require a slightly different solutifsom each student. The correct solution will be
based on your userid.

A cookieis a string of eight hexadecimal digits that is (with highlpability) unique to your userid. You can
generate your cookie with threakecooki e program giving your userid as the argument. For example:

uni x> ./ makecooki e bovi k
0x1005b2b7

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it
ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so walfuhctionget buf defined
below:

1 /+ Buffer size for getbuf =/

2 #define NORVAL_BUFFER_SI ZE 32

3

4 int gethbuf()

5 {

6 char buf [NORVAL_BUFFER_SI ZE] ;
7 Get s(buf);

8 return 1,

9}

The functionGet s is similar to the standard library functiaget s—it reads a string from standard input
(terminated by\ n’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, you can see that the destination is an drudiyhaving sufficient space for 32 characters.

2

Cet s (andget s) grabs a string off the input stream and stores it into itdidason address (in this case
buf). However,Get s() has no way of determining whethleuf is large enough to store the whole input.
It simply copies the entire input string, possibly overrimgnthe bounds of the storage allocated at the
destination.

If the string typed by the user et buf is no more than 31 characters long, it is clear thet buf will
return 1, as shown by the following execution example:

uni x> ./ buf bomb -u bovik
Type string: | love 15-213.
Dud: getbuf returned Ox1

Typically an error occurs if we type a longer string:

uni x> ./ buf bonmb -u bovik
Type string: It is easier to love this class when you are a TA
Quch!: You caused a segnentation fault!

As the error message indicates, overrunning the buffeciylpi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morerletie the strings you feedurFBoMB so that
it does more interesting things. These are cadbgploit strings.

BurFBoOMB takes several different command line arguments:

- u userid Operate the bomb for the indicated userid. You should alywaygide this argument for several
reasons:

e Itis required to submit your successful attacks to the ggdgerver.

e BUFBOMB determines the cookie you will be using based on your usasdioes the program
MAKECOOKIE.

e We have built features inteuFrBOMB so that some of the key stack addresses you will need to
use depend on your userid’s cookie.

- h: Print list of possible command line arguments.
- n: Operate in “Nitro” mode, as is used in Level 4 below.

- s: Submit your solution exploit string to the grading server.

At this point, you should think about the x86 stack structut#t and figure out what entries of the stack you
will be targeting. You may also want to think abaexactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The programex2RAW can help you generate thesaw strings. It takes as input hex-
formattedstring. In this format, each byte value is represented byheodigits. For example, the string

“012345” could be entered in hex format a80 31 32 33 34 35.” (Recall that the ASCII code for
decimal digitx is 0x3x.)

The hex characters you passx2rRAW should be separated by whitespace (blanks or newlinesgohre
mend separating different parts of your exploit string wigwlines while you're working on itHEX2RAW
also supports C-style block comments, so you can mark offosescof your exploit string. For example:

bf 66 7b 32 78 /* nov $0x78327b66, Yedi */

Be sure to leave space around both the starting and endintmentrstrings (/ +’, ‘*/) so they will be
properly ignored.

If you generate a hex-formatted exploit string in the &bepl oi t . t xt, you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string threag2rAw.
uni x> cat exploit.txt | ./hex2raw | ./bufbonb -u bovik
2. You can store the raw string in a file and use 1/O redirediiosupply it toBUFBOMB:

uni x> ./ hex2raw < exploit.txt > exploit-rawtxt
uni x> ./ bufbonb -u bovik < exploit-rawtxt

This approach can also be used when runmugsomMBs from within GDB:

uni x> gdb buf borb
(gdb) run -u bovik < exploit-rawtxt

Important points:

e Your exploit string must not contain byte vald&0A at any intermediate position, since this is the
ASCII code for newline { n’). When Get s encounters this byte, it will assume you intended to
terminate the string.

e HEX2RAW expects two-digit hex values separated by a whitespacef Yo iwant to create a byte
with a hex value of 0, you need to specify 00. To create the WailDEADBEEF you should pass EF
BE AD DE HEX2RAW.

When you have correctly solved one of the levels, say level O:

../ hex2raw < snoke-bovi k.txt | ../bufbonb -u bovik
Userid: bovik

Cooki e: 0x1005b2b7

Type string: Smoke!: You call ed snmoke()

VALI D

NI CE JOB!

then you can submit your solution to the grading server usieg s option:

.l hex2raw < snoke-bovi k. txt | ./bufbonmb -u bovik -s
Userid: bovik

Cooki e: 0x1005b2b7

Type string: Smoke!: You cal |l ed snmoke()

VALI D

Sent exploit string to server to be vali dated.

NI CE JOB!

The server will test your exploit string to make sure it rgallorks, and it will update the Buffer Lab
scoreboard page indicating that your userid (listed by yowkie for anonymity) has completed this level.

You can view the scoreboard by pointing your Web browser at
http://$Bufl ab: : SERVER _NAME: 18213/ scor eboard
Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB

with any string you like. Of course, you shouldn’t brute ftbis lab either, since it would take longer than
you have to do the assignment.

IMPORTANT NOTE: You can work on your buffer bomb on any Linuxaohine, but in order to submit
your solution, you will need to be running on one of the followmachines:

I NSTRUCTOR: Insert the list of the | egal domain nanes that you
establi shed in buflab/src/config.h.

Level 0: Candle (10 pts)

The functionget buf is called withinsuFBoOMB by a functiont est having the following C code:

1 void test()

2 {

3 int val;

4 /+* Put canary on stack to detect possible corruption =/

5 volatile int local = uniqueval ();

6

7 val = getbuf();

8

9 /+* Check for corrupted stack =/

10 if (local != uniqueval ()) {

11 printf("Sabotaged!: the stack has been corrupted\n");
12

13 else if (val == cookie) {

14 printf("Boom : getbuf returned Ox%\n", val);
15 val i dat e(3);

16 } else {

17 printf("Dud: getbuf returned Ox%\n", val);

19 }

Whenget buf executes its return statement (line Sgeft buf), the program ordinarily resumes execution
within functiont est (at line 7 of this function). We want to change this behawwithin the filebuf bonb,
there is a functiors rok e having the following C code:

voi d snoke()

{
printf("Snmoke!: You called snmoke()\n");
val i dat e(0)
exit(0);

}

Your task is to geBUFBOMB to execute the code fanmoke whenget buf executes its return statement,
rather than returning tbest . Note that your exploit string may also corrupt parts of ttaelks not directly
related to this stage, but this will not cause a problem,essimok e causes the program to exit directly.

Some Advice:

e All the information you need to devise your exploit string this level can be determined by exam-
ining a disassembled version®iFBOMB. Useobj dunp - d to get this dissembled version.

e Be careful about byte ordering.

¢ You might want to useDB to step the program through the last few instructiongeif buf to make
sure it is doing the right thing.

e The placement obuf within the stack frame foget buf depends on which version afcc was
used to compiléuf bonb, so you will have to read some assembly to figure out its traation.

Level 1: Sparkler (10 pts)
Within the filebuf bonb there is also a functiohi zz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(0Ox%)\n", val);
val idate(1);
} else
printf("Msfire: You called fizz(0x%)\n", val);
exit(0);
}

Similar to Level 0, your task is to gedUFBOMB to execute the code fdri zz rather than returning to
t est . In this case, however, you must make it appeafritaz as if you have passed your cookie as its
argument. How can you do this?

Some Advice:

¢ Note that the program won't really cdlli zz—it will simply execute its code. This has important
implications for where on the stack you want to place youlkémo

Level 2: Firecracker (15 pts)

A much more sophisticated form of buffer attack involvesmying a string that encodes actual machine in-
structions. The exploit string then overwrites the retwimter with the starting address of these instructions
on the stack. When the calling function (in this cagt buf) executes itg et instruction, the program
will start executing the instructions on the stack rathantheturning. With this form of attack, you can get
the program to do almost anything. The code you place on #uok & called thexploitcode. This style of
attack is tricky, though, because you must get machine cottetbe stack and set the return pointer to the
start of this code.

Within the filebuf bonb there is a functiodbang having the following C code:

i nt gl obal _value = 0;

voi d bang(int val)

i f (global_value == cookie) {
printf("Bang!: You set global_value to Ox¥%\n", gl obal _val ue);
val i date(2);
} else
printf("Msfire: global _value = 0Ox%\n", gl obal val ue);
exit(0);

Similar to Levels 0 and 1, your task is to geiFBOMB to execute the code fdrang rather than returning
tot est . Before this, however, you must set global variaiplebal _val ue to your userid’s cookie. Your
exploit code should sejl obal _val ue, push the address bfang on the stack, and then execute et
instruction to cause a jump to the code bang.

Some Advice:

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within get buf and run to this breakpoint. Determine parameters such asdteess of
gl obal _val ue and the location of the buffer.

e Determining the byte encoding of instruction sequencesdnghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code €itmtaining the instructions and

data you want to put on the stack. Assemble this file witlt - 82 - ¢ and disassemble it with
obj dunp -d. You should be able to get the exact byte sequence that ybtypd at the prompt.
(A brief example of how to do this is included at the end of thirgeup.)

e Keep in mind that your exploit string depends on your machioar compiler, and even your userid’s
cookie. Do all of your work on one of the machines assignedday ynstructor, and make sure you
include the proper userid on the command linetFsOMB.

e Watch your use of address modes when writing assembly codee tRatnmovl $0x4, %eax
moves thevalue0x00000004 into register¥eax; whereasrovl 0x4, %eax moves the value
at memory locatiorDx00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjarp or acal | instruction to jump to the code fdrang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usettled instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumpet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack catiseprogram to execute some exploit code that
changes the program’s register/memory state, but makgsdlgeam return to the original calling function
(t est in this case). The calling function is oblivious to the altad his style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) seetherpointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that ixdauseget buf to return your cookie back to

t est, rather than the value 1. You can see in the coded st that this will cause the program to go
“Boonl .” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and executetainstruction to really return tbest .

Some Advice:

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within get buf and run to this breakpoint. Determine parameters such asathesl return address.

e Determining the byte encoding of instruction sequencesdnghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code ddataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBiDumP. You
should be able to get the exact byte sequence that you wél agphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your maghyoer compiler, and even your userid’s
cookie. Do all of your work on the machines assigned by yosirirctor, and make sure you include
the proper userid on the command linestoFBOMB.

8

Once you complete this level, pause to reflect on what you hegemplished. You caused a program to
execute machine code of your own design. You have done sadfficiently stealthy way that the program
did not realize that anything was amiss.

Level 4. Nitroglycerin (10 pts)

Please note: You'll need to use ther,” command-line flag in order to run this stage.

From one run to another, especially by different users, daetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesabbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwagiables are stored as strings, requiring
different amounts of storage depending on their values.s;Tthe stack space allocated for a given user
depends on the settings of his or her environment varialf¢ack positions also differ when running a

program undeGDB, sinceGDB uses stack space for some of its own state.

In the code that callget buf , we have incorporated features that stabilize the stackatdhe position of
get buf 's stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressoff . If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segntient&aults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that @ins stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, makegstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an exploghvat is notoriously unstable.

When you rurBuFBomMB with the command line flag-“n,” it will run in “Nitro” mode. Rather than calling
the functionget buf , the program calls a slightly different functigret buf n:

/+ Buffer size for getbufn */
#def i ne KABOOM BUFFER_SI ZE 512

This function is similar toget buf , except that it has a buffer of 512 characters. You will nées &d-
ditional space to create a reliable exploit. The code thlié gt buf n first allocates a random amount
of storage on the stack, such that if you sample the valuedfp during two successive executions of
get buf n, you would find they differ by as much as240.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executeget buf n 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®m@gain, your job for this level is to supply an
exploit string that will causget buf n to return your cookie back to test, rather than the value 11 ¢4n
see in the code for test that this will cause the program tok&BOOM .” Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute aet instruction to really return tbest n.

Some Advice:

e You can use the programex2rRAw to send multiple copies of your exploit string. If you have a
single copy in the filexpl oi t . t xt , then you can use the following command:

uni x> cat exploit.txt | ./hex2raw -n | ./bufbonb -n -u bovik

You must use the same string for all 5 executiong®ff buf n. Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cdae90). It may
be useful to read about "nop sleds” on page 262 of the CS: ARIXHBOOkK.

L ogistical Notes

Handin occurs to the grading server whenever you correcilyesa leveland use the- s option. Upon
receiving your solution, the server will validate your striand update the Buffer Lab scoreboard Web page,
which you can view by pointing your Web browser at

http://$Bufl ab: : SERVER _NAME: 18213/ scor eboard
You should be sure to check this page after your submissiorate@ sure your string has been validated. (If

you really solved the level, your strirgpouldbe valid.)

Note that each level is graded individually. You do not needd them in the specified order, but you will
get credit only for the levels for which the server receivegalid message. You can check the Buffer Lab
scoreboard to see how far you've gotten.

The grading server creates the scoreboard by using thé laesests it has for each phase.

Good luck and have fun!

Generating Byte Codes

UsingGccas an assembler amBJbuMP as a disassembler makes it convenient to generate the lngs co
for instruction sequences. For example, suppose we writke @Xfianpl e. S containing the following
assembly code:

Exanpl e of hand-generated assenbly code

push $0xabcdef # Push val ue onto stack

add $17, %eax # Add 17 to Y%ax

.align 4 # Following will be aligned on nultiple of 4
.1 ong Oxf edcba98 # A 4-byte constant

The code can contain a mixture of instructions and data. Hngtto the right of a# character is a
comment.

We can now assemble and disassemble this file:

10

uni x> gcc -nB2 -c exanple.S
uni x> obj dunp -d exanple.o > exanple.d

The generated filexanpl e. d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef
5: 83 c0 11 add $0x11, Y%eax
8: 98 cwt |

9: ba . byt e Oxba

a: dc fe fdivr %t, %st(6)

Each line shows a single instruction. The number on theneftates the starting address (starting with 0),
while the hex digits after the * character indicate the byte codes for the instruction. sTkee can see that
the instructiorpush $0x ABCDEF has hex-formatted byte co@8 ef cd ab 00.

Starting at address 8, the disassembler gets confuseiésltdrinterpret the bytes in the figecanpl e. o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc f e. This is a byte-reversed version of the data word-EDCBA98.
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throwEx2RAW to generate a proper input string we can giveW&EBOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 /+* push $0xabcdef =/
83 c0 11 /* add $0x11, Yeax */

98

ba dc fe

which is also a valid input we can pass througgx 2RAW before sending tBUFBOMB.

11

