
CS:APP2e Web Aside ASM:X87:
X87-Based Support for Floating Point∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Introduction

The floating-point architecturefor a processor consists of the different aspects that affect how programs
operating on floating-point data are mapped onto the machine, including:

• How floating-point values are stored and accessed. This is typically via some form of registers.

• The instructions that operate on floating-point data.

• The conventions used for passing floating-point values as arguments to functions, and for returning
them as results.

In this document, we will describe the floating-point architecture for x86 processors known asx87.

The set of instructions for manipulating floating-point values is one of the least elegant features of the
historical x86 architecture. In the original Intel machines, floating point was performed by a separateco-
processor, a unit with its own registers and processing capabilities that executes a subset of the instructions.
This coprocessor was implemented as a separate chip named the 8087, 80287, and i387, to accompany

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

2

the processor chips 8086, 80286, and i386, respectively. During these product generations, chip capacity
was insufficient to include both the main processor and the floating-point coprocessor on a single chip. In
addition, lower-budget machines would omit floating-pointhardware and simply perform the floating-point
operations (very slowly!) in software. Since the i486, floating point has been included as part of the IA32
CPU chip. The legacy 8087 defines a set of instructions and a storage model for implementing floating-point
code, often referred to as “x87,” much as “x86” refers to the evolutionary processor architecture that started
with the 8086. We will use the term “x87 instructions” in thisdocument.

The original 8087 coprocessor was introduced to great acclaim in 1980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what becamethe IEEE 754 floating-point standard. Oper-
ating as a coprocessor, the FPU would take over the executionof floating-point instructions after they were
fetched by the main processor. There was minimal connectionbetween the FPU and the main processor.
Communicating data from one processor to the other requiredthe sending processor to write to memory and
the receiving one to read it. Artifacts of that design remainin the x87 floating-point instruction set today.
In addition, the compiler technology of 1980 was much less sophisticated than it is today. Many features of
x87 make it a difficult target for optimizing compilers.

With the introduction of SSE2 in the Pentium 4 (2000), it has become possible to implement single and
double-precision floating-point arithmetic using SSE instructions. These provide a much better target for
optimizing compilers (see Web Aside ASM:SSE), and so slowlythe use of the x87 floating-point archi-
tecture is being phased out of x86 code. Still, x87 instructions are the default forGCC when generating
IA32 floating-point code. They are also the only way to implement 80-bit extended-precision floating-point
operations, such as for C data typelong double. In this document, we consider only IA32 code. All
x87 instructions can be used with x86-64 code, as well, but the conventions for passing function arguments
and returning function values in x86-64 code are based on theSSE floating-point architecture.

2 Floating-Point Registers

X87 has eight floating-point registers, but unlike normal registers, these are treated as a shallow stack. The
registers are identified as%st(0), %st(1), and so on, up to%st(7), with %st(0) being the top of the
stack. When more than eight values are pushed onto the stack,the ones at the bottom simply disappear.

Rather than directly indexing the registers, most of the arithmetic instructions pop their source operands
from the stack, compute a result, and then push the result onto the stack. Stack architectures were considered
a clever idea in the 1970s, since they provide a simple mechanism for evaluating arithmetic instructions,
and they allow a very dense coding of the instructions. With advances in compiler technology and with
the memory required to encode instructions no longer considered a critical resource, these properties are
no longer important. Compiler writers would be much happierwith a conventional set of floating-point
registers, such as is available with SSE.

Aside: Other stack-based languages.
Stack-based interpreters are still commonly used as an intermediate representation between a high-level language
and its mapping onto an actual machine. Other examples of stack-based evaluators include Java byte code, the
intermediate format generated by Java compilers, and the PostScript page formatting language.End Aside.

Having the floating-point registers organized as a bounded stack makes it difficult for compilers to use these

3

Instruction Effect
load S Push value atSonto stack
storep D Pop top stack element and store atD
neg Negate top stack element
addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
multp Pop top two stack elements; Push their product
divp Pop top two stack elements; Push their ratio

Figure 1: Hypothetical stack instruction set. These instructions are used to illustrate stack-based ex-
pression evaluation

registers for storing the local variables of a procedure that calls other procedures. For storing local integer
variables, we have seen that some of the general purpose registers can be designated as callee saved and
hence be used to hold local variables across a procedure call. Such a designation is not possible for an x87
register, since its identity changes as values are pushed onto and popped from the stack. For example, a
push operation causes the value in%st(0) to now be in%st(1).

On the other hand, it might be tempting to treat the floating-point registers as a true stack, with each pro-
cedure call pushing its local values onto it. Unfortunately, this approach would quickly lead to a stack
overflow, since there is room for only eight values. Instead,the x87 registers must be treated as being caller-
saved. Compilers generate code that saves every local floating-point value on the main program stack before
calling another procedure and then retrieves them on return. This generates memory traffic that can degrade
program performance.

As noted in Web Aside DATA:IA32-FP the IA32 floating-point registers are all 80 bits wide. They encode
numbers in anextended-precisionformat as described in CS:APP2e Problem 2.85. All single anddouble-
precision numbers are converted to this format as they are loaded from memory into floating-point registers.
The arithmetic is always performed in extended precision. Numbers are converted from extended precision
to single or double-precision format as they are stored in memory.

3 Stack Evaluation of Expressions

To understand how x87 uses its registers as a stack, let us consider a more abstract version of stack-based
evaluation on a hypothetical stack machine. Once we have introduced the basic execution model, we will
return to the somewhat more arcane x87 architecture. Assumewe have an arithmetic unit that uses a stack
to hold intermediate results, having the instruction set illustrated in Figure 1. In addition to the stack, this
unit has a memory that can hold values we will refer to by namessuch asa, b, andx. As Figure 1 indicates,
we can push memory values onto this stack with theload instruction. Thestorep operation pops the
top element from the stack and stores the result in memory. A unary operation such asneg (negation) uses
the top stack element as its argument and overwrites this element with the result. Binary operations such as
addp andmultp use the top two elements of the stack as their arguments. Theypop both arguments off
the stack and then push the result back onto the stack. We use the suffix ‘p’ with the store, add, subtract,

4

multiply, and divide instructions to emphasize the fact that these instructions pop their operands.

As an example, consider the expressionx = (a-b)/(-b+c). We could translate this expression into the
code that follows. Alongside each line of code, we show the contents of the floating-point register stack. In
keeping with our earlier convention, we show the stack as growing downward, so the “top” of the stack is
really at the bottom.

1 load c c %st(0)

2 load b b
c

%st(0)

%st(1)

3 neg −b
c

%st(0)

%st(1)

4 addp −b + c %st(0)

5 load b b
−b + c

%st(0)

%st(1)

6 load a a
b

−b + c

%st(0)

%st(1)

%st(2)

7 subp a − b
−b + c

%st(0)

%st(1)

8 divp (a − b)/(−b + c) %st(0)

9 storep x

As this example shows, there is a natural recursive procedure for converting an arithmetic expression into
stack code. Our expression notation has four types of expressions having the following translation rules:

1. A variable reference of the formVar . This is implemented with the instructionload Var .

2. A unary operation of the form- Expr . This is implemented by first generating the code forExpr

followed by aneg instruction.

3. A binary operation of the formExpr1 + Expr2 , Expr1 - Expr2 , Expr1 * Expr2 , orExpr1 / Expr2 .
This is implemented by generating the code forExpr2 , followed by the code forExpr1, followed by
anaddp, subp, multp, ordivp instruction.

4. An assignment of the formVar = Expr . This is implemented by first generating the code forExpr ,
followed by thestorep Var instruction.

As an example, consider the expressionx = a-b/c. Since division has precedence over subtraction, this
expression can be parenthesized asx = a-(b/c). The recursive procedure would therefore proceed as
follows:

1. Generate code forExpr
.
= a-(b/c):

(a) Generate code forExpr2
.
= b/c:

i. Generate code forExpr2
.
= c using the instructionload c.

ii. Generate code forExpr1
.
= b, using the instructionload b.

5

iii. Generate instructiondivp.

(b) Generate code forExpr1
.
= a, using the instructionload a.

(c) Generate instructionsubp.

2. Generate instructionstorep x.

The overall effect is to generate the following stack code:

1 load c c %st(0)

2 load b b
c

%st(0)

%st(1)

3 divp b/c %st(0)

4 load a a
b/c

%st(0)

%st(1)

5 subp a − (b/c) %st(0)

6 storep x

Practice Problem 1:

Generate stack code for the expressionx = a*b/c * -(a+b*c). Diagram the contents of the stack
for each step of your code. Remember to follow the C rules for precedence and associativity.

Stack evaluation becomes more complex when we wish to use theresult of some computation multiple
times. For example, consider the expressionx = (a*b)*(-(a*b)+c). For efficiency, we would like
to computea*b only once, but our stack instructions do not provide a way to keep a value on the stack
once it has been used. With the set of instructions listed in Figure 1, we would therefore need to store the
intermediate resulta*b in some memory location, sayt, and retrieve this value for each use. This gives the
following code:

1 load c c %st(0)

2 load b b
c

%st(0)

%st(1)

3 load a a
b
c

%st(0)

%st(1)

%st(2)

4 multp a · b
c

%st(0)

%st(1)

5 storep t c %st(0)

6 load t a · b
c

%st(0)

%st(1)

7 neg −(a · b)
c

%st(0)

%st(1)

8 addp −(a · b) + c %st(0)

9 load t a · b
−(a · b) + c

%st(0)

%st(1)

10 multp a · b · (−(a · b) + c) %st(0)

11 storep x

6

Instruction Source format Source location
flds Addr Single M4[Addr]
fldl Addr Double M8[Addr]
fldt Addr Extended M10[Addr]
fildl Addr Integer M4[Addr]

fld %st(i) Extended %st(i)

Figure 2: Floating-point load instructions. All convert the operand to extended-precision format and
push it onto the register stack.

This approach has the disadvantage of generating additional memory traffic, even though the register stack
has sufficient capacity to hold its intermediate results. The x87 instruction set avoids this inefficiency by
introducing variants of the arithmetic instructions that leave their second operand on the stack, and that can
use an arbitrary stack value as their second operand. In addition, it provides an instruction that can swap the
top stack element with any other element. Although these extensions can be used to generate more efficient
code, the simple and elegant algorithm for translating arithmetic expressions into stack code is lost.

4 Floating-Point Data Movement and Conversion Operations

Floating-point registers are referenced with the notation%st(i), wherei denotes the position relative to
the top of the stack. The valuei can range between 0 and 7. Register%st(0) is the top stack element,
%st(1) is the second element, and so on. The top stack element can also be referenced as%st. When a
new value is pushed onto the stack, the value in register%st(7) is lost. When the stack is popped, the new
value in%st(7) is not predictable. Compilers must generate code that workswithin the limited capacity
of the register stack.

Figure 2 shows the set of instructions used to push values onto the floating-point register stack. The first
group of these read from a memory location, where the argument Addr is a memory address given in one
of the memory operand formats listed in CS:APP2e Figure 3.3.These instructions differ by the presumed
format of the source operand and hence the number of bytes that must be read from memory. Recall that
the notationMb[Addr] indicates an access ofb bytes with starting addressAddr . All of these instructions
convert the operand to extended-precision format before pushing it onto the stack. The final load instruction
fld is used to duplicate a stack value. That is, it pushes a copy offloating-point register%st(i) onto the
stack. For example, the instructionfld %st(0) pushes a copy of the top stack element onto the stack.

Figure 3 shows the instructions that store the top stack element either in memory or in another floating-point
register. There are both “popping” versions that pop the topelement off the stack (similar to thestorep
instruction for our hypothetical stack evaluator), as wellas nonpopping versions that leave the source value
on the top of the stack. As with the floating-point load instructions, different variants of the instruction
generate different formats for the result and therefore store different numbers of bytes. The first group of
these store the result in memory. The address is specified using any of the memory operand formats listed in
CS:APP2e Figure 3.3. The second group copies the top stack element to some other floating-point register.

7

Instruction Pop (Y/N) Destination format Destination location
fsts Addr N Single M4[Addr]
fstps Addr Y Single M4[Addr]
fstl Addr N Double M8[Addr]
fstpl Addr Y Double M8[Addr]
fstt Addr N Extended M10[Addr]
fstpt Addr Y Extended M10[Addr]
fistl Addr N Integer M4[Addr]
fistpl Addr Y Integer M4[Addr]

fst %st(i) N Extended %st(i)
fstp %st(i) Y Extended %st(i)

Figure 3:Floating-point store instructions. All convert from extended-precision format to the destination
format. Instructions with suffix ‘p’ pop the top element off the stack.

Practice Problem 2:

Assume for the following code fragment that register%eax contains an integer variablex and that the
top two stack elements correspond to variablesa andb, respectively. Fill in the boxes to diagram the
stack contents after each instruction

1 testl %eax,%eax

2 jne L11 a
b

%st(0)

%st(1)

3 fstp %st(0) %st(0)

4 jmp L9
5 L11:

6 fstp %st(1) %st(0)

7 L9:

Write a C expression describing the contents of the top stackelement at the end of this code sequence in
terms ofx, a andb.

A final floating-point data movement operation allows the contents of two floating-point registers to be
swapped. The instructionfxch %st(i) exchanges the contents of floating-point registers%st(0) and
%st(i). The notationfxch written with no argument is equivalent tofxch %st(1), that is, swap the
top two stack elements.

8

Instruction Computation
fldz 0
fld1 1

fabs |Op|
fchs −Op

fcos cos Op

fsin sinOp

fsqrt
√

Op

fadd Op1 + Op2

fsub Op1 − Op2

fsubr Op2 − Op1

fdiv Op1/Op2

fdivr Op2/Op1

fmul Op1 · Op2

Figure 4:Floating-point arithmetic operations. Each of the binary operations has many variants.

Instruction Operand 1 Operand 2 Format Destination Pop%st(0) (Y/N)
fsubs Addr %st(0) M4[Addr] Single %st(0) N
fsubl Addr %st(0) M8[Addr] Double %st(0) N
fsubt Addr %st(0) M10[Addr] Extended %st(0) N
fisubl Addr %st(0) M4[Addr] Integer %st(0) N
fsub %st(i),%st %st(i) %st(0) Extended %st(0) N
fsub %st,%st(i) %st(0) %st(i) Extended %st(i) N
fsubp %st,%st(i) %st(0) %st(i) Extended %st(i) Y
fsubp %st(0) %st(1) Extended %st(1) Y

Figure 5: Floating-point subtraction instructions. All store their results into a floating-point register in
extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.

5 Floating-Point Arithmetic Instructions

Figure 4 documents some of the most common floating-point arithmetic operations. Instructions in the first
group have no operands. They push the floating-point representation of some numerical constant onto the
stack. There are similar instructions for such constants asπ, e, and log2 10. Instructions in the second
group have a single operand. The operand is always the top stack element, similar to theneg operation
of the hypothetical stack evaluator. They replace this element with the computed result. Instructions in the
third group have two operands. For each of these instructions, there are many different variants for how the
operands are specified, as will be discussed shortly. For noncommutative operations such as subtraction and
division there is both a forward (e.g.,fsub) and a reverse (e.g.,fsubr) version, so that the arguments can
be used in either order.

In Figure 4 we show just a single form of the subtraction operation fsub. In fact, this operation comes in

9

many different variants, as shown in Figure 5. All compute the difference of two operands:Op1 − Op2

and store the result in some floating-point register. Beyondthe simplesubp instruction we considered
for the hypothetical stack evaluator, x87 has instructionsthat read their second operand from memory or
from some floating-point register other than%st(1). In addition, there are both popping and nonpopping
variants. The first group of instructions reads the second operand from memory, either in single-precision,
double-precision, or integer format. It then converts thisto extended-precision format, subtracts it from
the top stack element, and overwrites the top stack element.These can be seen as a combination of a
floating-point load following by a stack-based subtractionoperation.

The second group of subtraction instructions use the top stack element as one argument and some other
stack element as the other, but they vary in the argument ordering, the result destination, and whether
or not they pop the top stack element. Observe that the assembly code linefsubp is shorthand for
fsubp %st,%st(1). This line corresponds to thesubp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top two stack elements, storing the result in%st(1),
and then popping%st(0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 4 come in all of the variants listed forfsub in Figure 5.
As an example, we can write the code for the expressionx = (a-b)*(-b+c) using x87 instructions.
For exposition purposes we will still use symbolic names formemory locations and we assume these are
double-precision values.

1 fldl b b %st(0)

2 fchs −b %st(0)

3 faddl c −b + c %st(0)

4 fldl a a
−b + c

%st(0)

%st(1)

5 fsubl b a − b
−b + c

%st(0)

%st(1)

6 fmulp (a − b)(−b + c) %st(0)

7 fstpl x

As another example, consider the expressionx = ((-(a*b)+c)*(a*b). Observe how the instruction
fld %st(0) is used to create two copies ofa*b on the stack, avoiding the need to save the value in a
temporary memory location.

10

1 fldl a a %st(0)

2 fmull b a · b %st(0)

3 fld %st(0) a · b
a · b

%st(0)

%st(1)

4 fchs −(a · b)
a · b

%st(0)

%st(1)

5 faddl c −(a · b) + c
a · b

%st(0)

%st(1)

6 fmulp (−(a · b) + c) · (a · b) %st(0)

7 fstpl x

Practice Problem 3:

Diagram the stack contents after each step of the following code:

1 fldl b %st(0)

2 fldl a %st(0)

%st(1)

3 fmul %st(1),%st %st(0)

%st(1)

4 fxch %st(0)

%st(1)

5 fdivrl c %st(0)

%st(1)

6 fsubrp %st(0)

7 fstp x

Give a C expression describing this computation.

6 Using Floating Point in Procedures

With IA32, floating-point arguments are passed to a calling procedure on the stack, just as are integer
arguments. Each parameter of typefloat requires 4 bytes of stack space, while each parameter of type

11

double requires 8. For functions whose return values are of typefloat ordouble, the result is returned
on the top of the floating-point register stack in extended-precision format.

As an example, consider the following function

1 double funct(double a, float x, double b, int i)
2 {
3 return a*x - b/i;
4 }

Argumentsa, x, b, andi will be at byte offsets 8, 16, 20, and 28 relative to%ebp, respectively, as follows:

Offset 8 16 20 28
Contents a x b i

The body of the generated code, and the resulting stack values are as follows:

1 fildl 28(%ebp) i %st(0)

2 fdivrl 20(%ebp) b/i %st(0)

3 flds 16(%ebp) x
b/i

%st(0)

%st(1)

4 fmull 8(%ebp) a · x
b/i

%st(0)

%st(1)

5 fsubp %st,%st(1) a · x − b/i %st(0)

Practice Problem 4:

For a functionfunct2 with argumentsp, q, r, ands, the compiler generates the following code for
the function body:

1 fildl 8(%ebp)
2 flds 20(%ebp)
3 faddl 12(%ebp)
4 fdivrp %st, %st(1)
5 fld1
6 fadds 24(%ebp)
7 fsubrp %st, %st(1)

The returned value is of typedouble. Write C code forfunct2. Be sure to correctly declare the
argument types.

12

Ordered Unordered Op2 Type Number of pops
fcoms Addr fucoms Addr M4[Addr] Single 0
fcoml Addr fucoml Addr M8[Addr] Double 0
fcom %st(i) fucom %st(i) %st(i) Extended 0
fcom fucom %st(1) Extended 0
fcomps Addr fucomps Addr M4[Addr] Single 1
fcompl Addr fucompl Addr M8[Addr] Double 1
fcomp %st(i) fucomp %st(i) %st(i) Extended 1
fcomp fucomp %st(1) Extended 1
fcompp fucompp %st(1) Extended 2

Figure 6: Floating-point comparison instructions. Ordered vs. unordered comparisons differ in their
treatment of NaN’s.

Op1 : Op2 Binary Decimal
> [00000000] 0
< [00000001] 1
= [01000000] 64

Unordered [01000101] 69

Figure 7:Encoded results from floating-point comparison. The results are encoded in the high-order
byte of the floating-point status word after masking out all but bits 0, 2, and 6.

7 Testing and Comparing Floating-Point Values

Similar to the integer case, determining the relative values of two floating-point numbers involves using a
comparison instruction to set condition codes and then testing these condition codes. For floating point,
however, the condition codes are part of thefloating-point status word, a 16-bit register that contains several
flags about the floating-point unit. This status word must be transferred to an integer word, and then the
particular bits must be tested.

There are a number of different floating-point comparison instructions as documented in Figure 6. All of
them perform a comparison between operandsOp1 andOp2, whereOp1 is the top stack element. Each
line of the table documents two different comparison types:an “ordered” comparison and an “unordered”
comparison. The two comparisons differ only in how they handle the case when both arguments are some
form of NaN. Even then, their only difference are that one sets an exception flag while the other does not,
but this flag is typically ignored anyhow, and so we findGCC using the two forms interchangeably.

Different comparison instructions also differ in the location of operandOp2, analogous to the different
forms of floating-point load and floating-point arithmetic instructions. Finally, the different forms differ in
the number of elements popped off the stack after the comparison is completed. Instructions in the first
group shown in the table do not change the stack at all. Even for the case where one of the arguments is in
memory, this value is not on the stack at the end. Operations in the second group pop elementOp1 off the
stack. The final operation pops bothOp1 andOp2 off the stack.

13

The floating-point status word is transferred to an integer register with thefnstsw instruction. The operand
for this instruction is one of the 16-bit register identifiers shown in CS:APP2e Figure 3.2, for example,%ax.
The bits in the status word encoding the comparison results are in bit positions 0, 2, and 6 of the high-order
byte of the status word. For example, if we use instructionfnstw %ax to transfer the status word, then
the relevant bits will be in%ah. A typical code sequence to select these bits is then:

1 fnstsw %ax Store floating-point status word in %ax

2 testb $69, %ah Test bits 0, 2, and 6 of word

Note that6910 has bit representation[01000101], that is, it has 1s in the three relevant bit positions. Figure
7 shows the possible values of byte%ah that would result from this code sequence. Observe that there are
only four possible outcomes for comparing operandsOp1 andOp2: the first is either greater, less, equal,
or incomparable to the second, where the latter outcome onlyoccurs when one of the values is aNaN .
(Any comparison with aNaNvalue should yield 0. For example, ifx is NaN, then the comparisonsx < y,
x == y, andx > y should all yield 0.)

As an example, consider the following procedure:

1 int less(double x, double y)
2 {
3 return x < y;
4 }

The compiled code for the function body is as follows:

1 fldl 16(%ebp) Push y

2 fldl 8(%ebp) Push x

3 fxch %st(1) Swap x and y on stack

4 fucompp Compare y:x and pop both

5 fnstsw %ax Store floating-point status word in %ax

6 testb $69, %ah Test bits 0, 2, and 6 of word

7 sete %al Test for comparison outcome of 0 (>)

8 movzbl %al, %eax Zero extend to get result

Practice Problem 5:

Suppose we want to generate code for the following function

1 int lesseq(double x, double y)
2 {
3 return x <= y;
4 }

How could we adapt the code generated for theless function, changing only the mask used by the
testb instruction from 69 to something else.

This completes our coverage of floating-point programming with x87. Even experienced programmers
find this code arcane and difficult to read. The stack-based operations, the awkwardness of getting status

14

results from the FPU to the main processor, and the many subtleties of floating-point computations combine
to make the machine code lengthy and obscure. As mentioned inthe introduction, the SSE floating-point
architecture has become the preferred method for implementing floating-point operations on x86 processors,
but we can expect that the use of x87 instructions will continue, given the large amount of legacy code and
the many legacy machines that still exist.

Solutions to Problems

Problem 1 Solution: [Pg. 5]

This problem gives you a chance to try out the recursive procedure described in Section 3.

1 load c c %st(0)

2 load b b
c

%st(0)

%st(1)

3 multp b · c %st(0)

4 load a a
b · c

%st(0)

%st(1)

5 addp a + b · c %st(0)

6 neg −(a + b · c) %st(0)

7 load c c
−(a + b · c)

%st(0)

%st(1)

8 load b b
c

−(a + b · c)

%st(0)

%st(1)

%st(2)

9 load a a
b
c

−(a + b · c)

%st(0)

%st(1)

%st(2)

%st(3)

10 multp a · b
c

−(a + b · c)

%st(0)

%st(1)

%st(2)

11 divp a · b/c
−(a + b · c)

%st(0)

%st(1)

12 multp a · b/c · − (a + b · c) %st(0)

13 storep x

Problem 2 Solution: [Pg. 6]

The following code is similar to that generated by the compiler for selecting between two values based on
the outcome of a test:

1 test %eax,%eax

2 jne L11 a
b

%st(0)

%st(1)

15

3 fstp %st(0) b %st(0)

4 jmp L9
5 L11:

6 fstp %st(1) a %st(0)

7 L9:

The resulting top of stack value isx ? a : b.

Problem 3 Solution: [Pg. 10]

Floating-point code is tricky, with its different conventions about popping operands, the order of the argu-
ments, etc. This problem gives you a chance to work through some specific cases in complete detail.

1 fldl b b %st(0)

2 fldl a a
b

%st(0)

%st(1)

3 fmul %st(1),%st a · b
b

%st(0)

%st(1)

4 fxch b
a · b

%st(0)

%st(1)

5 fdivrl c c/b
a · b

%st(0)

%st(1)

6 fsubrp a · b − c/b %st(0)

7 fstp x

This code computes the expressionx = a*b - c/b.

Problem 4 Solution: [Pg. 11]

This problem requires you to think about the different operand types and sizes in floating-point code. Look-
ing at the code, we see that it reads its arguments from offsets 8, 12, 20, and 24 relative to%ebp.

We then annotate the code as follows:

16

p, q, r, and s are at offsets 8, 12, 16, and 24 from %ebp

1 fildl 8(%ebp) Get p (int)

2 flds 20(%ebp) Get r (float)

3 faddl 12(%ebp) Get q (double) and compute q+r

4 fdivrp %st, %st(1) Compute p/(q+r)

5 fld1 Load 1.0

6 fadds 24(%ebp) Get s (float) and compute s+1.0

7 fsubrp %st, %st(1) Compute p/(q+r) - (s+1.0)

Based on the instructions that read the arguments from memory, we determine that argumentsp, q, r, ands
are of typesint, double, float, andfloat, respectively. We can also determine the expression being
computed, leading us to generate the following C version of the code:

1 double funct2(int p, double q, float r, float s)
2 {
3 return p/(q+r) - (s+1);
4 }

Problem 5 Solution: [Pg. 13]

Since the arguments are compared in reverse order, we want toreturn 1 when the outcome of the test is
either greater or equal. The code should accept the two casesin Figure 7 with decimal values 0 and 64 but
reject those with values 1 and 69. Using a mask of either 1 or 5 will accomplish this.

Index

CS:APP2e , 1

architecture
floating-point,1

fabs [IA32/x86-64] FP absolute value, 8
fadd [IA32/x86-64] FP add, 8
fchs [IA32/x86-64] FP negate, 8
fcom [IA32/x86-64] FP compare, 12
fcoml [IA32/x86-64] FP compare double precision,

12
fcomp [IA32/x86-64] FP compare with pop, 12
fcompl [IA32/x86-64] FP compare double preci-

sion with pop, 12
fcompp [IA32/x86-64] FP compare with two pops,

12
fcomps [IA32/x86-64] FP compare single precision

with pop, 12
fcoms [IA32/x86-64] FP compare single precision,

12
fcos [IA32/x86-64] FP cosine, 8
fdiv [IA32/x86-64] FP divide, 8
fdivr [IA32/x86-64] FP reverse divide, 8
fildl [IA32/x86-64] FP load and convert integer,

6
fistl [IA32/x86-64] FP convert and store integer,

7
fistpl [IA32/x86-64] FP convert and store integer

with pop, 7
fisubl [IA32/x86-64] FP load and convert integer

and subtract, 8
fld1 [IA32/x86-64] FP load one, 8
fldl [IA32/x86-64] FP load double precision, 6
fldl [IA32/x86-64] FP load from register, 6
flds [IA32/x86-64] FP load single precision, 6
fldt [IA32/x86-64] FP load extended precision, 6
fldz [IA32/x86-64] FP load zero, 8
floating point

registers in x87,2
status word, 12

floating-point architecture,1
fmul [IA32/x86-64] FP multiply, 8

fnstw [IA32/x86-64] copy FP status word,13
fsin [IA32/x86-64] FP sine, 8
fsqrt [IA32/x86-64] FP square root, 8
fst [IA32/x86-64] FP store to register, 7
fstl [IA32/x86-64] FP store double precision, 7
fstp [IA32/x86-64] FP store to register with pop, 7
fstpl [IA32/x86-64] FP store double precision with

pop, 7
fstps [IA32/x86-64] FP store single precision with

pop, 7
fstpt [IA32/x86-64] FP store extended precision

with pop, 7
fsts [IA32/x86-64] FP store single precision, 7
fstt [IA32/x86-64] FP store extended precision, 7
fsub [IA32/x86-64] FP subtract, 8
fsubl [IA32/x86-64] FP load double precision and

subtract, 8
fsubp [IA32/x86-64] FP subtract with pop, 8
fsubr [IA32/x86-64] FP reverse subtract, 8
fsubs [IA32/x86-64] FP load single precision and

subtract, 8
fsubt [IA32/x86-64] FP load extended precision

and subtract, 8
fucom [IA32/x86-64] FP unordered compare, 12
fucoml [IA32/x86-64] FP unordered compare dou-

ble precision, 12
fucomp [IA32/x86-64] FP unordered compare with

pop, 12
fucompl [IA32/x86-64] FP unordered compare dou-

ble precision with pop, 12
fucompp [IA32/x86-64] FP unordered compare with

two pops, 12
fucomps [IA32/x86-64] FP unordered compare sin-

gle precision with pop, 12
fucoms [IA32/x86-64] FP unordered compare sin-

gle precision, 12
fxch [IA32/x86-64] FP exchange registers,7

IEEE 754 floating-point standard, 2

registers
x87 floating point,2

17

18

status word, floating-point, 12

