CS:APP2e Web Aside ASM:X87:
X87-Based Support for Floating Point

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published byektice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available asapp. cs. crmu. edu.

This document is being made available to the public, sulbecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevighout attribution.

1 Introduction

The floating-point architecturdor a processor consists of the different aspects that taffe@ programs
operating on floating-point data are mapped onto the macimaleding:

e How floating-point values are stored and accessed. Thipisally via some form of registers.
e The instructions that operate on floating-point data.

e The conventions used for passing floating-point values gignaents to functions, and for returning
them as results.

In this document, we will describe the floating-point arebitire for x86 processors known .

The set of instructions for manipulating floating-point ues is one of the least elegant features of the
historical x86 architecture. In the original Intel mactsnéloating point was performed by a separate

processora unit with its own registers and processing capabilitied €xecutes a subset of the instructions.
This coprocessor was implemented as a separate chip naeé&D87, 80287, and i387, to accompany

*Copyright(© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

the processor chips 8086, 80286, and i386, respectivelyin@these product generations, chip capacity
was insufficient to include both the main processor and ttagifig-point coprocessor on a single chip. In
addition, lower-budget machines would omit floating-pdiatdware and simply perform the floating-point
operations (very slowly!) in software. Since the i486, flogtpoint has been included as part of the 1A32
CPU chip. The legacy 8087 defines a set of instructions armtags model for implementing floating-point
code, often referred to as “x87,” much as “x86" refers to thal@ionary processor architecture that started
with the 8086. We will use the term “x87 instructions” in tliecument.

The original 8087 coprocessor was introduced to greatiacaal980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what becaheelEEE 754 floating-point standard. Oper-
ating as a coprocessor, the FPU would take over the exeauititoating-point instructions after they were
fetched by the main processor. There was minimal connetiitween the FPU and the main processor.
Communicating data from one processor to the other reqtheedending processor to write to memory and
the receiving one to read it. Artifacts of that design reninithe x87 floating-point instruction set today.
In addition, the compiler technology of 1980 was much leghsticated than it is today. Many features of
x87 make it a difficult target for optimizing compilers.

With the introduction of SSE2 in the Pentium 4 (2000), it hasdme possible to implement single and
double-precision floating-point arithmetic using SSErimstions. These provide a much better target for
optimizing compilers (see Web Aside ASM:SSE), and so slaivy use of the x87 floating-point archi-
tecture is being phased out of x86 code. Still, x87 instamdiare the default foscc when generating
IA32 floating-point code. They are also the only way to impdaitn80-bit extended-precision floating-point
operations, such as for C data tyjpeng doubl e. In this document, we consider only IA32 code. All
x87 instructions can be used with x86-64 code, as well, ittmventions for passing function arguments
and returning function values in x86-64 code are based o8 8tefloating-point architecture.

2 Floating-Point Registers

X87 has eight floating-point registers, but unlike normagjisters, these are treated as a shallow stack. The
registers are identified &st (0) ,%st (1), and so on, up tést (7) , with %st (0) being the top of the
stack. When more than eight values are pushed onto the #ta@cbnes at the bottom simply disappear.

Rather than directly indexing the registers, most of ththarétic instructions pop their source operands
from the stack, compute a result, and then push the resultbatstack. Stack architectures were considered
a clever idea in the 1970s, since they provide a simple mésinafor evaluating arithmetic instructions,
and they allow a very dense coding of the instructions. Witiaaces in compiler technology and with
the memory required to encode instructions no longer censitla critical resource, these properties are
no longer important. Compiler writers would be much happigth a conventional set of floating-point
registers, such as is available with SSE.

Aside: Other stack-based languages.

Stack-based interpreters are still commonly used as arnmpt#iate representation between a high-level language
and its mapping onto an actual machine. Other examples ck-b@sed evaluators include Java byte code, the
intermediate format generated by Java compilers, and theSBapt page formatting languagend Aside.

Having the floating-point registers organized as a bountiezk snakes it difficult for compilers to use these

Instruction | Effect

| oad S Push value aonto stack

st orep D | Pop top stack element and storebat

neg Negate top stack element

addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
mul t p Pop top two stack elements; Push their produgt
divp Pop top two stack elements; Push their ratio

Figure 1: Hypothetical stack instruction set. These instructions are used to illustrate stack-based ex-
pression evaluation

registers for storing the local variables of a proceduré ¢h#is other procedures. For storing local integer
variables, we have seen that some of the general purpostemsgtan be designated as callee saved and
hence be used to hold local variables across a procedureScalh a designation is not possible for an x87
register, since its identity changes as values are pushiedaon popped from the stack. For example, a
push operation causes the valué&at (0) to now be in¥%st (1) .

On the other hand, it might be tempting to treat the floatingMpregisters as a true stack, with each pro-
cedure call pushing its local values onto it. Unfortunatéhys approach would quickly lead to a stack
overflow, since there is room for only eight values. Instele x87 registers must be treated as being caller-
saved. Compilers generate code that saves every locahfieadiint value on the main program stack before
calling another procedure and then retrieves them on relinis generates memory traffic that can degrade
program performance.

As noted in Web Aside DATA:1A32-FP the IA32 floating-pointgisters are all 80 bits wide. They encode
numbers in arextended-precisioformat as described in CS:APP2e Problem 2.85. All singledmuble-
precision numbers are converted to this format as they adetbfrom memory into floating-point registers.
The arithmetic is always performed in extended precisiommBers are converted from extended precision
to single or double-precision format as they are stored imorg.

3 Stack Evaluation of Expressions

To understand how x87 uses its registers as a stack, let sgleora more abstract version of stack-based
evaluation on a hypothetical stack machine. Once we havedinted the basic execution model, we will
return to the somewhat more arcane x87 architecture. Assterteave an arithmetic unit that uses a stack
to hold intermediate results, having the instruction dasitated in Figure 1. In addition to the stack, this
unit has a memory that can hold values we will refer to by nasoieb asa, b, andx. As Figure 1 indicates,
we can push memory values onto this stack withltbead instruction. Thest or ep operation pops the
top element from the stack and stores the result in memoryakuoperation such aseg (negation) uses
the top stack element as its argument and overwrites thisegiewith the result. Binary operations such as
addp andmul t p use the top two elements of the stack as their arguments. gd@poth arguments off
the stack and then push the result back onto the stack. Wédesmiffix p’ with the store, add, subtract,

multiply, and divide instructions to emphasize the fact thase instructions pop their operands.

As an example, consider the expressiors (a- b) / (- b+c) . We could translate this expression into the
code that follows. Alongside each line of code, we show thearts of the floating-point register stack. In
keeping with our earlier convention, we show the stack awigmg downward, so the “top” of the stack is
really at the bottom.

—b+c st (2)

b st (1)

1 load c | ¢ | %t (0) 6 | oad a a %t (0)

C Yt (1) —b+ec ¥st (1)

2 load b b %t (0) 7 subp a—b %t (0)
C st (1)

3 nNeg —b %st (0) 8 d|Vp | (a_b)/(_b_|_c) | ¥%st (0)

4 addp | —btc | et (0) o storep x

—b+c %st (1)
5 load b b %1 (0)

As this example shows, there is a natural recursive proeefdurconverting an arithmetic expression into
stack code. Our expression notation has four types of esipres having the following translation rules:

1. Avariable reference of the foriar. This is implemented with the instructidroad Var.

2. A unary operation of the form Ezpr. This is implemented by first generating the code fapr
followed by aneg instruction.

3. Abinary operation of the fornvzpr; + Expre, Expr; - Expre, Expr; * Expre, of Expr; | Exprs.
This is implemented by generating the code Faprs, followed by the code foFzpr,, followed by
anaddp, subp, nul t p, ordi vp instruction.

4. An assignment of the formar = Fxpr. This is implemented by first generating the code fopr,
followed by thest or ep Var instruction.

As an example, consider the expresstors a- b/ c. Since division has precedence over subtraction, this
expression can be parenthesizedkas a- (b/ c). The recursive procedure would therefore proceed as
follows:

1. Generate code fdizpr =a-(b/c):

(@) Generate code fdtzpr, = b/ c:

i. Generate code foEzprs = c using the instructioh oad c.
ii. Generate code foEzpr; = b, using the instructioh oad b.

iii. Generate instructionli vp.
(b) Generate code fatzpr; = a, using the instructioh oad a.
(c) Generate instructiogaubp.

2. Generate instructiost or ep X.

The overall effect is to generate the following stack code:

b/c Yt (1)
1 load ¢ | ¢ | %st(0) 4 load a a %t (0)
c %t (1)
2 load b b %t (0) 5 subp | a—(b/c) | ot (0)
3 divp | b/c | %t(0) s storep x

Practice Problem 1:

Generate stack code for the expressior a*b/ c * - (a+b*c) . Diagram the contents of the stack
for each step of your code. Remember to follow the C rules fec@dence and associativity.

Stack evaluation becomes more complex when we wish to useetiudt of some computation multiple
times. For example, consider the expressior (a*b) (- (a*b) +c) . For efficiency, we would like

to computea* b only once, but our stack instructions do not provide a waydegka value on the stack
once it has been used. With the set of instructions listedgarge 1, we would therefore need to store the
intermediate resuli* b in some memory location, say, and retrieve this value for each use. This gives the

following code:

c %t (1)
1 load c | c | %t (0) 7 neg —(a-b) %t (0)
c ot (1)
2 load b b et (0) s addp —(a-b)+c | wst(0)
c %t (2)
b st (1) —(a-b)+¢c st (1)
3 load a a %t (0) o | oad t 7 b %t (0)
C st (1)
4 multp a-b %t (0) 10 mul tp la-b-(—(a-b)+c)| %t(0)
5 storep t | C | %st(0) 11 storep x
c st (1)
6 | oad t a-b %t (0)

Instruction Source formatl Source location
flds Addr Single My [Addr]

fldl Addr Double Mg[Addr]

fldt Addr Extended Mio[Addr]
fildl Addr Integer My [Addr]

fld %t (i) | Extended Yt (17)

Figure 2: Floating-point load instructions. All convert the operand to extended-precision format and
push it onto the register stack.

This approach has the disadvantage of generating additioe@ory traffic, even though the register stack
has sufficient capacity to hold its intermediate resultse X&7 instruction set avoids this inefficiency by
introducing variants of the arithmetic instructions tresive their second operand on the stack, and that can
use an arbitrary stack value as their second operand. Iti@ddt provides an instruction that can swap the
top stack element with any other element. Although thesensitins can be used to generate more efficient
code, the simple and elegant algorithm for translatindgharétic expressions into stack code is lost.

4 Floating-Point Data M ovement and Conversion Operations

Floating-point registers are referenced with the nota%ien (;) , wherei denotes the position relative to
the top of the stack. The valdecan range between 0 and 7. Regi$tet (0) is the top stack element,
%t (1) is the second element, and so on. The top stack element aabhealeferenced &%st . When a
new value is pushed onto the stack, the value in regiger 7) is lost. When the stack is popped, the new
value in¥%st (7) is not predictable. Compilers must generate code that wwitksn the limited capacity
of the register stack.

Figure 2 shows the set of instructions used to push valuastbetfloating-point register stack. The first
group of these read from a memory location, where the argunhéih- is a memory address given in one
of the memory operand formats listed in CS:APP2e Figure Btigse instructions differ by the presumed
format of the source operand and hence the number of bytesmitlt be read from memory. Recall that
the notationM;[Addr| indicates an access bfbytes with starting addres$ddr. All of these instructions

convert the operand to extended-precision format befosipg it onto the stack. The final load instruction
f I dis used to duplicate a stack value. That is, it pushes a cofigaifng-point registe®st () onto the

stack. For example, the instructibh d %st (0) pushes a copy of the top stack element onto the stack.

Figure 3 shows the instructions that store the top stackesiegither in memory or in another floating-point
register. There are both “popping” versions that pop theglement off the stack (similar to tret or ep
instruction for our hypothetical stack evaluator), as vaslhonpopping versions that leave the source value
on the top of the stack. As with the floating-point load instions, different variants of the instruction
generate different formats for the result and thereforeestiifferent numbers of bytes. The first group of
these store the result in memory. The address is specified asy of the memory operand formats listed in
CS:APP2e Figure 3.3. The second group copies the top stacieat to some other floating-point register.

Instruction Pop (Y/N) | Destination format Destination location
fsts Addr N Single My[Addr]
fstps Addr Y Single My[Addr]
fstl Addr N Double Mg[Addr]
fstpl Addr Y Double Mg[Addr]
fstt Addr N Extended Mio[Addr]
f st pt Addr Y Extended Mio[Addr]
fistl Addr N Integer My[Addr]
fistpl Addr Y Integer My[Addr]
fst Yst (7) N Extended Yst (1)
fstp Ust (4) Y Extended Ust (10)

Figure 3:Floating-point store instructions. All convert from extended-precision format to the destination
format. Instructions with suffix ‘p’ pop the top element off the stack.

Practice Problem 2:

Assume for the following code fragment that regi¥eiax contains an integer variableand that the
top two stack elements correspond to variatdeandb, respectively. Fill in the boxes to diagram the
stack contents after each instruction

1 testl % ax, Y%eax

b ”%st (1)
2 jne L11 a ¥t (0)
3 fstp %t (0) | | %t (0)
4 jmp L9
5 L11:
6 fstp %t (1) | | %t (0)
7 L9:

Write a C expression describing the contents of the top stkskent at the end of this code sequence in
terms ofx, a andb.

A final floating-point data movement operation allows theteats of two floating-point registers to be
swapped. The instructiohxch %st (i) exchanges the contents of floating-point registés (0) and
%st (7). The notationf xch written with no argument is equivalent tocch %st (1), that is, swap the
top two stack elements.

Instruction | Computation
fldz 0

fldl 1

f abs |Op|

fchs —Op
fcos cos Op
fsin sin Op
fsqrt Vv Op

f add Op1 + Op,
fsub Op; — Op,
f subr Opy — Opy
fdiv Op,/Op,
fdivr Op,/Op,

f mul Op1 - Opy

Figure 4:Floating-point arithmetic operations. Each of the binary operations has many variants.

Instruction Operand 1) Operand 2| Format | Destination| Pop%st (0) (Y/N)
fsubs Addr ¥t (0) My[Addr] | Single ¥t (0) N
f subl Addr ¥%st (0) Mg[Addr] | Double | %st (0) N
fsubt Addr ¥t (0) | Mo[Addr] | Extended| ¥%st (0) N
fisubl Addr ¥t (0) My[Addr] | Integer | %st (0) N
fsub Ust (i), st | Ust () %t (0) Extended| %st (0) N
fsub Ust, ¥st (i) | %8t (0) Ust (4) Extended| %st (7) N
fsubp %st, Wt (i) | st (0) Ust (4) Extended| %st (7) Y
f subp %t (0) st (1) Extended| %st (1) Y
Figure 5: Floating-point subtraction instructions. All store their results into a floating-point register in

extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.

5 Floating-Point Arithmetic Instructions

Figure 4 documents some of the most common floating-poitiiragtic operations. Instructions in the first
group have no operands. They push the floating-point repiesen of some numerical constant onto the
stack. There are similar instructions for such constants,as andlog, 10. Instructions in the second
group have a single operand. The operand is always the tok skament, similar to theeg operation

of the hypothetical stack evaluator. They replace this elgnwith the computed result. Instructions in the
third group have two operands. For each of these instrugtitiere are many different variants for how the
operands are specified, as will be discussed shortly. Famamemutative operations such as subtraction and
division there is both a forward (e.d.sub) and a reverse (e.d.subr) version, so that the arguments can
be used in either order.

In Figure 4 we show just a single form of the subtraction of@nd sub. In fact, this operation comes in

many different variants, as shown in Figure 5. All compute difference of two operandsdp, — Op,

and store the result in some floating-point register. Beyihredsimplesubp instruction we considered
for the hypothetical stack evaluator, x87 has instructitived read their second operand from memory or
from some floating-point register other th&mt (1) . In addition, there are both popping and nonpopping
variants. The first group of instructions reads the secomdarm from memory, either in single-precision,
double-precision, or integer format. It then converts tbhigxtended-precision format, subtracts it from
the top stack element, and overwrites the top stack elem€&hése can be seen as a combination of a
floating-point load following by a stack-based subtractgeration.

The second group of subtraction instructions use the tagk gkement as one argument and some other
stack element as the other, but they vary in the argumentingjethe result destination, and whether
or not they pop the top stack element. Observe that the asgarable linef subp is shorthand for
fsubp %st, %t (1) . This line corresponds to theubp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top ta&okselements, storing the result¥st (1),

and then poppingst (0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 4 come in all bitvariants listed fof sub in Figure 5.

As an example, we can write the code for the expression (a- b) (- b+c) using x87 instructions.
For exposition purposes we will still use symbolic namesnfimmory locations and we assume these are
double-precision values.

—b+c %st (1)
1fldl b | b | 9t (0) s fsubl b a—b %t (0)
2 fchs | —b | %t(0) 6 frmulp | (a=b)(=b+c) | %wt(0)
3 faddl c | —b+ec [st (0) s fstpl x
—b+c Yst (1)
4 fldl a a %t (0)

As another example, consider the expressior ((- (a*b) +c) = (a*b) . Observe how the instruction
fld %t (0) is used to create two copies af b on the stack, avoiding the need to save the value in a
temporary memory location.

10

a-b st (1)
1 fldl a | a | %t(0) 5 faddl c —(a-b) Fc %t (0)
2 frull b | a-b [%t(0) ¢ fnulp (—(@-b) +¢)-(a-b) %t(0)
a-b st (1)
3 fld %t (0) a-b w0 7 fstpl x
a-b st (1)
4 fchs —(a-b) %t (0)

Practice Problem 3:
Diagram the stack contents after each step of the followiratgc

1 fldl b | st (0)
st (1)
2 fldl a st (0)
Y%t (1)
3 fmul %t (1), Yst ¥st (0)
st (1)
4 fxch st (0)
st (1)
5 fdivrl ¢ Yst (0)
6 fsubrp | ¥st(0)
7 fstp x

Give a C expression describing this computation.

6 Using Floating Point in Procedures

With 1A32, floating-point arguments are passed to a callingcedure on the stack, just as are integer
arguments. Each parameter of typel oat requires 4 bytes of stack space, while each parameter of type

11

doubl e requires 8. For functions whose return values are of fypgat ordoubl e, the result is returned
on the top of the floating-point register stack in extendestigion format.

As an example, consider the following function
doubl e funct(double a, float x, double b, int i)
{

1
2
3 return a*x - bli;
4

}

Argumentsa, X, b, andi will be at byte offsets 8, 16, 20, and 28 relative/bp, respectively, as follows:

Offset 8 16 20 28
Contents| a HE b | |

The body of the generated code, and the resulting stacksvahgeas follows:

1 fildl 28(%bp) | i ™ 96t (0)
2 fdivrl 20(%bp) | b/i [st (0)

b/i ust (1)
3 flds 16(%bp) x %t (0)

b/i Ust (1)
4 frull 8(%bp) a-zx %t (0)
s fsubp 9%t, %t (1) | a-x—b/i | %t(0)

Practice Problem 4:

For a functionf unct 2 with argument, q, r, ands, the compiler generates the following code for
the function body:

fildl 8(%ebp)
flds 20(%ebp)

f addl 12(%&bp)
fdivrp %t, %t(1)
fldl

f adds 24(Y%ebp)
fsubrp %t, %t (1)

~N o o~ W N R

The returned value is of typgoubl e. Write C code forf unct 2. Be sure to correctly declare the
argument types.

12

Ordered Unordered Op, Type Number of pops
fcoms Addr fucoms Addr My[Addr] Single 0
fcom Addr fucom Addr Mg[Addr] Double 0
fcom st (7)) | fucom st (1) | Yst (9) Extended 0
fcom fucom st (1) Extended 0
fcomps Addr fuconps Addr My[Addr] Single 1
fcompl Addr fucompl Addr Mg[Addr] Double 1
fconp %t (id) | fuconmp Yt (i) | Ust (2) Extended 1
fconmp fuconp st (1) Extended 1
f compp fuconpp st (1) Extended 2
Figure 6: Floating-point comparison instructions. Ordered vs. unordered comparisons differ in their
treatment of NaNs.
Op, : Opy | Binary Decimal
> [00000000] 0
< [00000001] 1
= [01000000] 64
Unordered| [01000101] 69
Figure 7:Encoded results from floating-point comparison. The results are encoded in the high-order

byte of the floating-point status word after masking out all but bits 0, 2, and 6.

7 Testing and Comparing Floating-Point Values

Similar to the integer case, determining the relative valoietwo floating-point numbers involves using a
comparison instruction to set condition codes and themgesihese condition codes. For floating point,
however, the condition codes are part of tle@ting-point status worda 16-bit register that contains several
flags about the floating-point unit. This status word mustraadferred to an integer word, and then the
particular bits must be tested.

There are a number of different floating-point comparisatrurctions as documented in Figure 6. All of
them perform a comparison between operatigs and Op,, where Op, is the top stack element. Each
line of the table documents two different comparison ty@es:‘ordered” comparison and an “unordered”
comparison. The two comparisons differ only in how they hanlde case when both arguments are some
form of NaN. Even then, their only difference are that one sets an eixeefiag while the other does not,
but this flag is typically ignored anyhow, and so we fiedc using the two forms interchangeably.

Different comparison instructions also differ in the laoatof operandOp,, analogous to the different
forms of floating-point load and floating-point arithmetitsiructions. Finally, the different forms differ in
the number of elements popped off the stack after the cosgais completed. Instructions in the first
group shown in the table do not change the stack at all. Evetivéocase where one of the arguments is in
memory, this value is not on the stack at the end. Operatiottsei second group pop elemenp, off the
stack. The final operation pops bathy, and Op, off the stack.

13

The floating-point status word is transferred to an integgister with thd nst swinstruction. The operand
for this instruction is one of the 16-bit register identiiesshown in CS:APP2e Figure 3.2, for exampiax .
The bits in the status word encoding the comparison restdtsait positions 0, 2, and 6 of the high-order
byte of the status word. For example, if we use instrucfioist w %ax to transfer the status word, then
the relevant bits will be if@ah. A typical code sequence to select these bits is then:

1 fnstsw %ax Store floating-point status word in %ax
2 testhb $69, %ah Test bits 0, 2, and 6 of word

Note that69;(has bit representatioj®1000101], that is, it has 1s in the three relevant bit positions. Fégur
7 shows the possible values of bytah that would result from this code sequence. Observe that duer
only four possible outcomes for comparing operaitls and Op,: the first is either greater, less, equal,
or incomparable to the second, where the latter outcome ardyrs when one of the values isha.V.
(Any comparison with &aNvalue should yield 0. For example xfis NaN, then the comparisons < v,

X == y,andx > vy should all yield 0.)

As an example, consider the following procedure:

1 int |ess(double x, double vy)
2 {
3 return x <y;
4

}

The compiled code for the function body is as follows:

1 fldl 16(%ebp) Push y
2 fldl 8(%ebp) Push x

3 fxch st (1) Swap x and y on stack

4 fuconpp Conpare y:x and pop both

5 fnstsw %ax Store floating-point status word in %ax
6 testb $69, %h Test bits 0, 2, and 6 of word

7 sete %al Test for conparison outcone of 0 (>)

8 movzbl %al, %ax Zero extend to get result

Practice Prablem 5:
Suppose we want to generate code for the following function

1 int |esseq(double x, double y)
2 {
3 return x <=y,
4

}

How could we adapt the code generated forltlees s function, changing only the mask used by the
t est b instruction from 69 to something else.

This completes our coverage of floating-point programmirith w87. Even experienced programmers
find this code arcane and difficult to read. The stack-basedatipns, the awkwardness of getting status

14

results from the FPU to the main processor, and the manyesigistiof floating-point computations combine
to make the machine code lengthy and obscure. As mentiontx imtroduction, the SSE floating-point
architecture has become the preferred method for impléntefidating-point operations on x86 processors,
but we can expect that the use of x87 instructions will camjrgiven the large amount of legacy code and
the many legacy machines that still exist.

Solutionsto Problems

Problem 1 Solution: [Pg. 5]
This problem gives you a chance to try out the recursive phaeedescribed in Section 3.

—(a+b-c) Y%t (2)
c Yst (1)
1 load c | ¢ | %st(0) g load b L b | %0
—(a+b-c) %t (3)
C st (1) c st (2)
2 load b b %st (0) b st (1)
o load a L a | %0
—(a+b-¢) st (2)
3 multp | bh-c | %t (0) c st (1)
10 mul tp a-b %t (0)

b-c st (1)
4 | oad a a %t (0) —(a+b-c) %t (1)
11 di vp a-b/c Yt (0)

5 addp | atb-c | ¥t (0)
12 multp la-b/c- —(a+b-c)] wt(0)

6 neg | —(a+b-c) | %wt(0)

13 storep X
—(a+b-c) %t (1)
7 load c ¢ st (0)

Problem 2 Solution: [Pg. 6]

The following code is similar to that generated by the coerpibr selecting between two values based on
the outcome of a test:

1 test %ax, ¥%eax

S

st (1)
2 jne L11 a %5t (0)

15

3 fstp %t (0) | b | %t (0)
4 jmp L9

5 L11:

6 fstp %t (1) | a | 9st(0)
7 L9:

The resulting top of stack valuexs ? a : b.

Problem 3 Solution: [Pg. 10]

Floating-point code is tricky, with its different convemtis about popping operands, the order of the argu-
ments, etc. This problem gives you a chance to work througtesspecific cases in complete detail.

1 fldl b b | 9%t (0)

b %t (1)

2 fldl a a %st (0)

b st (1)

3 fmul %t (1), Y%t a-b %st (0)

a-b ”%st (1)

4 fxch b %st (0)

a-b ¥t (1)

5 fdivrl ¢ c/b %t (0)

6 fsubrp a-b—c/b | st (0)
7 fstp x

This code computes the expressior= axb - c/b.

Problem 4 Solution: [Pg. 11]

This problem requires you to think about the different opdrgypes and sizes in floating-point code. Look-
ing at the code, we see that it reads its arguments from sf&eit2, 20, and 24 relative f@ebp.

We then annotate the code as follows:

16

p, g, r, and s are at offsets 8, 12, 16, and 24 from %bp

1 fildl 8(%ebp) Get p (int)

2 flds 20(%ebp) Get r (float)

3 f addl 12(%&bp) Get q (double) and conpute g+r
4 fdivrp %t, %t(1) Conput e p/ (g+r)

5 fldl Load 1.0

6 fadds 24(Y%ebp) Get s (float) and conpute s+1.0
7 fsubrp %t, %t (1) Conpute p/(g+r) - (s+1.0)

Based on the instructions that read the arguments from memerdetermine that argumerisq, r , ands
are of types nt ,doubl e, f | oat, andf | oat , respectively. We can also determine the expression being
computed, leading us to generate the following C versiohefbde:

doubl e funct2(int p, double q, float r, float s)
{

1
2
3 return p/(g+r) - (s+1);
4

}

Problem 5 Solution: [Pg. 13]

Since the arguments are compared in reverse order, we wagtutm 1 when the outcome of the test is
either greater or equal. The code should accept the two aagégure 7 with decimal values 0 and 64 but
reject those with values 1 and 69. Using a mask of either 1 aflmecomplish this.

I ndex

CS:APP2e, 1 f nst w[lIA32/x86-64] copy FP status word3
. f si n [IA32/x86-64] FP sine, 8

architecture fsqrt [IA32/x86-64] FP square root, 8
floating-point,1 f st [IA32/x86-64] FP store to register, 7

fst1 [IA32/x86-64] FP store double precision, 7

f add [1A32x86-64] FP add, 8 St bl [1A32x86.64] FP Store douils precision mih
f chs [IA32/x86-64] FP negate, 8 P i P

f com[IA32/x86-64] FP compare, 12 Pop.

f com [IA32/x86-64] FP compare double precisionf, st ps [IA32/x86-64] FP store single precision with

pop, 7
12 -
f conp [IA32/x86-64] FP compare with pop, 12 f st pt [IA32/x86-64] FP store extended precision

] . with pop, 7
fconpl [.IA32/.X86 64] FP compare double preuf st s [IA32/x86-64] FP store single precision, 7
sion with pop, 12

- . f stt [IA32/x86-64] FP store extended precision, 7
f corrppl[léA32/x86 64] FP compare with two POPSy _ b [IA32/x86-64] FP subtract, 8
f conps [IA32/x86-64] FP compare single precisioﬁ subl [Igjsbztigif_géﬂ FP load double precision and

with pop, 12 .
) . .. fsubp [IA32/x86-64] FP subtract with pop, 8
fcons [If232/x86 64] FP compare single preC|S|on1l subr [IA32/x86-64] FP reverse subtract, 8

f cos [IA32/x86-64] FP cosine, 8 f subs [IA32/x86-64] FP load single precision and

. - subtract, 8
f di v [IA32/x86-64] FP divide, 8 ! .
fdi vr [IA32/x86-64] FP reverse divide, 8 f subt [IA32/x86-64] FP load extended precision

) . and subtract, 8
fildl [IA32/x86-64] FP load and convert mtegerf Ucom[IA32/x86-64] FP unordered compare, 12

f abs [IA32/x86-64] FP absolute value, 8

6
fistl [IA32/x86-64] FP convert and store intege{ ucon [I1A32/x86-64] FP unordered compare dou-
7 ble precision, 12
fistpl [IA32/x86-64] FP convert and store integefr uconp [IA32/x86-64] FP unordered compare with
. pop, 12
with pop, 7

fisubl [IA32/x86-64] FP load and convert intege]; uconpl [IASZI).(8.6_64].FP unordered compare dou-
ble precision with pop, 12

and subtract, 8 .
f1 d1 [IA32/x86-64] FP load one, 8 f uconpp [IA32/x86-64] FP unordered compare with
two pops, 12

f1dl [IA32/x86-64] FP load double precision, 6 .
f 1 dl [IA32/x86-64] FP load from register, 6 f uconps [IA32/x86-64] FP unordered compare sin-
gle precision with pop, 12

f 1 ds [IA32/x86-64] FP load single precision, 6 .
f | dt [IA32/x86-64] FP load extended precision, 6]c ucons [IA32/X$6.'64] FP unordered compare sin-
gle precision, 12

;II dz [IA32/x86-64] FP load zero, 8 f xch [IA32/x86-64] FP exchange registe,
oating point

registers in x872 IEEE 754 floating-point standard, 2
status word, 12

floating-point architecturel, registers

f mul [IA32/x86-64] FP multiply, 8 x87 floating point2

17

status word, floating-point, 12

18

