
CS:APP Web Aside DATA:TNEG:
Bit-Level Representation of Two’s Complement Negation∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Introduction

There are several clever ways to determine the two’s complement negation of a value represented at the
bit level. These techniques are both useful, such as when oneencounters the value0xfffffffa when
debugging a program, and they lend insight into the nature ofthe two’s complement representation.

2 Complement and Increment

One technique for performing two’s-complement negation atthe bit level is to complement the bits and
then increment the result. In C, this can be written as˜x + 1 . To justify the correctness of this technique,
observe that for any single bitxi, we havẽ xi = 1−xi. Let~x be a bit vector of lengthw andx

.
= B2Tw(~x)

be the two’s-complement number it represents. By Equation CS:APP2e-2.3, the complemented bit vector
˜ ~x has numeric value

B2Tw(˜ ~x) = −(1 − xw−1)2
w−1 +

w−2
∑

i=0

(1 − xi)2
i

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

~x ˜ ~x incr(˜ ~x)

[0101] 5 [1010] −6 [1011] −5
[0111] 7 [1000] −8 [1001] −7
[1100] −4 [0011] 3 [0100] 4
[0000] 0 [1111] −1 [0000] 0
[1000] −8 [0111] 7 [1000] −8

Figure 1: Examples of complementing and incrementing four-bit numbers. The effect is to compute
the two’s value negation.

=

[

− 2w−1 +

w−2
∑

i=0

2i

]

−

[

−xw−12
w−1 +

w−2
∑

i=0

xi2
i

]

= [− 2w−1 + 2w−1 − 1] − B2Tw(~x)

= −1 − x

The key simplification in the above derivation is that
∑

w−2

i=0
2i = 2w−1 − 1. It follows that by incrementing

˜ ~x we obtain−x.

To increment a numberx represented at the bit-level as~x
.
= [xw−1, xw−2, . . . , x0], define the operationincr

as follows. Letk be the position of the rightmost zero, such that~x is of the form[xw−1, xw−2, . . . , xk+1, 0, 1, . . . , 1].
We then defineincr(~x) to be[xw−1, xw−2, . . . , xk+1, 1, 0, . . . , 0]. For the special case where the bit-level
representation ofx is [1, 1, . . . , 1], defineincr(~x) to be [0, . . . , 0]. As illustrations, Figure 1 shows how
complementing and incrementing affect the numeric values of several four-bit vectors.

To show thatincr(~x) yields the bit-level representation ofx +t
w 1, consider the following cases:

1. When~x = [1, 1, . . . , 1], we havex = −1. The incremented valueincr(~x)
.
= [0, . . . , 0] has numeric

value0.

2. Whenk = w − 1, i.e.,~x = [0, 1, . . . , 1], we havex = TMaxw. The incremented valueincr(~x) =
[1, 0, . . . , 0] has numeric valueTMinw. From Equation CS:APP2e-2.14, we can see thatTMaxw+t

w1
is one of the positive overflow cases, yieldingTMinw.

3. Whenk < w − 1, i.e.,x 6= TMaxw andx 6= −1, we can see that the low-orderk + 1 bits of incr(~x)
has numeric value2k, while the low-orderk + 1 bits of~x has numeric value

∑

k−1

i=0
2i = 2k − 1. The

high-orderw − k + 1 bits have matching numeric values. Thus,incr(~x) has numeric valuex + 1. In
addition, forx 6= TMaxw, adding 1 tox will not cause an overflow, and hencex +t

w 1 has numeric
valuex + 1 as well.

Practice Problem 1:

Fill in the following table showing the effects of complementing and incrementing several five-bit vectors
in the style of Figure 1. Show both the bit vectors and the numeric values.



3

~x ˜ ~x incr (˜ ~x)
[01101]
[01110]
[11000]
[11111]
[10000]

Practice Problem 2:

Show that first decrementing and then complementing is equivalent to complementing and then incre-
menting. That is, for any signed valuex , the C expressions-x , ˜x+1 , and˜(x-1) yield identical
results. What mathematical properties of two’s-complement addition does your derivation rely on?

Complement Upper Bits

Another way to perform two’s complement negation of a numberx is based on its bit-level representa-
tion. Let k be the position of the rightmost 1, so that~x, the bit-level representation ofx has the form
[xw−1, xw−2, . . . , xk+1, 1, 0, . . . 0]. (This is possible as long asx 6= 0.) The negation is then written in
binary form as[˜ xw−1, ˜ xw−2, . . . ˜ xk+1, 1, 0, . . . , 0]. That is, we complement each bit to the left of bit
positionk. Showing that the resulting value indeed has value- t

32 x is left as an exercise (Problem 6.)

We illustrate this idea with some 4-bit numbers, where we highlight the rightmost pattern1, 0, . . . , 0 in
italics:

x −x

[1100 ] −4 [0100 ] 4
[1000 ] −8 [1000 ] −8
[0101 ] 5 [1011 ] −5
[0111 ] 7 [1001 ] −7

Practice Problem 3:

Show how the bit-level negation procedure applies to the examples of Problem 1. That is, 1) determine
the bit positionk of the rightmost 1, and 2) apply the rule of complementing thebits to the left of position
k.

Practice Problem 4:

You are given the task of writing a function with the following prototype:

/ *
* Generate mask indicating rightmost 1 in x.

* For example 0xFF00 -> 0x0100, and 0x6600 --> 0x0200.

* If x = 0, then return 0.

* /
int rightmost_one(unsigned x);



4

If argumentx equals 0, this function returns 0. Otherwise, it returns a mask consisting of a single one in
the same position as the least significant bit with value 1 inx .

Having just learned how to negate a number based on its bit-level representation, you realize this function
can be written as a very simple expression having just two operations. Show the code.

Practice Problem 5:

We saw in Web Aside DATA:TMIN that trying to writeTMin32 as an integer constant can expose some
nuances of the C language, with results possibly depending on language version and word size.

Now that we are familiar with integer arithmetic, we can explore other possible ways of writing this
constant. Below are six different expressions

2147483647 + 1 / * A. * /
0x7FFFFFFF + 1 / * B. * /
2147483649 - 1 / * C. * /
0x80000001 - 1 / * D. * /

-(2147483649 - 1) / * E. * /
-(0x80000001 - 1) / * F. * /

Suppose that we compile the code on a machine that uses a 32-bit, two’s complement representation of
data typeint , and that the compiler implements ISO-C99. For each of these, determine:

1. What would be the resulting data type of the expression?

2. What would be the resulting numeric value?

3. Would we getTMin32 if we cast the value to typeint ?

Practice Problem 6:

We claimed that we could generate the two’s complement negation of a numberx, having bit-level
representation~x, by finding bit positionk such that~x has the formxw−1, xw−2, . . . , xk+1, 1, 0, . . .0
The negation is then written in binary form as[˜ xw−1, ˜ xw−2, . . . ˜ xk+1, 1, 0, . . . , 0].

Show that the resulting value indeed has value- t
32 x.

Solutions to Problems

Problem 1 Solution: [Pg. 2]

~x ˜ ~x incr(˜ ~x)

[01101] 13 [10010] −14 [10011] −13
[01110] 14 [10001] −15 [10010] −14
[11000] −8 [00111] 7 [01000] 8
[11111] −1 [00000] 0 [00001] 1
[10000] −16 [01111] 15 [10000] −16



5

Problem 2 Solution: [Pg. 3]

This problem provides a chance to rework the proof that complementing and incrementing performs nega-
tion.

We make use of the property that two’s complement addition isassociative, commutative, and has additive
inverses. Using C notation, if we definey to bex-1 , then we havẽy+1 equal to-y , and hencẽy equals
-y-1 . Substituting gives the expression-(x-1)-1 , which equals-x .

Problem 3 Solution: [Pg. 3]

Below, we highlight the pattern1, 0, . . . , 0 in bit vector~x in italics.

x −x

[01101 ] 13 [10011 ] −13
[01110 ] 14 [10010 ] −14
[11000 ] −8 [01000 ] 8
[11111 ] −1 [00001 ] 1
[10000 ] −16 [10000 ] −16

Problem 4 Solution: [Pg. 3]

We have seen thatx and-x have identical bit-level representations from the least significant bit up to the
first bit having value 1, and beyond this they are complementary. Thus, the function can be written as:

/ *
* Generate mask indicating rightmost 1 in x.

* For example 0xFF00 -> 0x0100, and 0x6600 --> 0x200.

* If x = 0, then return 0.

* /
int rightmost_one(unsigned x) {

/ *
* Rightmost portions of x and -x

* are identical up to first 1

* /
return (x & -x);

}

Problem 5 Solution: [Pg. 4]

A. Since2147483647 is the decimal representation ofTMax 32, the compiler would represent it as a
value of typeint . Adding 1 would cause an overflow toTMin32, and hence the expression yields
type int and value−2,147,483,648. Casting this toint would have no further effect.

B. Since0x7FFFFFFF is the hexadecimal representation ofTMax 32, we would get the same result as
in A: an int with value−2,147,483,648. Casting this toint would have no further effect.

C. Since 2,147,483,649 is larger thanTMax 32, the compiler would find an alternate data type, select-
ing data typelong long as a result. We would therefore get data typelong long and value



6

+2,147,483,648, having hexadecimal representation0x0000000080000000 . Casting it toint
would remove the 32 leading 0 bits, yieldingTMin32.

D. 0x80000001 is the hexadecimal representation of 2,147,483,649. As with C, the compiler would
find an alternate data type, selecting data typeunsigned as a result. We would therefore get data
typeunsigned and value+2,147,483,648, having hexadecimal represntation0x80000000 . When
we cast this toint , we have valueTMin32.

E. As we saw in C, the expression within the parentheses generates data typelong long and value
+2,147,483,648, having hexadecimal representation0x0000000080000000 . Negating this value
yields−2,147,483,648, having hexadecimal representation0xFFFFFFFF80000000 . Casting this
to int yields removes the 32 leading 1 bits, yieldingTMin32.

F. As we saw in D, the expression within the parentheses generates data typeunsigned and value
+2147483648 (hexadecimal representation0x80000000 ). Negating this value yields−2,147,483,648,
also having hexadecimal representation0x80000000 . Casting this toint yieldsTMin32.

Thus, we see that both expressions A and B are alternative ways to writeint constantTMin32, and that all
of them yield the correct value when cast to data typeint .

Problem 6 Solution: [Pg. 4]

This problem requires elementary reasoning about bit-level representations.

The correctness of this technique follows directly from thecomplement-and-increment rule. Performing the
bit-wise complement of~x yields [˜ xw−1, ˜ xw−2, . . . ˜ xk+1, 0, 1, . . . , 1]. Incrementing according to our
rule incr then converts the low-orderk + 1 bits to1, 0, . . . , 0.


