CS:APP Web Aside DATA:TNEG:
Bit-Level Representation of Two’s Complement Negation

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published beiftice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available @sapp. cs. crmu. edu.

This document is being made available to the public, sultigecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevighout attribution.

1 Introduction

There are several clever ways to determine the two’s congaiémegation of a value represented at the
bit level. These techniques are both useful, such as whermc®unters the valuexfffffffa when
debugging a program, and they lend insight into the natutbeofwo’s complement representation.

2 Complement and I ncrement

One technique for performing two’s-complement negatiothatbit level is to complement the bits and
then increment the result. In C, this can be writtefdas+t 1 . To justify the correctness of this technique,
observe that for any single hit, we haveé x; = 1—z;. LetZ be a bit vector of lengtlw andz = B2T (%)
be the two’s-complement number it represents. By EquatiSrABP2e-2.3, the complemented bit vector
~ & has numeric value

w—2

B2T (") = —(1—myp1)2" "4+) (1 —)2
i=0

*Copyright(© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

z "z incr(” T)
0101] 5| [1010] —6] [101] -5
0111] 7| [1000] —8 | [1001] -7
[1100] —4| [0011] 3| [o100] 4
0000] O [1111] -1 [0000] O
[1000] —8 | [0111] 7| [1000] -8

Figure 1.Examples of complementing and incrementing four-bit numbers. The effect is to compute
the two’s value negation.

-2 -2
= [—2w1+w§ 21 — [—x g1 w§ 2!
= w—1 + Z;
=0 =0

= [-2v 42wl 1] — B2T,(%)

= —1—-2

The key simplification in the above derivation is t@@”:_f 2t = 2v=1 _ 1, It follows that by incrementing
"~ I we obtain—z.

To increment a number represented at the bit-level @s= [x,,—1, 2y -2, - - ., Zo], define the operatiotmcr

as follows. Let: be the position of the rightmost zero, such th of the form[z,,—1, -2, . . ., Tk11,0,1, ..., 1].
We then defingncr () to be[xy—1, xy—2,...,Tk11,1,0,...,0]. For the special case where the bit-level
representation of is [1,1,...,1], defineincr(Z) to be|0,...,0]. As illustrations, Figure 1 shows how
complementing and incrementing affect the numeric valdiesgweral four-bit vectors.

To show thatincr(Z) yields the bit-level representation oft!, 1, consider the following cases:

1. When? = [1,1,...,1], we haver = —1. The incremented valugcr(z) = [0, ...,0] has numeric
valueO.
2. Whenk = w —1,i.e.,# =[0,1,...,1], we haver = TMaz,,. The incremented valugucr(z) =

[1,0,...,0] has numeric valu&Min,,. From Equation CS:APP2e-2.14, we can see iz, +!, 1
is one of the positive overflow cases, yieldifi@d/in.,.

3. Whenk < w — 1,i.e.,x # TMaz,, andz # —1, we can see that the low-order+ 1 bits of incr ()
has numeric valug®, while the low-orderk + 1 bits of # has numeric valug_F— 2! = 2 — 1. The
high-orderw — k + 1 bits have matching numeric values. Thits;r(Z) has numeric value + 1. In
addition, forx # TMax,,, adding 1 tor will not cause an overflow, and henget, 1 has numeric
valuex + 1 as well.

Practice Problem 1:

Fill in the following table showing the effects of complentiaig and incrementing several five-bit vectors
in the style of Figure 1. Show both the bit vectors and the mimwvalues.

8
&

iner (T)

01101
01110
11000
11111
[10000]

Practice Problem 2

Show that first decrementing and then complementing is atpnvto complementing and then incre-
menting. That is, for any signed value the C expressions<, "x+1 , and™(x-1) yield identical
results. What mathematical properties of two’s-completraedition does your derivation rely on?

Complement Upper Bits

Another way to perform two’s complement negation of a numbés based on its bit-level representa-
tion. Letk be the position of the rightmost 1, so that the bit-level representation af has the form

[Tw—1, Tw—2,--.,Tk+1,1,0,...0]. (This is possible as long as # 0.) The negation is then written in
binary form ag” zy—1,” xy—2,... " zr41,1,0,...,0]. Thatis, we complement each bit to the left of bit
positionk. Showing that the resulting value indeed has valygr is left as an exercise (Problem 6.)
We illustrate this idea with some 4-bit numbers, where wélight the rightmost pattern, 0,...,0 in
italics:
X —X

[1100] —4 | [0100] 4

[1000] -8 | [1000] -8

[0101] 5| [1011] -5

[0117] 7| [1001] -7

Practice Problem 3:

Show how the bit-level negation procedure applies to thengkas of Problem 1. That is, 1) determine
the bit positiork of the rightmost 1, and 2) apply the rule of complementindiiteto the left of position
k.

Practice Prablem 4:
You are given the task of writing a function with the followjiprototype:

| x

* Generate mask indicating rightmost 1 in x.

* For example OxFFOO -> 0x0100, and 0x6600 --> 0x0200.
* If x = 0, then return 0.

*/

int rightmost_one(unsigned x);

If argumentx equals 0, this function returns 0. Otherwise, it returns akmeansisting of a single one in
the same position as the least significant bit with valuex. in

Having just learned how to negate a number based on itsu@tdlepresentation, you realize this function
can be written as a very simple expression having just twoatipas. Show the code.

Practice Problem 5:

We saw in Web Aside DATA:TMIN that trying to writ&Min 3, as an integer constant can expose some
nuances of the C language, with results possibly dependitgnguage version and word size.

Now that we are familiar with integer arithmetic, we can @xplother possible ways of writing this
constant. Below are six different expressions

2147483647 + 1 | + A. */
OX7TFFFFFFF + 1 [B. =/
2147483649 - 1 | * C. */
0x80000001 - 1/ = D. */
(2147483649 - 1) | = E. =/
-(0x80000001 - 1) / = F. =/

Suppose that we compile the code on a machine that uses &, 32d¥ complement representation of
data typent , and that the compiler implements ISO-C99. For each of {tdetermine:

1. What would be the resulting data type of the expression?

2. What would be the resulting numeric value?

3. Would we getT'Min s, if we cast the value to typiat ?

Practice Problem 6:

We claimed that we could generate the two’s complement iegaf a numberr, having bit-level
representatior¥, by finding bit positionk such that? has the forme,,—1, z4—2,...,2k4+1,1,0,...0
The negation is then written in binary form s, —1,” ©w—2,..." zky1,1,0,...,0].

Show that the resulting value indeed has valiygz.

Solutionsto Problems

Problem 1 Solution: [Pg. 2]

z " F incr(T X)
[01101] 13 | [10010] —14 | [10011] —13
01110] 14 | [10001] —15 | [10010] —14
[11000] -8 | [00111] 7 |[01000] 8
[11111] —1|[00000] O | [00001] 1
[10000] —16 | [01111] 15 | [10000] —16

Problem 2 Solution: [Pg. 3]

This problem provides a chance to rework the proof that cemphting and incrementing performs nega-
tion.

We make use of the property that two’s complement additi@ssociative, commutative, and has additive
inverses. Using C notation, if we defigeo bex-1 , then we havéy+1 equal to-y , and hencéy equals
-y-1 . Substituting gives the expressigix-1)-1 , which equalsx .

Problem 3 Solution: [Pg. 3]

Below, we highlight the patterh, 0, ..., 0 in bit vector in italics.
X —X
[01101] 13 | [10011] —13
[01170] 14 | [10010] —14
[11000] -8 | [01000] 8
[11117] =1 | [00001] 1
[10000] —16 | [10000] —16

Problem 4 Solution: [Pg. 3]

We have seen that and-x have identical bit-level representations from the leagtificant bit up to the
first bit having value 1, and beyond this they are complenmgniahus, the function can be written as:

| *
* Generate mask indicating rightmost 1 in Xx.
* For example OxFFOO -> 0x0100, and 0x6600 --> 0x200.
* |f x = 0, then return O.
*/
int rightmost_one(unsigned x) {

| *

* Rightmost portions of x and -x

* are identical up to first 1

*/

return (X & -X);

Problem 5 Solution: [Pg. 4]

A. Since2147483647 is the decimal representation 6#Max3s, the compiler would represent it as a
value of typeint . Adding 1 would cause an overflow tBMinso, and hence the expression yields
typeint and value-2,147,483,648. Casting thisiiat would have no further effect.

B. SinceOx7FFFFFFF is the hexadecimal representation@¥/azx 35, we would get the same result as
in A: anint with value—2,147,483,648. Casting thisitat would have no further effect.

C. Since 2,147,483,649 is larger thdid/azx 3o, the compiler would find an alternate data type, select-
ing data typdong long as a result. We would therefore get data typeg long and value

+2,147,483,648, having hexadecimal representddix®00000080000000 . Casting it toint
would remove the 32 leading 0 bits, yieldidg\/ins>.

D. 0x80000001 is the hexadecimal representation of 2,147,483,649. As @jtthe compiler would
find an alternate data type, selecting data typsigned as a result. We would therefore get data
typeunsigned and valuet+2,147,483,648, having hexadecimal represntadx80000000 . When
we cast this tant , we have valuel’Minss.

E. As we saw in C, the expression within the parentheses gsedata typéong long and value
+2,147,483,648, having hexadecimal representdad@000000080000000 . Negating this value
yields —2,147,483,648, having hexadecimal representadidA-FFFFFF80000000 . Casting this
toint yields removes the 32 leading 1 bits, yieldifi@/inss.

F. As we saw in D, the expression within the parentheses gwsedata typeinsigned and value
+2147483648 (hexadecimal representatiOm80000000). Negating this value yields2,147,483,648,
also having hexadecimal representatix80000000 . Casting this tant yields T'Minss.

Thus, we see that both expressions A and B are alternative teayriteint constantl’Mins,, and that all
of them yield the correct value when cast to data tiype .

Problem 6 Solution: [Pg. 4]

This problem requires elementary reasoning about bit-ley@esentations.

The correctness of this technique follows directly fromdbenplement-and-increment rule. Performing the
bit-wise complement of yields [~ zy—1,” Zw—2,... zr4+1,0,1,...,1]. Incrementing according to our
rule incr then converts the low-ordér+ 1 bits to1,0, ..., 0.

