CS:APP Web Aside DATA:TMIN:
Writing T'Min in C*

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published byektice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available @asapp. cs. crmu. edu.

This document is being made available to the public, sulbecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevighout attribution.

1 The Situation

In Figure CS:APP2e-2.18 and in Problem CS:APP2e-2.21, wefudly wrote the value ofT'Minsy as
-2147483647- 1. Why not simply write it as either2147483648 or 0x80000000? Looking at the
C header fild i m t s. h, we see that they use a similar method as we have to Wiféns> and TMax3s:

/* M ni mum and maxi num val ues a ‘signed int’ can hold. */
#defi ne | NT_MAX 2147483647
#define INT_MN (-1 NT_MAX - 1)

Unfortunately, a curious interaction between the asymynefiithe two’s complement representation and
the conversion rules of C force us to wrif@/inss in this unusual way. Although understanding this issue
requires us to delve into one of the murkier corners of thenguage standards, it will help us appreciate
some of the subtleties of integer data types and repregmsmat

Consider the case of writingMins, as- 2147483648 and compiling the code on a 32-bit machine, using
the data sizes shown in Figure CS:APP2e-2.8. When the cergritounters a number of the fornk, it
first determines the data type and value Jorand then negates it. The value 2,147,483,648 is too large to

*Copyright(© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

ISO C90 ISO C99
Decimal Hexadecimal Decimal Hexadecima
i nt i nt i nt i nt
| ong unsi gned | ong unsi gned
unsi gned | ong | ong | ong | ong
unsi gned | ong unsi gned | ong unsi gned | ong
| ong | ong
unsi gned | ong | ong

Figure 1:Data types for representing integer constants. According to the language version and format
(decimal or hexadecimal), the data type for a constant is given by the first type in the appropriate list that
can represent the value.

Word Size ISO C90 ISO C99
Expression| - 2147483648 | 0x80000000 | - 2147483648 | 0x80000000
32 unsi gned unsi gned I ong | ong unsi gned
64 | ong unsi gned | ong unsi gned

Figure 2: Data types resulting from constant expressions for TMinss. According to the language
version and format (decimal or hexadecimal), we can get three different data types for the two expressions,
including cases where the value is positive.

represent as annt , since this value is one larger thdi/azx 3, (the asymmetry strikes!). The compiler tries
to determine a data type that can represent this value pyoeproceeds down one of the lists shown for
the decimal cases in Figure 1, depending on the languagenreFor the case of ISO C90, it proceeds from

i nt tol ongtounsi gned, only then finding a data type that can represent the numhér 283,648. As
we will see in CS:APP2e-2.3.3, values 2,147,483,648-a2d47,483,648 have the same bit representations
as 32-bit numbers, and so the resulting constant has dataityg gned and value2147483648. For

the case of ISO C99, the compiler proceeds fiamh tol ong tol ong | ong, finally finding a data type
that can represent the number 2,147,483,648. With 64 béagam uniquely represent both 2,147,483,648
and—2,147,483,648, and so the resulting constant has datd typg | ong and value 2147483648.

For hexadecimal constai®x80000000 on a 32-bit machine, the compiler proceeds in a similar fash-
ion, following one of the lists for the hexadecimal casesiguFe 1. For both language versions, it first
compares the number t6Maz3s (0x7FFFFFFF) and, since it is larger, decides that the value cannot be
represented as amt . It next compares the number tdMaz 32 (OXFFFFFFFF) and, since it is smaller,
chooses amnsi gned representation. It therefore yields a constant with dgte ynsi gned and value
0x80000000 (or, equivalently, 2,147,483,648).

Things work a bit differently on a 64-bit machine. For bothdaage versions, the decimal form yields
a constant with data typeong (64-bits) and value-2,147,483,648, while the hexadecimal form yields a
constant with typeinsi gned and valueDx80000000 (or, equivalently, 2,147,483,648).

All of these variations can be summarized by the table shoviAigure 2. For the cases where the result has
typel ong orl ong | ong, the constant is negative, but it is 64 bits long. For the cadeere the result

has typeunsi gned, the constant is positive and 32 bits long. These outcomebeaemonstrated by the
following code:

i nt dconp
i nt hconp

(-2147483648 < 0);
(0x80000000 < 0);

These lines of code attempt to expréBilinss as a decimal or hexadecimal constant and test whether the
value is less than zero. Depending on the compiler versidmamd size, we find that the value dEonp

can be either 0 or 1, indicating that the decimal constanteagither negative or positive, while the value
of hconp is consistently 0, indicating that the hexadecimal corissaronsistently positive. Our seemingly
simple task of writing7'Mins, as a constant is more difficult than might be expected!

Practice Problem 1:
Consider the following code:

int dtmn = -2147483648;
int dconmp2 = (dtmn < 0);
int htmn = 0x80000000;

int hconp2 = (htmin < 0);

We compile this code on both 32-bit and 64-bit machines usimjs complement representations of
integers, and we try it for both language standards ISO-@@1&0-C99. In all cases, we consistently
get valuel for bothdconmp2 andhconp2, and further tests verify thatt m n andht i n indeed
equalTMinss. Explain why this code does not have the compiler and langsagsitivities we saw for
the earlier code example.

2 Implications

For many programs, the ambiguities caused by different wizes and language standards would not affect
program behavior (for example, see Problem 1.) Nonethelessan now appreciate why the convention
of writing TMings as- 2147483647- 1 yields a more desirable result. Sin2&47483647 is the value

of TMazxss, it can be represented as iant , and hence there is no need to invoke the conversion rules of
Figure 1.

Practice Problem 2

Suppose we try to writd'Minss as- 0x7FFFFFFF- 1. Would the C compiler generate a constant of
typei nt for both 32 and 64-bit machines and for both versions of tharf@liage standard? Explain.

Practice Problem 3:

You wish to write a succinct expression féiMin.,,, wherew is the number of bits in data typeong

i nt. Since the size of this data type varies from one machine ¢than (see Figures CS:APP2e-2.8
and CS:APP2e-2.9), you decide to make use obtiheeof operation, so that the expression will yield
TMin,, as long asv is a multiple of 8. You also use a trick, to be covered in SecG@&:APP2e-2.3.6,
that shifting a number left by 3 is the same as multiplyingyi8h

Your first attempt at this code is:

/+ WARNI NG This code is buggy */
[+ Shift 1 over by 8+sizeof (long) - 1 */
1L << sizeof(long)<<3 - 1

You test your code on a 32-bit machine, and find that the exfmegvaluates to 64.

A. Explain why this happened.
B. What value would the expression yield on a 64-bit machine?
C. Make minimal modifications to the expression so that item&s correctly.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 3]

In making the assignment to integer variabidsri n andht i n, we implicitly cast the value to a 32-bit,
two’s complement integer. This yields the valu@,147,483,648 regardless of whether or not the constant
value is signed or unsigned, or whether it is 32 or 64 bits.

Problem 2 Solution: [Pg. 3]

Yes, this would work as expected regardless of word size amgliage standard. Sinf&7FFFFFFF is
equal toTMaxso, it will represent this value with data typent . The resulting expression therefore has
data typd nt .

Problem 3 Solution: [Pg. 3]

This is a classic example of failing to consider the operptecedence rules in C. As mentioned in Section
CS:APP2e-2.1.10, addition and subtraction have higheegence than shifting, and shifting associates to
the left.

A. Consider the case where data tylpeng requires 4 bytes. Then the expression is equivalent to
1 << 4 << 3 - 1,whichevaluates as1 << 4) << 2,yielding 64.

B. Whenl ong requires 8 bytes, we would hate<< 8 << 3 - 1whichevaluatesgsl << 8) << 2,
yielding 1024.

C. The problem can be fixed with just one set of parentheses:

[+ Shift 1 over by 8+sizeof (long) - 1 */
1L << (sizeof(long)<<3) - 1

We could also replacei zeof (| ong) <<3 by 8xsi zeof (| ong) , and the higher precedence of
multiplication would ensure correct expression evaluatitn fact, this would make the code more
readable, and the resulting machine-level code would beie.

