
CS:APP Web Aside DATA:TMIN:
Writing TMin in C∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 The Situation

In Figure CS:APP2e-2.18 and in Problem CS:APP2e-2.21, we carefully wrote the value ofTMin32 as
-2147483647-1. Why not simply write it as either-2147483648 or 0x80000000? Looking at the
C header filelimits.h, we see that they use a similar method as we have to writeTMin32 andTMax 32:

/* Minimum and maximum values a ‘signed int’ can hold. */
#define INT_MAX 2147483647
#define INT_MIN (-INT_MAX - 1)

Unfortunately, a curious interaction between the asymmetry of the two’s complement representation and
the conversion rules of C force us to writeTMin32 in this unusual way. Although understanding this issue
requires us to delve into one of the murkier corners of the C language standards, it will help us appreciate
some of the subtleties of integer data types and representations.

Consider the case of writingTMin32 as-2147483648 and compiling the code on a 32-bit machine, using
the data sizes shown in Figure CS:APP2e-2.8. When the compiler encounters a number of the form-X, it
first determines the data type and value forX and then negates it. The value 2,147,483,648 is too large to

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

ISO C90 ISO C99
Decimal Hexadecimal Decimal Hexadecimal

int int int int
long unsigned long unsigned
unsigned long long long long
unsigned long unsigned long unsigned long

long long
unsigned long long

Figure 1:Data types for representing integer constants. According to the language version and format
(decimal or hexadecimal), the data type for a constant is given by the first type in the appropriate list that
can represent the value.

Word Size ISO C90 ISO C99
Expression -2147483648 0x80000000 -2147483648 0x80000000
32 unsigned unsigned long long unsigned
64 long unsigned long unsigned

Figure 2: Data types resulting from constant expressions for TMin32. According to the language
version and format (decimal or hexadecimal), we can get three different data types for the two expressions,
including cases where the value is positive.

represent as anint, since this value is one larger thanTMax 32 (the asymmetry strikes!). The compiler tries
to determine a data type that can represent this value properly. It proceeds down one of the lists shown for
the decimal cases in Figure 1, depending on the language version. For the case of ISO C90, it proceeds from
int tolong tounsigned, only then finding a data type that can represent the number 2,147,483,648. As
we will see in CS:APP2e-2.3.3, values 2,147,483,648 and−2,147,483,648 have the same bit representations
as 32-bit numbers, and so the resulting constant has data type unsigned and value2147483648. For
the case of ISO C99, the compiler proceeds fromint to long to long long, finally finding a data type
that can represent the number 2,147,483,648. With 64 bits, we can uniquely represent both 2,147,483,648
and−2,147,483,648, and so the resulting constant has data typelong long and value-2147483648.

For hexadecimal constant0x80000000 on a 32-bit machine, the compiler proceeds in a similar fash-
ion, following one of the lists for the hexadecimal cases in Figure 1. For both language versions, it first
compares the number toTMax 32 (0x7FFFFFFF) and, since it is larger, decides that the value cannot be
represented as anint. It next compares the number toUMax 32 (0xFFFFFFFF) and, since it is smaller,
chooses anunsigned representation. It therefore yields a constant with data typeunsigned and value
0x80000000 (or, equivalently, 2,147,483,648).

Things work a bit differently on a 64-bit machine. For both language versions, the decimal form yields
a constant with data typelong (64-bits) and value−2,147,483,648, while the hexadecimal form yields a
constant with typeunsigned and value0x80000000 (or, equivalently, 2,147,483,648).

All of these variations can be summarized by the table shown in Figure 2. For the cases where the result has
typelong or long long, the constant is negative, but it is 64 bits long. For the cases where the result



3

has typeunsigned, the constant is positive and 32 bits long. These outcomes can be demonstrated by the
following code:

int dcomp = (-2147483648 < 0);
int hcomp = (0x80000000 < 0);

These lines of code attempt to expressTMin32 as a decimal or hexadecimal constant and test whether the
value is less than zero. Depending on the compiler version and word size, we find that the value ofdcomp
can be either 0 or 1, indicating that the decimal constant canbe either negative or positive, while the value
of hcomp is consistently 0, indicating that the hexadecimal constant is consistently positive. Our seemingly
simple task of writingTMin32 as a constant is more difficult than might be expected!

Practice Problem 1:

Consider the following code:

int dtmin = -2147483648;
int dcomp2 = (dtmin < 0);
int htmin = 0x80000000;
int hcomp2 = (htmin < 0);

We compile this code on both 32-bit and 64-bit machines usingtwo’s complement representations of
integers, and we try it for both language standards ISO-C90 and ISO-C99. In all cases, we consistently
get value1 for bothdcomp2 andhcomp2, and further tests verify thatdtmin andhtmin indeed
equalTMin32. Explain why this code does not have the compiler and language sensitivities we saw for
the earlier code example.

2 Implications

For many programs, the ambiguities caused by different wordsizes and language standards would not affect
program behavior (for example, see Problem 1.) Nonetheless, we can now appreciate why the convention
of writing TMin32 as-2147483647-1 yields a more desirable result. Since2147483647 is the value
of TMax 32, it can be represented as anint, and hence there is no need to invoke the conversion rules of
Figure 1.

Practice Problem 2:

Suppose we try to writeTMin32 as-0x7FFFFFFF-1. Would the C compiler generate a constant of
typeint for both 32 and 64-bit machines and for both versions of the C language standard? Explain.

Practice Problem 3:

You wish to write a succinct expression forTMinw, wherew is the number of bits in data typelong
int. Since the size of this data type varies from one machine to another (see Figures CS:APP2e-2.8
and CS:APP2e-2.9), you decide to make use of thesizeof operation, so that the expression will yield
TMinw as long asw is a multiple of 8. You also use a trick, to be covered in Section CS:APP2e-2.3.6,
that shifting a number left by 3 is the same as multiplying it by 8.

Your first attempt at this code is:



4

/* WARNING: This code is buggy */
/* Shift 1 over by 8*sizeof(long) - 1 */
1L << sizeof(long)<<3 - 1

You test your code on a 32-bit machine, and find that the expression evaluates to 64.

A. Explain why this happened.

B. What value would the expression yield on a 64-bit machine?

C. Make minimal modifications to the expression so that it evaluates correctly.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 3]

In making the assignment to integer variablesdtmin andhtmin, we implicitly cast the value to a 32-bit,
two’s complement integer. This yields the value−2,147,483,648 regardless of whether or not the constant
value is signed or unsigned, or whether it is 32 or 64 bits.

Problem 2 Solution: [Pg. 3]

Yes, this would work as expected regardless of word size and language standard. Since0x7FFFFFFF is
equal toTMax 32, it will represent this value with data typeint. The resulting expression therefore has
data typeint.

Problem 3 Solution: [Pg. 3]

This is a classic example of failing to consider the operatorprecedence rules in C. As mentioned in Section
CS:APP2e-2.1.10, addition and subtraction have higher precedence than shifting, and shifting associates to
the left.

A. Consider the case where data typelong requires 4 bytes. Then the expression is equivalent to
1 << 4 << 3 - 1, which evaluates as(1 << 4) << 2, yielding 64.

B. Whenlong requires 8 bytes, we would have1 << 8 << 3 - 1which evaluates as(1 << 8) << 2,
yielding 1024.

C. The problem can be fixed with just one set of parentheses:

/* Shift 1 over by 8*sizeof(long) - 1 */
1L << (sizeof(long)<<3) - 1

We could also replacesizeof(long)<<3 by 8*sizeof(long), and the higher precedence of
multiplication would ensure correct expression evaluation. In fact, this would make the code more
readable, and the resulting machine-level code would be identical.


