
CS:APP2e Web Aside ASM:SSE:
SSE-Based Support for Floating Point∗

Randal E. Bryant
David R. O’Hallaron

August 5, 2014

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Introduction

The floating-point architecturefor a processor consists of the different aspects that affect how programs
operating on floating-point data are mapped onto the machine, including:

• How floating-point values are stored and accessed. This is typically via some form of registers.

• The instructions that operate on floating-point data.

• The conventions used for passing floating-point values as arguments to functions, and for returning
them as results.

In this document, we will describe the floating-point architecture for x86 processors known asSSE.

Since the introduction of the Pentium MMX in 1997, both Inteland AMD have incorporated successive
generations ofmediainstructions to support graphics and image processing. Starting with the Pentium III in
1999, these instructions have been known asSSE, for “Streaming SIMD Extensions.” In its original form,
SSE did not support double-precision floating-point arithmetic, but since the introduction of SSE2 with the

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

2

Pentium 4 (2000), SSE provides a viable mechanism for implementing both single and double-precision
floating-point arithmetic. We will use the term “SSE2+” to denote the floating-point support provided by
SSE versions 2 and higher.

All processors capable of executing x86-64 code support SSE2 or higher, and hence x86-64 floating-
point is based on SSE, including conventions for passing procedure arguments and return values [3]. For
IA32, GCC must be explicitly commanded to generate SSE code using bothcommand-line parameters
‘ -mfpmath=sse ’ and ‘-msse2 ’ (or ‘ -msse3 ’ or higher if the machine supports more recent versions of
SSE.) Even then, the code remains compatible with IA32 conventions for passing function arguments and
return values.

The media instructions originally focused on allowing multiple operations to be performed in a parallel
mode known assingle instruction, multiple dataor SIMD (pronounced SIM-DEE). In this mode the same
operation is performed on a number of different data values in parallel. The media instructions implement
SIMD operations by having a set of registers that can hold multiple data values inpackedformat. SSE2+
provides either eight (with IA32) or sixteen (with x86-64)XMM registers of 128 bits each, named%xmm0,
%xmm1, and so on, up to either 7 or 15. Each one of these registers canhold a vector ofK elements ofN bits
each, such thatK×N = 128. For integers,N can be 8, 16, 32, or 64 bits, while for floating-point numbers,
N can be 32 or 64. For example, a single SSE instruction can add two byte vectors of eight elements each,
while another can multiply two vectors, each containing four single-precision floating point numbers. The
floating-point formats match the IEEE standard formats for single and double-precision values. The major
use of these media instructions are in library routines for graphics and image processing. These routines
can be written in assembly code, or by using special extensions to C supported byGCC, as is covered in
Web Aside OPT:SIMD. There has been considerable effort to enable compilers to extract parallelism from
sequential programs, including theAutovectorization Projectin GCC [4], but so far their capabilities have
proved limited.

With SSE2 came the opportunity to completely change the way floating-point code is compiled for x86
processors. As described in Web Aside ASM:X87, floating point was historically implemented in IA32
based on a floating-point architecture dating back to the 8087, a floating-point coprocessor for the Intel
8086. With this architecture, often referred to as “x87,” floating-point data are held in a shallow stack
of registers, and the floating-point instructions push and pop stack values. This is a difficult target for
optimizing compilers. The architecture also has many quirks due to a nonstandard 80-bit floating-point
format, as described in Web Aside DATA:IA32-FP.

The SSE2+ instructions include a set of instructions to operate onscalar floating-point data, using single
values in the low-order 32 or 64 bits of XMM registers, This scalar mode provides a set of registers and
instructions that are more typical of the way other processors support floating point. For compilation on
x86-64 and for suitably configured IA32 machines,GCC now maps the floating-point data and operations of
a source program into SSE code.

This section describes the implementation of floating pointbased on SSE2+. We mostly use x86-64 code in
our examples but also illustrate how code generated for IA32can make use of SSE. Readers may wish to
refer to the Intel documentation for the individual instructions [1, 2]. As with integer operations, note that
the ATT format we use in our presentation differs from the Intel format used in these documents.

3

2 Floating-Point Movement and Conversion Operations

Instruction Source Destination Description
movss M32/X X Move single precision
movss X M32 Move single precision
movsd M64/X X Move double precision
movsd X M64 Move double precision
cvtss2sd M32/X X Convert single to double precision
cvtsd2ss M64/X X Convert double to single precision
cvtsi2ss M32/R32 X Convert integer to single precision
cvtsi2sd M32/R32 X Convert integer to double precision
cvtsi2ssq M64/R64 X Convert quadword integer to single precision
cvtsi2sdq M64/R64 X Convert quadword integer to double precision
cvttss2si X/M32 R32 Convert with truncation single precision to integer
cvttsd2si X/M64 R32 Convert with truncation double precision to integer
cvttss2siq X/M32 R64 Convert with truncation single precision to quadword integer
cvttsd2siq X/M64 R64 Convert with truncation double precision to quadword integer
X: XMM register (e.g.,%xmm3)
R32: 32-bit general-purpose register (e.g.,%eax)
R64: 64-bit general-purpose register (e.g.,%rax)
M32: 32-bit memory range
M64: 64-bit memory range

Figure 1:Scalar floating-point movement and conversion operations. These operations transfer values
between memory and registers, possibly converting between data types.

Figure 1 shows a set of instructions for transferring data and for performing conversions between floating-
point and integer data types. These are allscalar instructions, meaning that they operate on individual,
rather than packed, data values. Floating-point data are held either in memory (indicated in the table as
M32 andM64) or in XMM registers (shown in the table asX). Integer data are held either in memory
(indicated in the table asM32 or M64) or in general-purpose registers (shown in the table asR32 andR64).
These instructions will work correctly regardless of the alignment of data, although the code optimization
guidelines recommend that 32-bit memory data satisfy a 4-byte alignment, and that 64-bit data satisfy an
8-byte alignment.

The floating-point movement operations can transfer data from register to register, from memory to register
and from register to memory. As is true for the integer case, asingle floating-point instruction cannot move
data from memory to memory. The floating-point conversion operations have either memory or a register
as source and a register as destination, where the registersare general-purpose registers for integer data and
XMM registers for floating-point data. The instructions, such ascvttss2si , for converting floating-point
values to integers use truncation, always rounding values toward zero, as is required by C and most other
programming languages.

As an example of the different floating-point move and conversion operations, consider the following C
function:

4

double fcvt(int i, float * fp, double * dp, long * lp)
{

float f = * fp; double d = * dp; long l = * lp;

* lp = (long) d;

* fp = (float) i;

* dp = (double) l;
return (double) f;

}

and its associated x86-64 assembly code

x86-64 implementation of fcvt

Arguments:

i %edi int

fp %rsi float *

dp %rdx double *
lp %rcx long *

1 fcvt:
2 movss (%rsi), %xmm0 Get f = *fp

3 movq (%rcx), %r8 Get l = *lp

4 cvttsd2siq (%rdx), %rax Get d = *dp and convert to long

5 movq %rax, (%rcx) Store at lp

6 cvtsi2ss %edi, %xmm1 Convert i to float

7 movss %xmm1, (%rsi) Store at fp

8 cvtsi2sdq %r8, %xmm1 Convert l to double

9 movsd %xmm1, (%rdx) Store at dp

10 cvtss2sd %xmm0, %xmm0 Convert f to double

11 ret Return f

All of the arguments tofcvt are passed through the general-purpose registers, since they are either integers
or pointers. The return value is returned in register%xmm0, the designated return register forfloat or
double values. In this code, we see a number of the movement and conversion instructions of Figure 1.

By comparison, the following is the IA32 code for body of function fcvt :

IA32+SSE implementation of fcvt

Arguments:

i %edp+8 int

fp %ebp+12 float *

dp %ebp+16 double *
lp %ebp+20 long *

1 movl 12(%ebp), %ebx Get fp

2 movl 16(%ebp), %esi Get dp

3 movl 20(%ebp), %edx Get lp

4 movss (%ebx), %xmm1 Get f = *fp

5 movl (%edx), %ecx Get l = *lp

6 cvttsd2si (%esi), %eax Get d = *dp and convert to long

7 movl %eax, (%edx) Store at dp

8 cvtsi2ss 8(%ebp), %xmm0 Get i and convert to float

9 movss %xmm0, (%ebx) Store at *fp

5

10 cvtsi2sd %ecx, %xmm0 Convert l to double

11 movsd %xmm0, (%esi) Store at dp

12 cvtss2sd %xmm1, %xmm1 Convert f to double

13 movsd %xmm1, -16(%ebp) Store in memory

14 fldl -16(%ebp) Read from memory and push onto x87 stack

The main difference with the IA32 code is that all arguments are passed on the stack. The function must
first load the arguments into registers before it can access the function data. Note also the use of the
cvttsd2si instruction (line 6) to convert the double-precision to data type long , whereas the x86-64
code used acvttsd2siq instruction (line 4). For IA32, bothint and long are four bytes long. A
final difference is how floating-point values are returned from functions, as implemented by instructions
13–14. The x87 floating-point architecture includes a set ofeight floating-point registers organized as a
shallow stack (see ASM:X87). Any floating-point value returned from a function should be at the top
of this stack, as implemented by thefldl instruction (for double-precision) or theflds instruction (for
single-precision.) The only way to transfer data from an XMMregister to an x87 register is to first store
it to memory with an SSE instruction (line 13) and then retrieve it from memory and push it onto the x87
stack with an x87 instruction (line 14.)

Practice Problem 1:

For the following C code, the expressionsval1 –val4 all map to the program valuesi , f , d, andl :

double fcvt2(int * ip, float * fp, double * dp, long l)
{

int i = * ip; float f = * fp; double d = * dp;

* ip = (int) val1;

* fp = (float) val2;

* dp = (double) val3;
return (double) val4;

}

Determine the mapping, based on the following x86-64 code for the function:

x86-64 implementation of fcvt2

Arguments:

ip %rdi int *

fp %rsi float *
dp %rdx double *

l %rcx long

1 fcvt2:
2 movl (%rdi), %r8d
3 movss (%rsi), %xmm0
4 cvttsd2si (%rdx), %eax
5 movl %eax, (%rdi)
6 cvtsi2ss %r8d, %xmm1
7 movss %xmm1, (%rsi)
8 cvtsi2sdq %rcx, %xmm1
9 movsd %xmm1, (%rdx)

10 cvtss2sd %xmm0, %xmm0
11 ret

6

Practice Problem 2:

The following C function converts an argument of typesrc t to a return value of typedst t , where
these two types are defined usingtypedef .

dest_t cvt(src_t x)
{

dest_t y = (dest_t) x;
return y;

}

For execution on x86-64, assume argumentx is either in%xmm0or in the appropriately named portion of
register%rdi (i.e.,%rdi or %edi), and that one of the conversion instructions is to be used toperform
the type conversion and to copy the value to the appropriately named portion of register%rax (integer
result) or%xmm0(floating-point result). Fill in the following table indicating the instruction, the source
register, and the destination register for the following combinations of source and destination type:

Tx Ty Instruction S D
long double cvtsi2sdq %rdi %xmm0

double int
float double
long float

float long

3 Floating-Point Code in Procedures

With x86-64, the XMM registers are used for passing floating-point arguments to functions and for returning
floating-point values from them. Specifically, the following conventions are observed:

• Up to eight floating point arguments can be passed in XMM registers%xmm0–%xmm7. These registers
are used in the order the arguments are listed. Additional floating-point arguments can be passed on
the stack.

• A function that returns a floating-point value does so in register%xmm0.

• All XMM registers are caller saved, The callee may overwriteany of these registers without first
saving it.

When a function contains a combination of pointer, integer,and floating-point arguments, the pointers and
integers are passed in general-purpose registers, while the floating-point values are passed in XMM registers.
This means that the mapping of arguments to registers depends on both their types and their ordering. Here
are several examples:

double f1(int x, double y, long z);

7

This function would havex in %edi , y in %xmm0, andz in %rsi .

double f2(double y, int x, long z);

This function would have the same register assignment as function f1 .

double f1(float x, double * y, long * z);

This function would havex in %xmm0, y in %rdi , andz in %rsi .

Practice Problem 3:

For each of the following function declarations, determinethe register assignments for the arguments:

A. double g1(double a, long b, float c, int d);

B. double g2(int a, double * b, float * c, long d);

C. double g3(double * a, double b, int c, float d);

D. double g4(float a, int * b, float c, double d);

4 Floating-Point Arithmetic operations

Single Double Effect Description
addss addsd D ← D + S Floating-point add
subss subsd D ← D − S Floating-point subtract
mulss mulsd D ← D × S Floating-point multiply
divss divsd D ← D / S Floating-point divide
maxss maxsd D ← max(D, S) Floating-point maximum
minss minsd D ← min(D, S) Floating-point minimum

sqrtss sqrtsd D ←
√
S Floating-point square root

Figure 2:Scalar floating-point arithmetic operations. All have source S and destination D operands.

Figure 2 documents a set of scalar SSE2+ floating-point instructions that perform arithmetic operations.
Each has two operands: a sourceS, which can be either an XMM register or a memory location, anda
destinationD, which must be an XMM register. Each operation has an instruction for single-precision and
an instruction for double precision. The result is stored inthe destination register.

As an example, consider the following floating-point function:

double funct(double a, float x, double b, int i)
{

return a * x - b/i;
}

8

The x86-64 code is as follows:

x86-64 implementation of funct

Arguments:

a %xmm0 double

x %xmm1 float

b %xmm2 double

i %edi int

1 funct:
2 cvtss2sd %xmm1, %xmm1 Convert x to double

3 mulsd %xmm0, %xmm1 Multiply x by a

4 cvtsi2sd %edi, %xmm0 Convert i to double

5 divsd %xmm0, %xmm2 Compute b/i

6 movapd %xmm1, %xmm0 Copy x*a

7 subsd %xmm2, %xmm0 Subtract b/i

8 ret Return

The three floating point argumentsa, x , andb are passed in XMM registers%xmm0–%xmm2, while integer
argumenti is passed in register%edi . Conversion instructions are required to convert arguments x and
i to double (lines 2 and 4.) We will describe themovapd instruction (line 6) in Section 6. Suffice it to
say that, in this case, it copies source register%xmm1to destination register%xmm0. The function value is
returned in register%xmm0.

By comparison, refer to the x87 code for this function in Section 6 of Web Aside ASM:X7. Whereas the
x87 code involves operating on the floating-point register stack, the SSE code uses registers as individually
addressable storage locations, much as does code operatingon integer data.

Practice Problem 4:

For the following C function, the types of the four argumentsare defined bytypedef :

double funct1(arg1_t p, arg2_t q, arg3_t r, arg4_t s)
{

return p/(q+r) - s;
}

When compiled for x86-64,GCC generates the following code:

x86-64 implementation of funct1

1 funct1:
2 cvtsi2ss %edi, %xmm3
3 cvtsi2ssq %rsi, %xmm2
4 addss %xmm0, %xmm2
5 divss %xmm2, %xmm3
6 cvtss2sd %xmm3, %xmm3
7 movapd %xmm3, %xmm0
8 subsd %xmm1, %xmm0
9 ret

9

Determine the possible combinations of types of the four arguments (there may be more than one.)

Practice Problem 5:

Functionfunct2 has the following prototype

double funct2(double w, int x, float y, long z);

When the function is compiled for x86-64,GCC generates the following code:

x86-64 implementation of funct2

1 funct2:
2 cvtsi2ss %edi, %xmm2
3 mulss %xmm1, %xmm2
4 cvtss2sd %xmm2, %xmm2
5 cvtsi2sdq %rsi, %xmm1
6 divsd %xmm1, %xmm0
7 subsd %xmm0, %xmm2
8 movapd %xmm2, %xmm0
9 ret

Write a C version offunct2 .

Unlike integer arithmetic operations, the SSE floating-point operations cannot have immediate values as
operands. Instead, the compiler must allocate and initialize storage for any constant values. The code then
reads the values from memory. This is illustrated by the following Celsius to Fahrenheit conversion function:

double cel2fahr(double temp)
{

return 1.8 * temp + 32.0;
}

The relevant parts of the x86-64 assembly code are as follows:

Code

x86-64 implementation of cel2fahr

Argument temp in %xmm0

1 cel2fahr:
2 mulsd .LC2(%rip), %xmm0 Multiply by 1.8

3 addsd .LC3(%rip), %xmm0 Add 32.0

4 ret
5 .LC2:
6 .long 3435973837 Low order four bytes of 1.8

7 .long 1073532108 High order four bytes of 1.8

8 .LC3:
9 .long 0 Low order four bytes of 32.0

10 .long 1077936128 High order four bytes of 32.0

10

We see that the function reads the value 1.8 from the memory location labeled.LC2 , and the value 32.0
from the memory location labeled.LC3 . Looking at the values associated with these labels, we see that
each is specified by a pair of.long declarations with the values given in decimal. How should these be
interpreted as floating-point values? Looking at the declaration labeled.LC2 , we see that the two values are
3435973837 (0xcccccccd) and1073532108 (0x3ffccccc). Since the machine uses little-endian byte
ordering, the first value gives the low-order 4 bytes, while the second gives the high-order 4 bytes. From
the high-order bytes, we can extract an exponent field of0x3ff (1023), from which we subtract a bias of
1023 to get an exponent of 0. Concatenating the fraction bitsof the two values, we get a fraction field of
0xccccccccccccd , which can be shown to be the fractional binary representation of 0.8, to which we
add the implied leading one to get 1.8.

Practice Problem 6:

Show how the numbers declared at label.LC3 encode the number 32.0.

5 Floating-Point Comparison Operations

SSE2+ provides two instructions for comparing floating-point values:

Instruction Based on Description
ucomiss S2, S1 S1 - S2 Compare single precision
ucomisd S2, S1 S1 - S2 Compare double precision

These instructions are similar to thecmpl andcmpq instructions (see CS:APP2e Section 3.6), in that they
compare operandsS1 andS2 and set the condition codes to indicate their relative values. As withcmpq,
they follow the ATT-format convention of listing the operands in reverse order. ArgumentS2 must be in an
XMM register, whileS1 can either be in an XMM register or in memory.

The floating-point comparison instructions set three condition codes: the zero flagZF, the carry flagCF,
and the parity flagPF. We did not document the parity flag in CS:APP2e Chapter 3, because it is not used in
GCC-generated x86 code. For integer operations, this flag is setwhen the most recent arithmetic or logical
operation yielded a value where the least significant byte has even parity (i.e., an even number of 1’s in the
byte). For floating-point comparisons, however, the flag is set when either operand isNaN. By convention,
any comparison in C is considered to fail when one of the arguments is aNaN, and this flag is used to detect
such a condition. For example, even the comparisonx == x yields 0 whenx is aNaN.

The condition codes are set as follows:

Ordering CF ZF PF
Unordered 1 1 1

< 1 0 0
= 0 1 0
> 0 0 0

TheUnorderedcase occurs when either of the operands isNaN. This can be detected from the parity flag.
Commonly, thejp (for “jump on parity”) instruction is used to conditionallyjump when a floating-point

11

comparison yields an unordered result. Except for this case, the values of the carry and zero flags are the
same as those for an unsigned comparison:ZF is set when the two operands are equal, andCF is set when
S1 < S2. Instructions such asja andjb are used to conditionally jump on various combinations of these
flags.

As an example of floating-point comparisons, the following Cfunction classifies argumentx according to
its relation to 0.0, returning an enumerated type as result.

typedef enum {NEG, ZERO, POS, OTHER} range_t;

range_t find_range(float x)
{

int result;
if (x < 0)

result = NEG;
else if (x == 0)

result = ZERO;
else if (x > 0)

result = POS;
else

result = OTHER;
return result;

}

Enumerated types in C are encoded as integers, and so the possible function values are: 0 (NEG), 1 (ZERO),
2 (POS), and 3 (OTHER). This final outcome occurs when the value ofx is NaN.

GCC generates the following x86-64 code forfind range :

x86-64 implementation of find_range

Argument x in %xmm0 (single precision)

1 find_range:
2 movl $0, %eax Set result = 0

3 ucomiss .LC0(%rip), %xmm0 Compare x:0

4 jp .L4 If NaN, goto nonneg

5 jb .L7 If <, goto done

6 .L4: nonneg:

7 movl $1, %eax Set result = 1

8 ucomiss .LC0(%rip), %xmm0 Compare x:0

9 jp .L8 if NaN, goto posornan

10 je .L7 If ==, goto done

11 .L8: posornan:

12 ucomiss .LC0(%rip), %xmm0 Compare x:0

13 setbe %al Set result = NaN ? 1 : 0

14 movzbl %al, %eax Zero extend

15 addl $2, %eax result += 2 (2 for >0, 3 for NaN)

16 .L7: done:

17 rep ; ret Return result

The code is somewhat arcane—it comparesx to 0.0 three times, even though the required information could
be obtained with a single comparison. Let us trace the flow of the function for the four possible comparison

12

results.

x < 0.0: The jb instruction on line 5 will be taken, jumping to the end with a return value of 0.

x = 0.0: The je instruction (line 10) will be taken, jumping to the end with areturn value of 1 (set on
line 7.)

x > 0.0: No branches will be taken. Thesetbe (line 13) will yield 0, and this will be incremented by the
addl instruction (line 15) to give a return value of 2.

x = NaN : Both jp branches (lines 4 and 9) will be taken. Then thesetbe instruction (line 13) will
change the return value from 0 to 1, and this value is then incremented from 1 to 3 (line 15.)

Compared to the awkward procedure required to extract and test the floating-point status word with x87
(Web Aside ASM:X87, Section 7), the SSE instructions to conditionally compare and test values is very
similar to their counterparts for comparing and testing integers.

Practice Problem 7:

Functionfunct3 has the following prototype

double funct3(int * ap, double b, long c, float * dp);

When the function is compiled for x86-64,GCC generates the following code:

x86-64 implementation of funct3

1 funct3:
2 movss (%rdx), %xmm2
3 cvtsi2sd (%rdi), %xmm1
4 ucomisd %xmm1, %xmm0
5 jbe .L6
6 cvtsi2ssq %rsi, %xmm0
7 mulss %xmm2, %xmm0
8 cvtss2sd %xmm0, %xmm0
9 ret

10 .L6:
11 cvtsi2ssq %rsi, %xmm0
12 movaps %xmm2, %xmm1
13 addss %xmm2, %xmm1
14 addss %xmm1, %xmm0
15 cvtss2sd %xmm0, %xmm0
16 ret

Write a C version offunct3 .

13

6 Performing Common Floating-Point Operations in Uncommon Ways

At times,GCC makes surprising choices of instructions for performing common tasks. As examples, we’ve
seen how theleal instruction is often used to perform integer arithmetic (CS:APP2e Section 3.5), and the
xorl instruction is used to set registers to 0 (CS:APP2e Problem 3.10).

There are far more instructions for performing floating-point operations than we have documented here, and
some of these appear in unexpected places. We document a few such cases here.

6.1 Using Instructions for Manipulating Packed Data

Instruction Source Destination Description
movaps X X Move aligned, packed single precision
movapd X X Move aligned, packed double precision
cvtps2pd X X Convert packed single to packed double precision
cvtpd2ps X X Convert packed double to packed single precision
unpcklps X X Unpack and interleave low packed single precision
unpcklpd X X Unpack and interleave low packed double precision

Figure 3: Some packed format floating-point movement and conversion o perations. These instruc-
tions are often found in scalar code.

Figure 3 shows a number of instructions for manipulating XMMregisters containingpackedfloating-point
data, where a single XMM register holds either two double-precision or four single-precision values. We
find these instructions being used in code that operates onlyon scalar data, low-order value in an XMM
register.

Themovapd andmovaps instructions copy the entire contents of one XMM register toanother. (They can
also copy XMM register contents to and from memory, but we will not consider these cases here.) We have
already seen instances of themovapd instruction being used to copy from one XMM register to another.
For these cases, whether the program copies the entire register or just the low-order value affects neither
the program functionality nor the execution speed, and so using this instruction rather than the more natural
movsd makes no real difference.

6.2 Converting between Single and Double Precision

Some versions ofGCC generate code that uses an idiosyncratic means of converting between single and
double precision values. For example, suppose the low-order four bytes of%xmm0hold a single-precision
value, then the instructioncvtss2sd %xmm0, %xmm0 would convert it to double precision and store it
in the lower eight bytes of%xmm0. Instead, we find the following code generated byGCC:

Conversion from single to double precision

1 unpcklps %xmm0, %xmm0 Replicate first vector element

2 cvtps2pd %xmm0, %xmm0 Convert two vector elements to double

14

The instructionunpcklps instruction is normally used to interleave the values in twoXMM registers.
That is, if the source register contains words[s3, s2, s1, s0], and the destination register contains words
[d3, d2, d1, d0], then the resulting value of the destination register wouldbe [s1, d1, s0, d0]. In the code
above, we see that same register being used as source and destination, and so if the original register held
values[x3, x2, x1, x0], then the instruction would update the register to hold values [x1, x1, x0, x0]. The
cvtps2pd instruction expands the two low-order single-precision values in the source XMM register to
be the two double-precision values in the destination XMM register. Applying this to the result of the
precedingunpcklps instruction would give values[dx0, dx0], wheredx0 is the result of convertingx to
double precision. That is, the net effect of the two instructions is to convert the original single-precision
value in the low-order 4 bytes of%xmm0to double precision and store two copies of it in%xmm0. It is
unclear whyGCC generates this code. There is no benefit or need to have the value duplicated within the
XMM register.

Gcc generates similar code for converting from double to singleprecision:

Conversion from double to single precision

1 unpcklpd %xmm0, %xmm0 Replicate first vector element

2 cvtpd2ps %xmm0, %xmm0 Convert two vector elements to double

Suppose these instructions start with register%xmm0holding two double-precision values[x1, x0]. Then the
unpcklpd instruction will set it to[x0, x0]. Thecvtpd2ps will convert these values to single precision,
pack them into the low-order half or the register, and set theupper half to 0, yielding a result[0.0, 0.0, x0 , x0]
(recall that floating-point value0.0 is represented by a bit pattern of all 0s.) Again, there is no clear value in
computing the conversion from one precision to another thisway, rather than by using the single instruction
cvtsd2ss %xmm0, %xmm0. The fact that this code is generated only by some versions ofGCC and not
by others seems to indicate that it has no particular benefit.

6.3 Using Bit-Wise Operations

Single Double Effect Description
xorps xorpd D ← D ˆ S Bit-wise Exclusive-Or
andps andpd D ← D & S Bit-wise And

Figure 4:Bit-wise operations on packed data. These instructions perform Boolean operations on all 128
bits in an XMM register

Figure 4 show that we can perform bitwise operations on XMM registers, much as we can for the general-
purpose registers. In the code generated byGCC, we often see these operations being applied to an entire
XMM register, rather than just the low-order 4 or 8 bytes. These operations are often simple and convenient
ways to manipulate floating-point values, as is explored in the following problem.

Practice Problem 8:

Consider the following C function, whereEXPRis a macro defined with#define :

15

double simplefun(double x) {
return EXPR(x);

}

Below we show the SSE code generated for different definitions of EXPR, where valuex is held in
%xmm0. All of them correspond to some useful operation on floating-point values. Identify what the
operations are. Your answers will require you to understandthe bit patterns of the constant words being
retrieved from memory.

A. 1 andpd .LC1(%rip), %xmm0
2 .LC1:
3 .long 4294967295
4 .long 2147483647
5 .long 0
6 .long 0
7 .align 16

B. 1 xorpd %xmm0, %xmm0

C. 1 xorpd .LC2(%rip), %xmm0
2 .LC2:
3 .long 0
4 .long -2147483648
5 .long 0
6 .long 0

7 Final Observations

We see that the general style of machine code generated for operating on floating-point data with SSE is
similar to what we have seen for operating on integer data. Both use a collection of registers to hold and
operate on values. For x86-64 code, we also use these registers for passing function arguments.

Of course, there are many complexities in dealing with the different data types and the rules for evaluating
expressions containing a mixture of data types, but fundamentally, SSE code is more straightforward than
the x87 code historically used to implement floating-point operations on x86 machines. In addition, the
SSE code generally runs faster, since there is less need to move data back and forth between registers and
memory.

SSE also has the potential to make computations run faster byperforming parallel operations on packed
data. Compiler developers are working on automating the conversion of scalar code to parallel code, but
currently the most reliable way to achieve higher performance through parallelism is to use the extensions
to the C language supported byGCC for manipulating vectors of data. See Web Aside OPT:SIMD to see
how this can be done.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 5]

16

This exercise requires that you step through the code, paying careful attention to which conversion and data
movement instructions are used. We can see the values being retrieved and converted as follows:

• The value atdp is retrieved, converted to anint (line 4), and then stored atip . We can therefore
infer thatval1 is d.

• The value atip is retrieved, converted to afloat (line 6), and then stored atfp . We can therefore
infer thatval2 is i .

• The value ofl is converted to adouble (line 8) and stored atdp . We can therefore infer thatval3
is l

• The value atfp is retrieved, converted to adouble (line 10) and left in register%xmm0as the return
value. We can therefore infer thatval4 is f .

Problem 2 Solution: [Pg. 6]

These cases can be handled by selecting the appropriate entry from the table in Figure 1.

Tx Ty Instruction S D

long double cvtsi2sdq %rdi %xmm0
double int cvttsd2si %xmm0 %eax
float double cvtss2sd %xmm0 %xmm0
long float cvtsi2ssq %rdi %xmm0

float long cvtss2siq %xmm0 %rax

Problem 3 Solution: [Pg. 7]

The basic rules for mapping arguments to registers are fairly simple (although they become much more
complex with more and other types of arguments [3]).

A. double g1(double a, long b, float c, int d);

Registers:a in %xmm0, b in %rdi c in %xmm1, d in %esi .

B. double g2(int a, double * b, float * c, long d);

Registers:a in %edi , b in %rsi , c in %rdx , d in %rcx .

C. double g3(double * a, double b, int c, float d);

Registers:a in %rdi 0, b in %xmm0, c in %esi , d in %xmm1.

D. double g4(float a, int * b, float c, double d);

Registers:a in %xmm0, b in %rdi , c in %xmm1, d in %xmm2.

17

Problem 4 Solution: [Pg. 8]

This problem demonstrates the challenge of matching arguments to registers when we do not know the
argument data types. One strategy is to work backwards. We see that the subtraction instruction on line
8 computes the difference of registers%xmm0and%xmm1, where the former contains the result from the
instruction on the preceding line (which must be the result of computing the expressionp/(q+r) , and
the latter contains arguments . Tracing back with%xmm1, we can see that this it must hold the second
floating-point argument, and we can infer thats is of data typedouble .

The result of computing the expressionp/(q+r) gets converted from single to double precision by the
instruction of line 6, and so we can conclude that among argumentsp, q, andr there must be at least one
with data typefloat , and none with data typedouble .

We see that the first two integer arguments are converted to data typefloat on lines 2 (fromint) and 3
(from long). The former is used in the numerator in the division instruction of line 5, and hence must be
p, while the second is added to the first floating-point argument.

Fundamentally, however, there is no way to determine the relative orderings of the first floating-point argu-
ment and the second integer argument, since the addition operation of line 4 is commutative. One must be
argumentp and the other must be argument q, but there is no way to distinguish between the two.

In fact, GCC generates the exact came code when the arguments offunct1 are defined according to either
of the following two prototypes:

double funct1a(int p, float q, long r, double s);
double funct1b(int p, long q, float r, double s);

Problem 5 Solution: [Pg. 9]

This problem can readily be solved by stepping through the assembly code and determining what is com-
puted on each step, as shown with the annotations below:

1 funct2:
x86-64 implementation of funct2

Arguments:

w %xmm0 double

x %edi int

y %xmm1 float

z %rsi long

2 cvtsi2ss %edi, %xmm2 Convert x to float

3 mulss %xmm1, %xmm2 Multiply by y

4 cvtss2sd %xmm2, %xmm2 Convert x*y to double

5 cvtsi2sdq %rsi, %xmm1 Convert z to double

6 divsd %xmm1, %xmm0 Compute w/z

7 subsd %xmm0, %xmm2 Compute x*y-w/z

8 movapd %xmm2, %xmm0
9 ret

We can conclude from this analysis that the function computes y* x - w/z .

Problem 6 Solution: [Pg. 10]

18

This problem involves the same reasoning as was required to see that numbers declared at label.LC2
encode 1.8, but with a simpler example.

We see that the two values are 0 and 1077936128 (0x40400000). From the high-order bytes, we can
extract an exponent field of0x404 (1028), from which we subtract a bias of 1023 to get an exponent of 5.
Concatenating the fraction bits of the two values, we get a fraction field of 0, but with the implied leading
value giving value 1.0. The constant is therefore1.0× 25 = 32.0.

Problem 7 Solution: [Pg. 12]

Again, we annotate the code, including dealing with the conditional branch:

x86-64 implementation of funct3

Arguments:

ap %rdi int *
b %xmm0 double

c %rsi long

dp %rdx double *
1 funct3:
2 movss (%rdx), %xmm2 Get d = *dp

3 cvtsi2sd (%rdi), %xmm1 Get a = *ap and convert to double

4 ucomisd %xmm1, %xmm0 Compare b:a

5 jbe .L6 If b <= a, goto lesseq

6 cvtsi2ssq %rsi, %xmm0 Convert c to float

7 mulss %xmm2, %xmm0 Multiply by d

8 cvtss2sd %xmm0, %xmm0 Convert c*d to double

9 ret Return

10 .L6: lesseq:

11 cvtsi2ssq %rsi, %xmm0 Convert c to float

12 movaps %xmm2, %xmm1 Copy d

13 addss %xmm2, %xmm1 Compute d+d = 2*d

14 addss %xmm1, %xmm0 Compute c + 2*d

15 cvtss2sd %xmm0, %xmm0 Convert to double

16 ret Return

From this, we can write the following code forfunct3 :

double funct3(int * ap, double b, long c, float * dp) {
int a = * ap;
float d = * dp;
if (a < b)

return c * d;
else

return c+2 * d;
}

Problem 8 Solution: [Pg. 14]

A. We see here that the 16 bytes starting at address.LC1 form a mask, where the low-order 8 bytes
contain all 1’s, except for most significant bit, which is thesign bit of a double-precision value. When

19

we compute theAND of this mask with%xmm0, it will clear the sign bit ofx , yielding the absolute
value. In fact, we generated this code by definingEXPR(x) to befabs(x) , wherefabs is defined
in <math.h> .

B. We see that thexorpd instruction sets the entire register to 0, and so this is a wayto generate
floating-point constant0.0.

C. We see that the 16 bytes starting at address.LC2 form a mask with a single one bit, at the position of
the sign bit for the low-order value in the XMM register. Whenwe compute theEXCLUSIVE-OR of
this mask with%xmm0, we change the sign ofx , computing the expression-x .

References

[1] Intel Corporation.Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2: Instruction
Set Reference A–M, 2009. Order Number 253667.

[2] Intel Corporation.Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2: Instruction
Set Reference N–Z, 2009. Order Number 253668.

[3] M. Matz, J. Hubička, A. Jaeger, and M. Mitchell. System Vapplication binary interface
AMD64 architecture processor supplement. Technical report, AMD64.org, 2009. Available at
http://www.x86-64.org/ .

[4] D. Naishlos. Autovectorization in GCC. InGCC Developers Summit, 2006.

Index

NaN, floating-point not-a-number, 10
CS:APP2e , 1
%xmm0, Return floating-point value register, 4
%xmm0, return floating-point value, 6
8086, Intel 16-bit microprocessor, 2
8087, floating-point coprocessor, 2

andpd [x86-64] And packed double precision, 14
andps [x86-64] And packed single precision, 14
architecture

floating-point,1
ATT format assembly code, 2
ATT format, argument listing, 10

cvtpd2ps [x86-64] Convert packed double to packed
single precision, 13

cvtps2pd [x86-64] Convert packed single to packed
double precision, 13, 14

cvtsd2ss [x86-64] Convert single to double pre-
cision, 3

cvtsi2sd [x86-64] Convert integer to double pre-
cision, 3

cvtsi2sdq [x86-64] Convert quadword integer to
double precision, 3

cvtsi2ss [x86-64] Convert integer to single pre-
cision, 3

cvtsi2ssq [x86-64] Convert quadword integer to
single precision, 3

cvtss2sd [x86-64] Convert single to double pre-
cision, 3

cvttsd2si [x86-64] Convert double precision to
integer, 3

cvttsd2siq [x86-64] Convert double precision to
quadword integer, 3

cvttss2si [x86-64] Convert single precision to
integer, 3

cvttss2siq [x86-64] Convert single precision to
quadword integer, 3

fldd [IA32/x86-64] x87 FP load double precision,
5

flds [IA32/x86-64] x87 FP load single precision, 5

floating-point architecture,1

Intel format assembly code, 2

jp [x86-64] Jump when parity flag set, 10

MMX, Intel media extension, 1
movapd [x86-64] Move aligned, packed double pre-

cision, 13
movaps [x86-64] Move aligned, packed single pre-

cision, 13
movsd [x86-64] Move double precision, 3
movss [x86-64] Move single precision, 3

packed data format, 2
packed format data, 13

scalar format data,2, 13
SIMD, Single-Instruction Multiple Data execution, 2
SSE, Streaming SIMD Extensions,1
SSE2+, SSE versions 2 and higher, 2

ucomisd [x86-64] compare double precision, 10
ucomiss [x86-64] compare single precision, 10
Unordered, floating-point comparison outcome, 10
unpcklpd [x86-64] Unpack and interleave low packed

double precision, 13, 14
unpcklps [x86-64] Unpack and interleave low packed

single precision, 13, 14

x87, floating-point instructions for 8087, 2
XMM, SSE2+ registers, 2
xorpd [x86-64] Exclusive-or packed double preci-

sion, 14
xorps [x86-64] Exclusive-or packed single preci-

sion, 14

20

