CS:APP2e Web Aside ASM:OPT:
Machine Code Generated with Higher Levels of Optimizaétion

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published byektice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available @asapp. cs. crmu. edu.

This document is being made available to the public, sulbecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevigthout attribution.

1 Introduction

In the presentation of x86 machine code in CS:APP2e Chaptee3ooked at machine code generated
with level-one optimization (specified with the commanaklioption = O1’.) In practice, most heavily
used programs are compiled with higher levels of optimaratiFor example, all of the GNU libraries and
packages are compiled with level-two optimization, spedifivith the command-line option O2'.

Recent versions oscc employ an extensive set of optimizations at levels two amaveb These opti-
mizations can significantly improve program performancg,thbey make the mapping between source and
machine code much more difficult to discern. This can mak@itbgrams more difficult to debug. Nonethe-
less, these higher level optimizations have now becomelatenand so those who study programs at the
machine level must become familiar with the possible oations they may encounter.

In this note, we describe some of the transformations padrbyGccto achieve higher levels of program
optimization, and we explain the concepts behind them. Keepind, however, thatcc continues to
evolve and become more sophisticated. We can anticipatdutuae versions ofzcc will perform even
more extensive transformations and optimizations thanaverchere. The online documentation fecc

*Copyright(© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

[2] describes the many different optimizations tkatc performs (although without many details), and the
different command-line arguments that control code gediuera

It is important to recognize that there are other compilersx86, particularly those supported by Intel and
Microsoft. These compilers perform different optimizatiand transformations and have different code
generators. When examining the machine code generatedunyfamiliar compiler, it is important to study
the different code patterns the compiler generates. Aheftxamples we show here are compiled for IA32.
Similar optimizations are made for x86-64.

2 Instruction Reorderings

(a) C code

1int select(int x, int y, int i) {
2 int data[2] = { x, y };

3 if (i >=0 &% i < 2)

4 return datali];

5 el se

6 return O;

7

}

(b) Generated assembly code, optimizeol

Function select, optimzed -QO1
x at %bp+8, y at %bp+12, i at Y%ebp+16

1 sel ect:

Setup code
2 pushl %ebp Save frame pointer (S
3 nmov| Y%esp, %ebp Create new frame pointer (S)
4 subl $16, %esp Al locate 16 bytes on stack (S)

Body code
5 novl 16(%ebp), %edx Get i (B)
6 novl $0, %ax Set result =0 (B)
7 cnpl $1, %edx Conpare i:1 (B)
8 ja . L3 ifi <Oori >1, goto done (B)
9 movl| 8(%bp), Yeax Get x (B)
10 novl Y%eax, -8(%bp) Store in a[0] (B)
11 nov| 12(%bp), %Y%eax Get y (B)
12 nmov| Y%eax, -4(%bp) Store in a[1] (B)
13 nmov| - 8(%bp, %edx, 4), %eax Set result = a[i] (B)
14 . L3: done:

Conpl eti on code
15 | eave Restore stack and frane pointers (O
16 ret Ret urn (O

Figure 1: Sample function and generated code with level-one optimization. The code has separate
sections for setup (S), body (B), and completion (C).

In the example functions for which we have examined the aBkenode generated bgcc, there were
several patterns that made it simpler to understand the. cbdpire 1 shows an example of a simple C
function and the code generated dgc with level-one optimization. Two features are worth noting

e The code for a function has distinct sections. First, thesietupsection, where the stack frame is
created. These lines are labeled ‘(S)’ on the right-hand. sRecond, theodysection performs the
actual computations for the function, shown with lines latdé(B).” Finally, the completionsection
deallocates the space for the stack frame and restoregersgis their original values, with lines
labeled (C).

e The function has a single return point, that is, there is amgr et instruction. Regardless of any
branches in the code, all execution paths end with thisuostm.

Function select, optimzed -O3
x at %bp+8, y at %bp+12, i at Y%ebp+16

1 sel ect:

2 pushl %ebp Save frame pointer (S
3 xor | Y%eax, %eax Set result =0 (B)
4 nmov| Y%esp, %ebp Create new frame pointer (S)
5 subl $16, %esp Al l ocate 16 bytes on the stack (S)
6 movl| 16(%bp), %edx Get i (B)
7 cnpl $1, %edx Conpare i:1 (B)
8 jbe . L6 If i >>0 and i <= 1, goto index (B)
9 | eave Restore stack and frane pointers (O
10 ret Ret urn (O
11 .p2align 4,,7 (Inserted to inprove instruction alignment)
12 .p2align 3

13 . L6: i ndex:

14 novl| 8(%bp), %ax Get x (B)
15 nmov| Y%eax, -8(%bp) Store in a[0] (B)
16 movl| 12(%bp), %eax Get y (B)
17 novl Y%eax, -4(%ebp) Store in a[1] (B)
18 nov| -8(%bp, Y%edx, 4), %eax Set result = a[i] (B)
19 | eave Restore stack and frane pointers (O
20 ret Ret urn (O

Figure 2: Function of Figure 1 and generated code with level-3 optimization. The different sections
are no longer distinct, and there are multiple return points.

Figure 2 shows the code generated for the same function,itiutenvel-three optimization. (The same code
is generated with optimization level 2.) We note that theraNeode is basically the same, with several
minor differences:

e The three sections of code are no longer distinct. We seerstarfstruction of the body (line 3)
precedes some of the setup instructions.

e There are two return points, corresponding to the two bresi@i the conditional statement in the
source code.

e There are directives in the code specifyiaignment constraintglines 11-12.) These directives
constrain the following instructions to start at addresbas are multiples of some power of 2. The
assembler satisfies this constraint by inserting bytesh(deéfault value 0) into the instruction se-
quence. Since these bytes follow at instruction, they will never be encountered as instruction
bytes by the executing program.

The directive. p2al i gn n, , k, indicates that the lowet bits of the address should be zero, and
hence the address should be a multiple'af but only if this can be achieved by inserting at most
k bytes. If it would require more thah bytes to achieve the desired alignment, then no bytes are
inserted. The directivep2al i gn n directs it to insert as many bytes as are needed (at 2fiestl)

to achieve the desired alignment.

As this example illustrates, these alignment directivesiaserted to line up the starting address of
a jump or call target. This can improve the speed at which tbegssor fetches instructions from
memory.

Practice Problem 1:
Suppose the address following thet instruction on line 10 of Figure 2 is of the forhGa + b, where

0 <b<16.
A. Suppose just directivep2al i gn 4, , 7 is present. How many bytes will be inserted, as a func-
tion of b?
B. Suppose just directivep2al i gn 3 is present. How many bytes will be inserted, as a function
of b?

C. Suppose both directivep2al i gn 4, , 7 and. p2al i gn 3 are present. How many bytes will
be inserted, as a function &?

These differences between level-one and higher levelstoh@ation are fairly minor. The actual instruc-
tions that are executed will be the same in either case, taslightly different order, and with two return
points. In generating this codecc is attempting to optimizeénstruction schedulingthe order in which
instructions are executed. The general strategy is to andeuctions so that there is some gap between
the instruction that generates a value and any instructianuses that value. For this example, the modi-
fications seen in the more highly optimized code would nat lesany real performance improvement. In
fact, instruction scheduling has only limited benefit foogmams running on modern processors, because
they employout-of-orderexecution, meaning that they dynamically reorder the iresibns to maximize
performance. These processors and their performancecthiastics are described in CS:APP2e Chapter 5.

3 Program Example

For the remaining part of this note, we will use functions iygerate on singly-linked lists as our program
examples. The declaration of the list data structure ancedmasic functions operating on lists are shown
in Figure 3. Linked-list code provides good examples forgpamn optimization, especially since many list
operations are naturally written as recursive functions.

(a) List data type declaration (b) List access functions

1 /* Linked list elenment */ 1int val(list_ptr Is) {

2 typedef struct ELE { 2 if (I's == NULL)

3 int val; 3 return O;

4 struct ELE xnext; 4 el se

5} list_ele, *xlist_ptr; 5 return | s->val;
6 }
7
8 list_ptr next(list_ptr Is) {
9 if (I's == NULL)
10 return NULL;
11 el se
12 return | s->next;
13 }
14
15 int is_null(list_ptr Is) {
16 return | s == NULL;
17 }

Figure 3:Singly-linked list code examples. We will use functions on lists to demonstrate optimizations
made by Gcc.

Figure 4 shows the C code for a function that computes the $uhe@lements in a list, written using iter-
ation. The assembly code generated is also shown. This casigenerated with level-three optimization,
but similar code occurs for levels one and two. Note cangthk loop, consisting of four instructions (lines
10-14.)

4 Inline Substitution

Inline substitution is a very basic and effective technifprecliminating the overhead due to function calls
and to enable optimizations based on special charactsristithe context in which a function is called. It
involves replacing the call to a function with the code tmapliements that function.

Figure 5 gives a demonstration of inline substitution. t-ise show a version of the list summation function
(@) in which we use the functionss_nul | , val , andnext (shown in Figure 3), rather than directly
accessing the list elements. These functions are typicdienfnethodfunctions found in object-oriented
languages such as C++ and Java. They involve very short segmoiecode, and they often include error
checking, such as checking for null pointers.

We show the result of substituting the code for the functiomsnul | ,val , andnext into the summation
code in part (b). By compiling this version, we would elimiedhe overhead of calling the list functions,
including the effort required to allocate and deallocatrtetack frames. More significantly, the compiler
is able to optimize away some of the redundant code shownrin(ipa In particular, based on the fact
that the loop will exit when variables equalsNULL, the compiler can determine thas will be non-null
inside the loop. That means the two telsts == NULL, and the statements for the “then” cases can be
optimized away. The net effect of these substitutions ppigrazations is that the code generated for this

(a) C code

1int sumlist _iter(list_ptr Is) {
2 int sum = O0;

3 while (I's !'= NULL) {

4 sum += | s->val ;

5 I's = | s->next;

6 }

7 return sum

8 }

(b) Generated assembly code

Code generated for iterative version of |list sum
with optimzation [evel -O3
I's at %bp+8

1 sumlist iter:

2 pushl %ebp
3 xor | Yeax, %Y%eax Set sum= 0
4 movl| Y%esp, %ebp
5 movl 8(%bp), %edx Get Is
6 testl %edx, %edx
7 je . L62 if I's == NULL, goto done
8 .p2align 4,,7 (Inserted to inprove instruction alignment)
9 .p2align 3
Wthin loop: |Is in %dx, sumin % ax
10 . L65: | oop:
11 addl (%dx), %eax Add Is->val to sum
12 movl| 4(%edx), %edx Set |'s = |s->next
13 testl %edx, %edx
14 j ne . L65 If I's == NULL, goto | oop
15 . L62: done:
16 popl %ebp
17 ret

Figure 4:Iterative summation of list. Similar code is generated for all optimization levels.

(a) C code

1int sumlist _iter_abs(list_ptr Is) {
2 int sum= 0;

3 while (lis_null(ls)) {

4 sum += val (I s);

5 I's = next(ls);

6 }

7
8

return sum

}

(b) C code with functions expanded by inline substitution

1 /* Result of inline expansion in function sumlist_iter_abs */
2 int sumlist_iter_expand(list_ptr Is) {

3 int sum= 0;

4 /* Expansion of function is_null =*/

5 while (!(lI's==NULL)) {

6 {

7 [+ Expansi on of function val =/
8 int val;

9 if (I's == NULL) /* Optinized away x/
10 val = 0;

11 el se

12 val = |s->val;

13 sum += val ;

14 }

15 {

16 /= Expansion of function next =*/
17 list_ptr next;

18 if (I's == NULL) /+ Optimzed away =*/
19 next = NULL;

20 el se

21 next = | s->next;

22 I's = next;

23 }

24 }

25 return sum

26 }

Figure 5:Demonstration of inline substitution. The compiler is then able to generate code identical to
that for suml i st _i t er (Figure 4.)

more abstract version of list summation is identical to texterated for the less abstract version (Figure 4.)
Writing code in a more abstract style, such as is shown inrEi§uneed not incur any performance penalty.

(a) C code

1int test_select() {
2 return select(5, 6, 1);

3}
(b) Generated assembly code, optimizeol

Function test_select, optimzed -OL
1 test_select:

2 pushl %ebp

3 movl Y%esp, %ebp

4 subl $12, %esp Allocate 12 bytes on stack
5 nmovl $1, 8(%esp) Set 1 as 3rd argunent

6 nmovl $6, 4(%esp) Set 6 as 2nd ar gunent

7 novl $5, (%esp) Set 5 as 1st argunent

8 cal l sel ect Cal | select(5,86,1)

9 leave

10 ret

(c) Generated assembly code, optimiz&aB

Function select, optimzed -3
x at %bp+8, y at %bp+12, i at Y%ebp+16

1 test_select:

2 pushl %ebp

3 nov| $6, %ax Set result = 6
4 movl Y%esp, %ebp

5 popl %ebp

6 ret

Figure 6: Example of inline substitution followed by optimization. Gcc determines that the function
will always return 6.

Figure 6 shows an interesting example of the performancefiieino be gained by inline substitution. In
(a), we show an example function that calls the functai ect , shown in Figure 1. When run with
optimization level one (b)scc does not perform inline substitution, and hence it has nécehout to set
up a call tosel ect . By performing inline substitution as part of level-thrggtimization (c), the compiler
is able to detect that the behavior of this particular catlést _sel ect is highly predictable, and in fact
will always return 6. So, the compiler simply generates dba@g sets registé¥eax to 6.

Drawbacks and Limitations of I nline Substitution

Our examples show the performance advantages of inlingisuios). Eliminating the overhead of func-
tion calls, including allocating and deallocating a sta@afe can be significant. More importantly, inline
substitution enables a context-based optimization ofuhetfon code.

On the other hand, there are several important drawbackbnaitations of inline substitution:

The codeisharder to debug. Inline substitution eliminates some of the call and retughdvior expressed
in the source code. This normally doesn’t matter, becausecdmputed results will be identical.
However, if we try to monitor the executable program with &ugger such asps, we could find
some unexpected results. For example, if we set a breakfooittte functioni s_nul | in the list
code, we might be surprised that the sum function completd®ut ever hitting the breakpoint. A
general rule of thumb is to set the optimization level lowdrew debugging a program, and increase
it only when generating production code.

Thecode size can grow. Each inline substitution can cause a replication of an eritinction’s worth of
code. In the worst case, it can even cause a program to blow asize that is exponential in the
size of the original source program. Compilers have compéxistic rules to decide whether or not
to perform inline substitution for a given function. Thes#es typically err on the side of caution,
in order to keep the generated code within a tight bound oft wdwaild be generated without inline
substitution.

It may not be possible. Inline substitution requires that the compiler have actesbe source code of a
function at compile time. This was possible for our list pergs, because they were all within a
single file. Ordinarily, however, library functions are poenpiled, and large programs are divided
into multiple files that are compiled separately. The cosrpihight have access to the function
prototypes, via a.‘h’ file, but not to the source code. Putting everything in one ffilns counter to
the goal of making programs as modular as possible.

5 Recursion Removal

Many programmers feel that expressing a computation asiesiee function can provide a clearer depiction
of the desired behavior. It is a natural expression of a t#ivand conquer” strategy, where we divide a
problem into pieces, solve them separately (by recursills)cand then combine the results.

From a performance perspective, however, recursive fomgthave two drawbacks. First, they tend to run
slower. For example, we measured different factorial fimmst on an Intel Core i7 processor and found the
iterative version runs around twice the speed of the reaeirsne. Second, they require more space. We
have seen, for example, that our recursive factorial progaiocates 16 bytes on the stack for each call,
and these allocations accumulate until the terminatiordition is reached. Thus, computing the factorial
of a valuen recursively will require around6n bytes of stack space. By contrast, the iterative version of
factorial requires8 bytes of stack space regardless of the value. of

Some computations fundamentally require more than a cangtaount of storage, and hence some recur-
sive functions cannot be expressed as iterative compuogtiwithout adding an additional data structure
such as a stack. For the clasdingar recursions, however, where any invocation of a functiortaios at
most one recursive call, we can often transform recursitmiteration. When this can be done automati-
cally by the compiler, we gain the advantage of allowing thegpammer to express a function in a clear
manner and having the compiler transform it into a form teguires less time and space.

10

5.1 Tail Recursion

The most straightforward form of recursion is referred taaikrecursion A call by a functionf to a
function g is labeled as dail call when the result of this call tg is returned directly as the result of
functionf . A tail-recursivefunction is one for which all recursive calls are tail calls.

As an example, the following function computes the sum ofkeld list using tail recursion.

1int sumlist_tail(list_ptr Is, int sofar) {

2 if (I's == NULL)

3 return sofar;

4 el se

5 return sumlist _tail (ls->next, sofar + Is->val);
6}

7

8 int sumlist _tail _call(list_ptr Is) {

9 return sumlist_tail(ls, 0);

10 }

At a top level, the user would invoke the functisum | i st _tail _cal |l to compute the sum of a
list, which in turn calls the recursive functisum | i st _tail. We see thasum | i st _tail is tail
recursive—it contains only a single call to itself, and tlsult of this call is returned as the function
result. Functiorsum | i st _tail employs a strategy commonly seen in tail-recursive funstiavhere
an additional argument serves as an “accumulator,” hereedaif ar , to keep track of the sum of all of
the list elements encountered up to this point. This vagiablinitialized to zero, and the function keeps
adding values to it as it traverses the list. Once we reackrdeof the list, the function can simply return
sof ar as the list sum.

A tail-recursive function can be automatically transfodrieto an iterative one. We describe the process
here by first giving a more abstract representation of ar¢ailrsive function. The following code shows
the general structure of a two-argument, tail-recursivetion. (The same idea can be used for a function
of any number of arguments.)

tail (ay, a) {
if (Cond(a, a2)) {
return Result(ap, a);

el se {
nay = Nvali(a1, a);
nay = Nvals(a1, @)

return tail (na;, nao);

11

The general from has argumenis and ay. It checks whether it has reached a terminal case based on
some conditionC'ond, applied to the arguments. The terminal condition returmalae Result, which can
depend on the arguments. The recursive call involves cdngpuew values for the arguments, based on
computationsVval; and Nvals, and then making a tail call.

For our list sum function, the correspondence between thergeform and the actual code is based on the
following mappings:

Abstract value Program value

aq IS

a sof ar

Cond(a1, a2) |1s == NULL
Result(a1, ag) | sof ar

Nval1(a1, a2) |1s->next

Nvala(a1, a2) | sofar + | s->val

We can transform the general, tail-recursive function ate@rsion that uses iteration as follows:

itail(a, a) {

while (! Cond(a, a)) {
na; = Nvali(a1,)]
nas = Nvalo(a1, a);
a; = naq,
ay = na9,

¥

return Result(a;, ag);

In this code, we keep updating the variabtesand a, in the same manner as we would via repeated calls to
the recursive function. (We show this as first computing @aht, andnas and then assigning these o
andas, to avoid any inconsistency of having the computatioriVoti/, use the updated version of.) Once

we reach the terminating condition, we can simply returnvidae computed by the base case.

If we apply this transformation to the tail-recursive lishsmation example, we get the following code:

1int sumlist_itail(list_ptr |Is, int sofar) {
2 while (!'(l's == NULL)) {

3 [ist _ptr nls = | s->next;

4 i nt nsofar = sofar + |s->val;

5 I's = nls;

6 sof ar = nsofar;

7 }

8 return sofar;

12

9}

We can see that the inner loop of this function is essentiity same as for the iterative sum function
(Figure 4). In fact, using a combination of inline substdntand tail recursion removatCc generates
the same code for top-level functi@mum | i st _tail _call, as it does for the iterative sum function
sumlist _iter.

Practice Problem 2;
The following is a recursive factorial function. We assurhattargumenx is greater than or equal to

zero.
1 int fact_recur(int x) {
2 if (x == 0)
3 return 1;
4 el se
5 return x + fact_recur(x-1);
6}

A. Write a version of the function based on tail recursiono@Imow this function would be called to
compute the factorial of.

B. Show a mapping between your function and the general fdartail-recursive function.

C. Show how your tail-recursive function would be transfechinto an iterative one.

Tail recursion elimination is a standard optimization usgdmany compilers [4]. Its only drawback is
when we then try to monitor code execution via a debugger ss@DB. If we set a breakpoint for the
function, we might be surprised to find the breakpoint onlisgeaggered once. In fact, if the compiler
uses a combination of inline substitution and tail-calimétiation, we would find that calling the function
sum|list tail _call does nottrigger the breakpoint feum | i st _tail atall.

5.2 More General Formsof Recursion

Many recursive functions do not use tail recursion. In faet,can see for our list summation example that
tail recursion was not the most natural way to express thieedesomputation. Instead, a more traditional
way of expressing list summation is via the recursive fuorcium | i st _r ec shown in Figure 7(a). As
shown in part (b) of the figuresCcis able to transform this recursive function into an itetomputation.
We see that the generated code is almost identical to théiéaterative summation (Figure 4). The only
difference is that the inner loop requires 5 instructiongléothe same computations as does the earlier
version do with 4 instructions.

Being able to transform recursion into iteration is a moreaaded form of optimization, not covered in
most books on compiler optimization. Our presentation g&daon a research paper [3].

Suppose the argument list consists of eleménts, ..., 1, 1, ., wherel; is the first element of the list.
Then our iterative summation function computes the sum as:

["'[[0+l1]+l2]—|—"'—|—ln_1]—|—ln (l)

13

(a) C code
1int sumlist _rec(list_ptr Is) {
2 if (I's == NULL)
3 return O;
4 el se
5 return I s->val + sumlist_rec(ls->next);
6}

(b) Generated assembly code, optimizeoB

Code generated for recursive version of list sum
with optimzation [evel -O3
Is at %bp+8

1 sumlist_rec:

2 pushl %ebp
3 xor | %ecx, %ecx Set sum= 0
4 movl| Y%esp, %ebp
5 movl| 8(%bp), %edx Get Is
6 testl %edx, %edx
7 je . L14 If I's == NULL, goto done
8 .p2align 4,,7 (Inserted to inprove instruction alignment)
9 .p2align 3
Wthin loop: Is in %dx, sumin %ecx
10 . L17: | oop:
11 novl| (%dx), %eax Get val = Is->val
12 novl| 4(%dx), %edx Set |'s = Is->next
13 add| Y%eax, %ecx Add val to sum
14 testl %edx, %edx
15 j ne .L17 If I's = NULL, goto |oop
16 . L14: done:
17 novl %ecx, %eax Set result = sum
18 popl %ebp Restore frame pointer
19 ret Return

Figure 7:Recursive list summation function and generated assembly code. The compiler is able to
transform the recursion into iteration, even though it is not tail recursive.

14

(We use bracketg*and ‘]’ in our expression to denote the grouping of terms. Thiseseto highlight the
difference between grouping and the use of parenthesesittedinction application.) We can see by this
equation that the computation starts with a sum value of @aatbadds successive list elements frgno

ln.

Our recursive summation function computes the sum as:
b+t + [y + [l +0]] -])

Thatis, the sequence of recursive calls steps throughstheriiil it reaches the empty list, at which point the
function returns 0. Then the returns from the calls sum steelements in reverse order frdmto /;. The
two expressions yield identical results, because intedditian is both commutative and associative. By
way of comparison, they might produce different resultsefwere using floating-point arithmetic, since it
is not associative. Our goal is to find a general way to coriherfirst form of computation into the second,
exploiting the mathematical properties of the operaticedus generate the final results.

We can express the recursion seen in functiost _sum r ec in a general form by the functionecur :

recur(a) {
if (a == a) {
[+ Base case */
return bp;
el se {
/* Recursive call =x/
return V(a) op recur(N(a));

This general form has a single argumentThe base case is reached when the argument matches a base
value, ag, in which case the function returns some valye The recursive case involves computing a new
argumentN (a) , and making the recursive call. The result of this call ismthembined with valué/(a)

via acombining operatiorvp.

For our list sum function, the correspondence between thergeéform and the actual code is based on the
following mappings:

Abstract value| Program value
a I's

ag NULL

bo 0

V(a) | s->val

N(a) | s- >next

op +

Assume that we start the computation with argumgrand thatV*(a) = ag, where the notatiod* means

15

k applications of functionV. Then we can write the computation performed by the receifsiuction as:

V(a) op [V(N(a)) op -~ op [V(N*"2(a)) op [V(N*"*(a)) op bo]] -] 3)

For the case where combining operatignis associative and commutative, as is integer addition, ave c
rearrange the terms of this expression into a form similautoiterative version of list summation:

[+ [[bo op V()] op V(N(a))] op --- op V(N*"*(a))] op V(N*"'(a)) (4)

This expression can be converted to an iterative computatinich as we did for summing the elements of
a list, introducing a variable to hold the accumulated result. We label this thé &r 1” transformation.

iterl(a) {
T’zbo;
while (a !'= ay) {
r =71 op V(a);
a = N(a);

}

return r;

We can see that when we apply this transformation to reaitigt summation, we get the C code shown
forsum | i st _iter (Figure 4), wheresumserves as the accumulating varialble As we have seen,
GCccgenerates nearly the same code for the functgams | i st _i t er (Figure 4) andum | i st _rec
Figure 7), an indication that it applies théer 1.

Practice Problem 3:

Let us apply the t er 1 transformation to convert the recursive factorial funetishown in Problem 2,
into an iterative one.

A. Show the mapping between the factorial code and the geresnarsive form of functiom ecur .
Is operatiorop both associative and commutative?

B. Show the code you would get by applying fhteer 1 transformation.

In our experienceicc applies the t er 1 transformation when applicable. The main limitation isttha
it must be able to determine that the combining operatioromrautative and associative. It applies the
transformation for integer addition (as in list summatiamd multiplication (as in factorial), but not for
floating-point operations. In addition, it will not applyehransformation for more complex operations,
even if they are commutative and associative. For examplesider code to find the maximum element in
a list:

16

int max(int x, int y) {
return (x >y) ? x : vy,

}

if (I's == NULL)
return [NT_MN,
el se
return max(l s->val,
10 max_list_rec(ls->next));
11 }

1
2
3
4
5int max_list _rec(list_ptr Is) {
6
7
8
9

The code fomax_| i st _r ec matches the pattern forecur , with max serving as the combining opera-
tion. This operation is both commutative and associatiuégclec has no way of determining this.

Practice Problem 4:

Consider the “list difference” computation, where we reglthe addition operation of the list summation
function with subtraction:

1int diff_list_rec(list_ptr Is) {

2 if (I's == NULL)

3 return O;

4 el se

5 return | s->val - diff_list_rec(ls->next);
6}

Unfortunately, subtraction is neither commutative nooagsive.

A. Show how you can transform this function into one that wsi#dition as the combining operation,
possibly introducing a second function argument. How wdhis be called at the top level?

B. Show the iterative form you would get by applying a tramsfation similar toi t er 1, but com-
bining the top-level call with the two-argument recursiuadtion.

Practice Problem 5:

Consider the following code, declaring a data type for thedasmf a binary tree, and a recursive function
to sum the values of all the nodes in a tree:

/* Tree data structure */
typedef struct NODE {
int val;
struct NODE *|eft;
struct NODE =ri ght;
} tree_ele, *tree_ptr;

/+* Sumvalues in tree, recursively */
int sumtree rec(tree_ptr tp) {

© 00N O g b WwN PP

17

10 if (tp == NULL)

11 return O,

12 el se {

13 return tp->val +

14 sumtree_rec(tp->left) +
15 sumtree_rec(tp->right);
16 }

17 '}

Functionsum t r ee_r ec usesnonlinearrecursion. In fact, this is an example of a computation that
fundamentally requires a stack (such as is provided to stippaursion) or some other data structure.

Even though it is not possible to eliminate both recursiisceve can transform this function into one
that computes the sum of the left subtree recursively angbates the sum of the right subtree iteratively.

A. Show a mapping between the code farm t r ee_r ec and the general formecur that will
allow the recursive call to the right subtree to be a candiftatthei t er 1 transformation.

B. Show the C code you would get by applying thteer 1 transformation.

5.3 Partial Recursion Expansion

WhengGccis unable to remove recursion altogether, it can still apteto reduce some of the overhead of
recursive function calls. It does this by partially expamyihe recursion, generating code that steps through
the firstk recursive calls explicitly, for some value &f This process can be viewed as a form of inline
substitution—it replaces a recursive call with the bodyheffunction a total of 8 times. This transformation
is only applied for optimization levels 3 and higher, sintsignificantly increases the amount of code
generated.

Let us examine how partial expansion can be applied to thdifisrence code shown in Problem 4cGis
unable to transform this recursion into iteration, sindetaction is not associative. Figures 8—10 show the
codeGccgenerates code for optimization level 3. This code stefaugir the first nine levels of recursion,
storing the list elements either in registers or within tbection’s stack frame. After nine steps, it then
performs a recursive call to sum the rest of the list. Thisirgige call, of course, will step through the next
nine elements of the list before making a second recursillearal so on, such that the total number of
function calls is reduced by a factor of around nine.

Of course, the list may have fewer than eight elements, arttiescode has branches after each step to
bypass any remaining steps once it hits a null pointer. Wevshese branches as having destinations with
labels of the fornd en_i, meaning the branch will be taken when the argument list Iemgfthi. Observe
how the explicit steps complete by stepping through theslEtents in reverse order.

In our measurements of this transformation, we found thgpitally speeds up the computation by a factor
of around 1.2. It is not as effective as eliminating recursatiogether, but it does have some benefit.

Practice Problem 6:

Based on the code shown in Figures 8-10, show how to expargktieral form of recursion given as
functionr ecur for k = 3 steps. Your code should not contain aggt o statements. You should not

g b~ WN

© 00 N O

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

with optimzation [evel -O3
I's at %bp+8
1 diff_list_rec:

pushl %ebp
xor | Y%eax, %Yeax
movl| Y%esp, %ebp
subl $40, %esp

I's in register %dx, diff
movl 8(%ebp), %edx
movl| %ebx, -12(%bp)
movl| %esi, -8(%bp)
movl| %edi, -4(%bp)
testl %edx, %edx
je . L133

Step through up to 8 el enments of
movl| (%dx), %s
xor | Yeax, %Y%eax
novl| 4(%dx), %edx
testl %edx, %edx
je .L135

I's in register %ax, diff
movl| 4(%dx), %eax
novl| (%dx), %d
xor | %edx, %edx
testl %eax, %Yeax
je . L137
movl| (%eax), %edx
movl| 4(%ax), Y%eax
movl %edx, -36(%bp)
xor | %edx, %edx
testl Y%eax, %Yeax
je .L139

Code generated for recursive version of

18

list difference

Set diff to O

in register %ax

If 1s==NULL, goto len_0O
list, storing values in registers and on stack
Set %si to |_1

Set diff to O

I's = Is->next

I'f I's==NULL, goto len_1

in register %edx

I's = | s->next

Set %di to |_2

Set diff to O

I F I s==NULL, goto len_2
I's = | s->next

Store | _3 at %ebp-36

If I's==NULL, goto len_3

Figure 8:Compilation of di ff _I i st _r ec (Problem 4), Part I. This code demonstrates the expansion of
recursion performed for optimization levels 3 and higher.

28 nov| (%ax), %edx

29 novl| 4(%eax), %eax I's = 1s->next
30 movl %edx, -32(%bp) Store | _4 at %bp- 32
31 xor | %edx, %edx Set diff to 0
32 testl Y%eax, %Yeax
33 je .L141 If Is==NULL, goto len_4
34 nov| (%ax), %edx
35 novl 4(%eax), %eax I's = |'s->next
36 movl| %edx, -28(%bp) Store | _5 at Y%bp-28
37 xor | %edx, %edx Set diff to 0
38 testl Y%eax, %Yeax
39 je .L143 If 1s==NULL, goto len_5
40 novl| (%ax), %edx
41 novl| 4(%eax), %eax I's = 1s->next
42 movl| %edx, -24(%bp) Store | _6 at %bp-24
43 xor | %edx, %edx Set diff to 0
44 testl %eax, %Yeax
45 je . L145 If I's==NULL, goto len_6
46 novl| (%ax), %edx
a7 movl| 4(%ax), Y%eax I's = Is->next
48 movl| %edx, -20(%bp) Store | _7 at %bp-20
49 xor | %edx, %edx Set diff to 0
50 testl %eax, %Yeax
51 je . L147 If I's==NULL, goto len_7
52 movl| (%eax), %edx
53 movl| 4(%ax), Y%eax I's = Is->next
54 movl| %edx, -16(%bp) Store | _8 at Y%bp-16
55 xorl %edx, %edx Set diff to O
56 testl %eax, %Yeax
57 je . L149 If I's==NULL, goto len_8

Reach here only if list has >= 9 el enents
58 movl| (%eax), %ebx Set %ebx to |_9
59 novl 4(%eax), %eax I's = |'s->next
60 movl Y%eax, (%esp)

Make recursive call to conpute difference for rest of Iist
61 cal l diff _list_rec diff = diff_list_rec(ls)

Figure 9:Compilation of di ff I i st _r ec (Problem 4), Part II.

Accunul ate values for first nine elenments of list, in reverse order

62 nov| %ebx, %edx Retrieve | _9

63 subl Yeax, %edx diff =1_9 - diff
64 .L149: | en_8:

65 movl| -16(%bp), %eax Retrieve |_8

66 subl %edx, %eax

67 novl Yeax, %edx diff =1 8- diff
68 .L147: len_7:

69 novl -20(%bp), Y%eax Retrieve | _7

70 subl %edx, %eax

71 novl Yeax, %edx diff =1 _7 - diff
72 . L145: | en_6:

73 novl| -24(%bp), Y%eax Retrieve | _6

74 subl %edx, %eax

75 novl Yeax, %edx diff =1_6 - diff
76 . L143: |l en_5:

77 movl| -28(%bp), %eax Retrieve |_5

78 subl %edx, %eax

79 novl Yeax, %edx diff =1_5 - diff
80 . L141: len_4:

81 movl| -32(%bp), Y%eax Retrieve |_4

82 subl %edx, %eax

83 novl Yeax, %edx diff =1 _4 - diff
84 .L139: I en_3:

85 novl -36(%bp), Y%eax Retrieve | _3

86 subl %edx, %eax

87 novl Yeax, %edx diff =1 _3- diff
88 . L137: len_2:

89 novl %edi, %ax Retrieve | _2

90 subl %edx, %eax diff =1_2 - diff
91 . L135: len_1:

92 subl o%eax, %esi Retrieve | 1

93 novl %esi, Y%eax diff =1 _1- diff
94 . L133: |l en_0:

95 novl -12(%bp), %ebx

96 movl -8(%bp), %esi

97 movl| -4(%bp), %di

98 movl| %ebp, %esp

99 popl %ebp

100 ret Return diff

Figure 10:Compilation of di ff 1 i st _r ec (Problem 4), Part Ill.

21

assume any properties of the combining operatipnfor example, it may be neither commutative nor
associative.

5.4 *Other Recursion Eliminations: Beyond Gcc

Although not currently implemented i/cc, it is interesting to consider other ways of converting tiors
having the recursive structure oécur into iterative ones. We explore these via a series of exescis

Practice Problem 7:

Consider the case where the combining operatipris associative, but not necessarily commutative.
(Examples of associative, but non-commutative operatimiade matrix multiplication and string con-
catenation.) By being a little more careful in how we ordex domputation, we can devise a scheme
that will transform computations of the form shown in fuctr ecur se into iterative ones.

In devising thd t er 1 transformation, we started with the expression (Equatjate3cribing the com-
putation performed by the recursive functioacur se:

V(a) op [V(N(a)) op -+ op [V(N*"*(a)) op [V(N*"(a)) op bo]] - -]

A. For an associative operatiamp, we can shift the parentheses in this expression, but weotann
change the positions of any of the elements. Show how we cepltenthesize the expression in
a way that makes it suitable for an iterative computation.

B. Express the transformation to an iterative computatidh @ functioni t er 2 that is similar to
i terl, exceptthat it does not rely on commutativity. Be carefulhaf case where the argument
a equals the base valug.

Practice Problem 8:

Show the function you would get by applying theer 2 transformation you derived for Problem 7 to
the recursive factorial function of Problem 2

Practice Problem 9:

Consider the case where the combining operadjpis not associative. For example, subtraction is nei-
ther associative nor commutative, and neither floatingHpaildition nor multiplication are associative.
Suppose on the other hand, that the functdorve use to enumerate successive elements is invertible.
That is, there is some functiah such that for any value, we haveP (N (x)) = x. (This property does

not apply to list summation, since there is no inverse foretkgressiorn s- >next .)

Consider the expression describing the computation paddrby the recursive functionecur se
(Equation 3):
V(a) op [V(N(a)) op - op [V(N*"2(a)) op [V(N*"(a)) op bo]] -]

A. Reuwrite this expression in terms of successive appbeoatof functionP, rather thanV.

B. Convert your expression into an iterative functiarer 3. Be careful of the case where argument
a equals the base valug.

22

Practice Problem 10:
Show how thé t er 3
transformation you derived in Problem 9 can be applied tadhbarsive factorial function of Problem 2.

A. What is the inverse operation?
B. What C code do you get by applying theer 3 transformation?

6 Sibling Call Optimization

We saw that tail recursion can generally be replaced bytiteraA related form of optimization concerns
sibling calls—tail calls to other functions. Suppose that functiormakes a tail call to functiory, as
illustrated by the following code:

int f(int x)

{
int 'y = P(x); /+* Sone computation */
return g(y); [/ Tail call =*/

}

Once functionf has reached the tail call, it is basically done. Any componatit needs to perform have
been completed, and any local storage it has allocatedegossibly for variable/) is no longer needed.
Instead of waiting until afteg returns to deallocate its stack frame, it can do so befodingad. The
compiler can then replace the callgdoy a jump. Functiorg will then proceed in the normal manner, but
when it executes itset instruction, it will return directly to the function that lbed f .

Before jumping tog, the code forf must make sure that argumenis in the position thag expects. It
can do this by storing the value gfat the address given ebp + 8. In doing so, it overwrites its own
argumentx, located in the caller’s stack frame. Fortunately, thisigdk no longer needed.

1 /+ Exanpl es of function nmaking sibling call =/
2 int square(int x) {

3 return x * X;

4}

5

6 int proc(int x, int y, int i) {

7 int b[2] = {x, V};

8 return square(b[i & 0x1]);

9}

Figure 11:Example of sibling call. Function pr oc makes a sibling call to squar e.

Figure 11 shows an example of a functipnoc that makes a sibling call to a second functequar e.
Normally, with optimization level two or higheGcc will eliminate this call by inline substitution. By
giving gcc the command-line argumert f no-i nl i ne,” we disable inline substitution, and instead it
will apply sibling-call optimization, yielding the folloug IA32 code forpr oc:

23

Function proc, optimzed -03, inline substitution disabled
x at %bp+8

1 proc:
2 pushl %ebp
3 movl Y%esp, %ebp
4 subl $16, %esp Al locate 16 bytes on stack
Create array b at %bp-8 and set %ax to b[i & 0x1]
5 movl| 8(%bp), Yeax
6 movl| 16(%bp), %edx
7 movl %eax, -8(%ebp)
8 nov| 12(%bp), %Y%eax
9 andl $1, %edx
10 movl| Y%eax, -4(%bp)
11 movl| - 8(%bp, %edx, 4), %eax
Set up sibling call
12 nov| Y%eax, 8(%bp) Set first argument to b[i & 0x1]
13 | eave Deal | ocate stack frane and restore frame pointer
14 jnp squar e Make sibling call

This code follows the usual IA32 conventions, allocatingbyées on the stack for local arrdyand com-
puting the argument fasquar e in register¥eax. Starting at line 12, we see the preparation for a sibling
call. On this, line, the argument is stored at addeésisp + 8. On line 13, we see the current stack frame
being deallocated with lkeave instruction. On line 14, we see the jump to the codesfguar e.

Sibling call optimization has only a minimal benefit in terofghe execution time of the resulting code. It
replaces &al | instruction by g np, and it eliminates one of theet instructions, but these differences
are minor. Unlike inline substitution, it does not enablecatext-dependent optimization of the code for
the sibling function. On the other hand, this optimizatiam gield a substantial savings in the total amount
of stack space needed [1]. For example, consider funcficasdg that call each other (mutual recursion)
using tail calls. Normally, the stack space will grow in poojion to the depth of the recursion. With
sibling-call optimization, the total stack space requirechains constant, regardless of recursion depth.

7 Concluding Observations

Compiler-based code optimization is an active area of reegadapting to the changing performance char-
acteristics of processors, as well as the ability to applyensophisticated analyses and transformations by
exploiting the increasing power of the processors on whiehcompilers are run. The developersaafc
continue to track this work, continually improving the dyilof Gccto generate more efficient code.

Trying to debug a program compiled with sophisticated ofations can be difficult, because the connec-
tion between the source code and the actual executable easdenles more tenuous. The best strategy is to
keep the optimization level low (level one or none at all)iltthe program is ready for production usage.

24

Solutionsto Problems
Problem 1 Solution: [Pg. 4]

A. For values ob between 9 and 15, it will inseits — b bytes. Otherwise, no bytes will be inserted.

B. For values ob between 1 and 7, it will inse& — b bytes. For values of between 9 and 15, it will
insert16 — b bytes.

C. The combination of the two will have the same effect as thgle directive. p2al i gn 3. ltis
puzzling thatcccinserts both directives.

Problem 2 Solution: [Pg. 12]

Recursive factorial is another example of a linear recarsid/e can map it to tail recursion in a manner
similar to what we did for list summation.

A. Here is a tail-recursive version of factorial.

1int fact_tail(int x, int sofar) {

2 if (x == 0)

3 return sofar;

4 el se

5 return fact _tail(x - 1, sofar * x);
6 }

7

g int fact _tail _call(int x) {

9 return fact_tail(x, 1);

10 }

The variablesof ar accumulates the product of the successive values dthe top-level function
fact _tail _call initiates the computation witeof ar equal to 1:

B. We can map the general form of tail recursion to this specifde as follows:

Abstract value Program value
a1 X

a sof ar

Cond(@y, ap) | X ==

Result(a1, ag) | sof ar

Nval1(a1, a) | X - 1

Nvalo(a1, a) | sofar * X

C. Applying the transformation, we get the following C code:

25

1int fact_itail(int x, int sofar) {
2 while (x '=0) {

3 int nx = x - 1;

4 sof ar = sofar * Xx;

5 X = nX;

6 }

7 return sofar;

8 }

Problem 3 Solution: [Pg. 15]
Thei t er 1 transformation leads to a very conventional form of itexafactorial.

A. The following table shows the mapping between the gerferai and the factorial function:

Abstract value| Program value
a

ap
bo
V(a)
N(a)
op

¥* X X P O X

B. Applying thei t er 1 transformation yields the following code:

1int fact_iterl(int x) {
2 int r =1;

3 while (x '=0) {

4 r=r X

5 X =x - 1

6 }

7 return r;

8 }

Problem 4 Solution: [Pg. 16]
We can express the computation performed by this functioiinéyollowing expression:

h=ll2=[ls=[la =l = [ln = 0)--]]]

A. We can rewriter — y asx + —y, and exploit the property that(—xz) = z, so that the expression can
be written as the sum of alternating positive and negatikege For the case whereis even, this
yields the expression:

h+—-lb+l+—-ls+- =11+, -0

That is, the sum should alternate between adding the listegie or its negation. A similar pattern
holds whem is odd.

26

B. We can therefore rewrite the function, keeping its reigarform, but introducing a second argument
wt that alternates between values and—1. This is called at the top level witht equal to+1:

1int diff_list_rec_helper(list_ptr Is, int w) {
2 if (I's == NULL)

3 return O;

4 el se

5 return (wt * |s->val) +

6 diff _list_rec_hel per(ls->next, -w);
7}

8

9 int diff_list_rec2(list_ptr Is) {

10 return diff_list_rec_helper(ls, 1);

11 }

C. Applying a variant of the t er 1 transformation yields the following iterative form:

1int diff_list_iterl(list_ptr Is) {
2 int w = 1;

3 int diff = 0;

4 while (I's !'= NULL) {

5 diff +=wt * |s->val;

6 w = -w;

7 I's = | s->next;

8 }

9 return diff;

10 }

Problem 5 Solution: [Pg. 16]
This example illustrates the generality of the form giverfuoyctionr ecur .

A. The key is to expand the computatidonto include the call for the left subtree:

Abstract value| Program value

a tp

ag NUL L

bo 0

V(a) tp->val + sumtree_rec(tp->left)
N(a) t p- >next

op +

B. Applying thei t er 1 transformation gives the following code:

1 /+* Sumvalues in tree,
2 recursively for left subtree and
3 iteratively for right subtree x/

27

4 int sumtree Irec(tree_ptr tp) {

5 int sum= 0;

6 while (!(tp == NULL)) {

7 sum += tp->val +

8 sumtree Irec(tp->left);
9 tp = tp->right;

10 }
11 return sum
12 }

Gcce performs exactly this transformation when compilsym tree_r ec.

Problem 6 Solution: [Pg. 17]

Here is the solution code. Since we are not assuming anyapg&oiperties aboubp, it is important to
combine values in the proper order.

recur _expand3(a) {
r = bo;
if (a!= a) {
v[1] = V(a); /* First list elenment x/
a = N(a);
if (a!= a) {
v[2] = V(a); /* Second |list elenment =/
a = N(a);
if (a!= a) {
v[3] = V(a); /* Third list el enment =*/
a = N(a);
recur expand3(a);
v[3] op 7

r

<
1

}
r =vVv[2] op r
}
r =v[1] op r;

}

return r;

Problem 7 Solution: [Pg. 21]

This problem shows that commutativity is not a fundamergguirement for a transformation from recur-
sion to iteration.

A. We can shift the parentheses to compute values from lefykd, keeping the base value on the right:

[+ [V(a) op V(N(a))] op -~ op V(N**(a))] op V(N*"'(a))] op by

B. This leads to the following general form. We must treatdase where, equalsay explicitly:

iter2(a) {
if (a == a)
/* Special case when called with ay */
return bg;
el se {
r = V(a);
while (N(a) !'= ap) |
a = N(a);
r=r op V(a);
}

[* Finish with a = g9 */
r =1 op by,
return r;

Problem 8 Solution: [Pg. 21]
Applying thei t er 2 transformation to recursive factorial gives this slighityusual form:

1int fact_iter2(int x) {

2 if (x ==0)

3 return 1;

4 el se {

5 int r = x;

6 while (x-1 1= 0) {
7 X =x - 1;

8 r=r * X;

9 }

10 /+ Don’t need to multiply by 1 */
11 return r;

12 }

13 }

Problem 9 Solution: [Pg. 21]
This is a very interesting and powerful transformation.

A. We know that if N*(a) = ag, thenP*(ag) = a. We can therefore rewrite the expression as:

V(P¥(ag) op [V(P*(bo)) op -+ op [V (P?(a0)) op [V (P(ag)) op bo]] - -]

B. This leads to a general form, where we start frgnand work up toa via P:

iter3(a) {
r = by,
if (a == a)
[+ Special case when called with ag */
return r;
el se {
t = P(ap);

while (¢t !=a) {
r = V(t) op r
t = P(1);
}
/* Finish with ¢t = a */
r = V(a) op 7
return r;

Problem 10 Solution: [Pg. 22]

This transformation leads to another common way to com@aafial iteratively.

A. Since subtraction is the inverse of addition, we carflgk) be the operatiom+1.

B. This leads to a version of iterative factorial where werddtom 1 up tox:

1
2
3
4
5
6
7
8
9

10
11
12
13
14 }

int fact _iter3(int x) {

int r =1;
if (x == 0)
return r;
el se {
int t =1;
while (t !'=x) {
r =t = r;
t =t + 1;
}
r = x * r;
return r;
}

29

30

References

[1] A. Bauer and M. Pizka. Tackling C++ tail call®r. Dobb’s Digest February 1 2004.

[2] GCC Online DocumentationAvailable atht t p: / / gcc. gnu. org/ .

[3] Y. A. Liuand S. D. Stoller. From recursion to iteration: HAt are the optimizationsACM SIGPLAN
Notices 34(11):73-82, November 1999.

[4] S. S. Muchnick.Advanced Compiler Design and ImplementatiMorgan Kaufmann, 1997.

I ndex
CS:APP2e, 1

accumulator, 10
alignment, 4
associative, 14-16, 21

base case, 11, 14
binary tree, 16
body section3

combining operation]4, 15, 16, 21
commutative, 14-16, 21
completion section3

debugger, 9
divide-and-conquer strategy, 9

factorial
iterative, 25, 29
recursive, 12, 15, 21, 22, 24, 28

GDB, 9

inline substitution, 5
instruction
reordering, 2
instruction scheduling, 4
is_.null,5 7
iterl,15,15 16, 17, 21, 25, 26
iter2,21, 28,28
iter3,21,29
iterative factorial, 25, 29

linear recursion, 9

list
singly-linked, 4

list difference,16, 17

list summation, 15
iterative,6, 12, 15
recursive, 1213, 14, 15
tail-recursive, 10, 11

next,5,7
nonlinear recursion, 17

out-of-order execution, 4

. p2al i gn alignment directive, 4
partial recursion expansiot/

recur, 14, 15-17, 21, 26
recursion

linear, 9

nonlinear, 17
recursion removal, 9

recursive factorial, 12, 15, 21, 22, 24, 28

reordering instruction, 2
return point,3

setup section3
sibling call,22
singly-linked list, 4

tail call, 10, 22
tail recursion, 10

val ,5,7

31

