
CS:APP2e Web Aside ASM:OPT:
Machine Code Generated with Higher Levels of Optimization∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Introduction

In the presentation of x86 machine code in CS:APP2e Chapter 3, we looked at machine code generated
with level-one optimization (specified with the command-line option ‘-O1’.) In practice, most heavily
used programs are compiled with higher levels of optimization. For example, all of the GNU libraries and
packages are compiled with level-two optimization, specified with the command-line option ‘-O2’.

Recent versions ofGCC employ an extensive set of optimizations at levels two and above. These opti-
mizations can significantly improve program performance, but they make the mapping between source and
machine code much more difficult to discern. This can make theprograms more difficult to debug. Nonethe-
less, these higher level optimizations have now become standard, and so those who study programs at the
machine level must become familiar with the possible optimizations they may encounter.

In this note, we describe some of the transformations performed byGCC to achieve higher levels of program
optimization, and we explain the concepts behind them. Keepin mind, however, thatGCC continues to
evolve and become more sophisticated. We can anticipate that future versions ofGCC will perform even
more extensive transformations and optimizations than we cover here. The online documentation forGCC

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

2

[2] describes the many different optimizations thatGCC performs (although without many details), and the
different command-line arguments that control code generation.

It is important to recognize that there are other compilers for x86, particularly those supported by Intel and
Microsoft. These compilers perform different optimization and transformations and have different code
generators. When examining the machine code generated by anunfamiliar compiler, it is important to study
the different code patterns the compiler generates. All of the examples we show here are compiled for IA32.
Similar optimizations are made for x86-64.

2 Instruction Reorderings

(a) C code

1 int select(int x, int y, int i) {
2 int data[2] = { x, y };
3 if (i >= 0 && i < 2)
4 return data[i];
5 else
6 return 0;
7 }

(b) Generated assembly code, optimized-O1

Function select, optimized -O1

x at %ebp+8, y at %ebp+12, i at %ebp+16

1 select:
Setup code

2 pushl %ebp Save frame pointer (S)

3 movl %esp, %ebp Create new frame pointer (S)

4 subl $16, %esp Allocate 16 bytes on stack (S)

Body code

5 movl 16(%ebp), %edx Get i (B)

6 movl $0, %eax Set result = 0 (B)

7 cmpl $1, %edx Compare i:1 (B)

8 ja .L3 if i < 0 or i > 1, goto done (B)

9 movl 8(%ebp), %eax Get x (B)

10 movl %eax, -8(%ebp) Store in a[0] (B)

11 movl 12(%ebp), %eax Get y (B)

12 movl %eax, -4(%ebp) Store in a[1] (B)

13 movl -8(%ebp,%edx,4), %eax Set result = a[i] (B)

14 .L3: done:

Completion code

15 leave Restore stack and frame pointers (C)

16 ret Return (C)

Figure 1: Sample function and generated code with level-one optimization. The code has separate
sections for setup (S), body (B), and completion (C).

3

In the example functions for which we have examined the assembly code generated byGCC, there were
several patterns that made it simpler to understand the code. Figure 1 shows an example of a simple C
function and the code generated byGCC with level-one optimization. Two features are worth noting:

• The code for a function has distinct sections. First, there is asetupsection, where the stack frame is
created. These lines are labeled ‘(S)’ on the right-hand side. Second, thebodysection performs the
actual computations for the function, shown with lines labeled ‘(B).’ Finally, thecompletionsection
deallocates the space for the stack frame and restores registers to their original values, with lines
labeled ‘(C).’

• The function has a single return point, that is, there is onlyoneret instruction. Regardless of any
branches in the code, all execution paths end with this instruction.

Function select, optimized -O3

x at %ebp+8, y at %ebp+12, i at %ebp+16

1 select:
2 pushl %ebp Save frame pointer (S)

3 xorl %eax, %eax Set result = 0 (B)

4 movl %esp, %ebp Create new frame pointer (S)

5 subl $16, %esp Allocate 16 bytes on the stack (S)

6 movl 16(%ebp), %edx Get i (B)

7 cmpl $1, %edx Compare i:1 (B)

8 jbe .L6 If i >= 0 and i <= 1, goto index (B)

9 leave Restore stack and frame pointers (C)

10 ret Return (C)

11 .p2align 4,,7 (Inserted to improve instruction alignment)

12 .p2align 3
13 .L6: index:

14 movl 8(%ebp), %eax Get x (B)

15 movl %eax, -8(%ebp) Store in a[0] (B)

16 movl 12(%ebp), %eax Get y (B)

17 movl %eax, -4(%ebp) Store in a[1] (B)

18 movl -8(%ebp,%edx,4), %eax Set result = a[i] (B)

19 leave Restore stack and frame pointers (C)

20 ret Return (C)

Figure 2: Function of Figure 1 and generated code with level-3 optimization. The different sections
are no longer distinct, and there are multiple return points.

Figure 2 shows the code generated for the same function, but with level-three optimization. (The same code
is generated with optimization level 2.) We note that the overall code is basically the same, with several
minor differences:

• The three sections of code are no longer distinct. We see the first instruction of the body (line 3)
precedes some of the setup instructions.

• There are two return points, corresponding to the two branches of the conditional statement in the
source code.

4

• There are directives in the code specifyingalignment constraints(lines 11–12.) These directives
constrain the following instructions to start at addressesthat are multiples of some power of 2. The
assembler satisfies this constraint by inserting bytes (with default value 0) into the instruction se-
quence. Since these bytes follow aret instruction, they will never be encountered as instruction
bytes by the executing program.

The directive.p2align n,,k, indicates that the lowern bits of the address should be zero, and
hence the address should be a multiple of2n, but only if this can be achieved by inserting at most
k bytes. If it would require more thank bytes to achieve the desired alignment, then no bytes are
inserted. The directive.p2align n directs it to insert as many bytes as are needed (at most2n −1)
to achieve the desired alignment.

As this example illustrates, these alignment directives are inserted to line up the starting address of
a jump or call target. This can improve the speed at which the processor fetches instructions from
memory.

Practice Problem 1:

Suppose the address following theret instruction on line 10 of Figure 2 is of the form16a + b, where
0 ≤ b < 16.

A. Suppose just directive.p2align 4,,7 is present. How many bytes will be inserted, as a func-
tion of b?

B. Suppose just directive.p2align 3 is present. How many bytes will be inserted, as a function
of b?

C. Suppose both directives.p2align 4,,7 and.p2align 3 are present. How many bytes will
be inserted, as a function ofb?

These differences between level-one and higher levels of optimization are fairly minor. The actual instruc-
tions that are executed will be the same in either case, but ina slightly different order, and with two return
points. In generating this code,GCC is attempting to optimizeinstruction scheduling, the order in which
instructions are executed. The general strategy is to orderinstructions so that there is some gap between
the instruction that generates a value and any instruction that uses that value. For this example, the modi-
fications seen in the more highly optimized code would not lead to any real performance improvement. In
fact, instruction scheduling has only limited benefit for programs running on modern processors, because
they employout-of-orderexecution, meaning that they dynamically reorder the instructions to maximize
performance. These processors and their performance characteristics are described in CS:APP2e Chapter 5.

3 Program Example

For the remaining part of this note, we will use functions that operate on singly-linked lists as our program
examples. The declaration of the list data structure and some basic functions operating on lists are shown
in Figure 3. Linked-list code provides good examples for program optimization, especially since many list
operations are naturally written as recursive functions.

5

(a) List data type declaration

1 /* Linked list element */
2 typedef struct ELE {
3 int val;
4 struct ELE *next;
5 } list_ele, *list_ptr;

(b) List access functions

1 int val(list_ptr ls) {
2 if (ls == NULL)
3 return 0;
4 else
5 return ls->val;
6 }
7

8 list_ptr next(list_ptr ls) {
9 if (ls == NULL)

10 return NULL;
11 else
12 return ls->next;
13 }
14

15 int is_null(list_ptr ls) {
16 return ls == NULL;
17 }

Figure 3:Singly-linked list code examples. We will use functions on lists to demonstrate optimizations
made by GCC.

Figure 4 shows the C code for a function that computes the sum of the elements in a list, written using iter-
ation. The assembly code generated is also shown. This code was generated with level-three optimization,
but similar code occurs for levels one and two. Note carefully the loop, consisting of four instructions (lines
10–14.)

4 Inline Substitution

Inline substitution is a very basic and effective techniquefor eliminating the overhead due to function calls
and to enable optimizations based on special characteristics of the context in which a function is called. It
involves replacing the call to a function with the code that implements that function.

Figure 5 gives a demonstration of inline substitution. First, we show a version of the list summation function
(a) in which we use the functionsis_null, val, andnext (shown in Figure 3), rather than directly
accessing the list elements. These functions are typical ofthe methodfunctions found in object-oriented
languages such as C++ and Java. They involve very short segments of code, and they often include error
checking, such as checking for null pointers.

We show the result of substituting the code for the functionsis_null,val, andnext into the summation
code in part (b). By compiling this version, we would eliminate the overhead of calling the list functions,
including the effort required to allocate and deallocate their stack frames. More significantly, the compiler
is able to optimize away some of the redundant code shown in part (b). In particular, based on the fact
that the loop will exit when variablels equalsNULL, the compiler can determine thatls will be non-null
inside the loop. That means the two testsls == NULL, and the statements for the “then” cases can be
optimized away. The net effect of these substitutions plus optimizations is that the code generated for this

6

(a) C code

1 int sum_list_iter(list_ptr ls) {
2 int sum = 0;
3 while (ls != NULL) {
4 sum += ls->val;
5 ls = ls->next;
6 }
7 return sum;
8 }

(b) Generated assembly code

Code generated for iterative version of list sum

with optimization level -O3

ls at %ebp+8

1 sum_list_iter:
2 pushl %ebp
3 xorl %eax, %eax Set sum = 0

4 movl %esp, %ebp
5 movl 8(%ebp), %edx Get ls

6 testl %edx, %edx
7 je .L62 if ls == NULL, goto done

8 .p2align 4,,7 (Inserted to improve instruction alignment)

9 .p2align 3
Within loop: ls in %edx, sum in %eax

10 .L65: loop:

11 addl (%edx), %eax Add ls->val to sum

12 movl 4(%edx), %edx Set ls = ls->next

13 testl %edx, %edx
14 jne .L65 If ls == NULL, goto loop

15 .L62: done:

16 popl %ebp
17 ret

Figure 4:Iterative summation of list. Similar code is generated for all optimization levels.

7

(a) C code

1 int sum_list_iter_abs(list_ptr ls) {
2 int sum = 0;
3 while (!is_null(ls)) {
4 sum += val(ls);
5 ls = next(ls);
6 }
7 return sum;
8 }

(b) C code with functions expanded by inline substitution

1 /* Result of inline expansion in function sum_list_iter_abs */
2 int sum_list_iter_expand(list_ptr ls) {
3 int sum = 0;
4 /* Expansion of function is_null */
5 while (!(ls==NULL)) {
6 {
7 /* Expansion of function val */
8 int val;
9 if (ls == NULL) /* Optimized away */

10 val = 0;
11 else
12 val = ls->val;
13 sum += val;
14 }
15 {
16 /* Expansion of function next */
17 list_ptr next;
18 if (ls == NULL) /* Optimized away */
19 next = NULL;
20 else
21 next = ls->next;
22 ls = next;
23 }
24 }
25 return sum;
26 }

Figure 5:Demonstration of inline substitution. The compiler is then able to generate code identical to
that for sum list iter (Figure 4.)

8

more abstract version of list summation is identical to thatgenerated for the less abstract version (Figure 4.)
Writing code in a more abstract style, such as is shown in Figure 5, need not incur any performance penalty.

(a) C code

1 int test_select() {
2 return select(5, 6, 1);
3 }

(b) Generated assembly code, optimized-O1

Function test_select, optimized -O1

1 test_select:
2 pushl %ebp
3 movl %esp, %ebp
4 subl $12, %esp Allocate 12 bytes on stack

5 movl $1, 8(%esp) Set 1 as 3rd argument

6 movl $6, 4(%esp) Set 6 as 2nd argument

7 movl $5, (%esp) Set 5 as 1st argument

8 call select Call select(5,6,1)

9 leave
10 ret

(c) Generated assembly code, optimized-O3

Function select, optimized -O3

x at %ebp+8, y at %ebp+12, i at %ebp+16

1 test_select:
2 pushl %ebp
3 movl $6, %eax Set result = 6

4 movl %esp, %ebp
5 popl %ebp
6 ret

Figure 6: Example of inline substitution followed by optimization. GCC determines that the function
will always return 6.

Figure 6 shows an interesting example of the performance benefits to be gained by inline substitution. In
(a), we show an example function that calls the functionselect, shown in Figure 1. When run with
optimization level one (b),GCC does not perform inline substitution, and hence it has no choice but to set
up a call toselect. By performing inline substitution as part of level-three optimization (c), the compiler
is able to detect that the behavior of this particular call totest_select is highly predictable, and in fact
will always return 6. So, the compiler simply generates codethat sets register%eax to 6.

Drawbacks and Limitations of Inline Substitution

Our examples show the performance advantages of inline substitution. Eliminating the overhead of func-
tion calls, including allocating and deallocating a stack frame can be significant. More importantly, inline
substitution enables a context-based optimization of the function code.

9

On the other hand, there are several important drawbacks andlimitations of inline substitution:

The code is harder to debug. Inline substitution eliminates some of the call and return behavior expressed
in the source code. This normally doesn’t matter, because the computed results will be identical.
However, if we try to monitor the executable program with a debugger such asGDB, we could find
some unexpected results. For example, if we set a breakpointfor the functionis_null in the list
code, we might be surprised that the sum function completes without ever hitting the breakpoint. A
general rule of thumb is to set the optimization level lower when debugging a program, and increase
it only when generating production code.

The code size can grow. Each inline substitution can cause a replication of an entire function’s worth of
code. In the worst case, it can even cause a program to blow up to a size that is exponential in the
size of the original source program. Compilers have complexheuristic rules to decide whether or not
to perform inline substitution for a given function. These rules typically err on the side of caution,
in order to keep the generated code within a tight bound of what would be generated without inline
substitution.

It may not be possible. Inline substitution requires that the compiler have accessto the source code of a
function at compile time. This was possible for our list programs, because they were all within a
single file. Ordinarily, however, library functions are precompiled, and large programs are divided
into multiple files that are compiled separately. The compiler might have access to the function
prototypes, via a ‘.h’ file, but not to the source code. Putting everything in one file runs counter to
the goal of making programs as modular as possible.

5 Recursion Removal

Many programmers feel that expressing a computation as a recursive function can provide a clearer depiction
of the desired behavior. It is a natural expression of a “divide and conquer” strategy, where we divide a
problem into pieces, solve them separately (by recursive calls), and then combine the results.

From a performance perspective, however, recursive functions have two drawbacks. First, they tend to run
slower. For example, we measured different factorial functions on an Intel Core i7 processor and found the
iterative version runs around twice the speed of the recursive one. Second, they require more space. We
have seen, for example, that our recursive factorial program allocates 16 bytes on the stack for each call,
and these allocations accumulate until the termination condition is reached. Thus, computing the factorial
of a valuen recursively will require around16n bytes of stack space. By contrast, the iterative version of
factorial requires8 bytes of stack space regardless of the value ofn.

Some computations fundamentally require more than a constant amount of storage, and hence some recur-
sive functions cannot be expressed as iterative computations, without adding an additional data structure
such as a stack. For the class oflinear recursions, however, where any invocation of a function contains at
most one recursive call, we can often transform recursion into iteration. When this can be done automati-
cally by the compiler, we gain the advantage of allowing the programmer to express a function in a clear
manner and having the compiler transform it into a form that requires less time and space.

10

5.1 Tail Recursion

The most straightforward form of recursion is referred to astail recursion. A call by a functionf to a
function g is labeled as atail call when the result of this call tog is returned directly as the result of
functionf. A tail-recursivefunction is one for which all recursive calls are tail calls.

As an example, the following function computes the sum of a linked list using tail recursion.

1 int sum_list_tail(list_ptr ls, int sofar) {
2 if (ls == NULL)
3 return sofar;
4 else
5 return sum_list_tail(ls->next, sofar + ls->val);
6 }
7

8 int sum_list_tail_call(list_ptr ls) {
9 return sum_list_tail(ls, 0);

10 }

At a top level, the user would invoke the functionsum_list_tail_call to compute the sum of a
list, which in turn calls the recursive functionsum_list_tail. We see thatsum_list_tail is tail
recursive—it contains only a single call to itself, and the result of this call is returned as the function
result. Functionsum_list_tail employs a strategy commonly seen in tail-recursive functions, where
an additional argument serves as an “accumulator,” here namedsofar, to keep track of the sum of all of
the list elements encountered up to this point. This variable is initialized to zero, and the function keeps
adding values to it as it traverses the list. Once we reach theend of the list, the function can simply return
sofar as the list sum.

A tail-recursive function can be automatically transformed into an iterative one. We describe the process
here by first giving a more abstract representation of a tail-recursive function. The following code shows
the general structure of a two-argument, tail-recursive function. (The same idea can be used for a function
of any number of arguments.)

tail(a1, a2) {
if (Cond(a1, a2)) {

return Result(a1, a2);
else {

na1 = Nval1(a1, a2);
na2 = Nval2(a1, a2);
return tail(na1, na2);

}
}

11

The general from has argumentsa1 and a2. It checks whether it has reached a terminal case based on
some conditionCond , applied to the arguments. The terminal condition returns avalueResult , which can
depend on the arguments. The recursive call involves computing new values for the arguments, based on
computationsNval1 andNval2, and then making a tail call.

For our list sum function, the correspondence between the general form and the actual code is based on the
following mappings:

Abstract value Program value
a1 ls
a2 sofar
Cond(a1, a2) ls == NULL
Result(a1, a2) sofar
Nval1(a1, a2) ls->next
Nval2(a1, a2) sofar + ls->val

We can transform the general, tail-recursive function intoa version that uses iteration as follows:

itail(a1, a2) {
while (!Cond(a1, a2)) {

na1 = Nval1(a1, a2);
na2 = Nval2(a1, a2);
a1 = na1;
a2 = na2;

}
return Result(a1, a2);

}

In this code, we keep updating the variablesa1 anda2 in the same manner as we would via repeated calls to
the recursive function. (We show this as first computing valuesna1 andna2 and then assigning these toa1

anda2 to avoid any inconsistency of having the computation ofNval2 use the updated version ofa1.) Once
we reach the terminating condition, we can simply return thevalue computed by the base case.

If we apply this transformation to the tail-recursive list summation example, we get the following code:

1 int sum_list_itail(list_ptr ls, int sofar) {
2 while (!(ls == NULL)) {
3 list_ptr nls = ls->next;
4 int nsofar = sofar + ls->val;
5 ls = nls;
6 sofar = nsofar;
7 }
8 return sofar;

12

9 }

We can see that the inner loop of this function is essentiallythe same as for the iterative sum function
(Figure 4). In fact, using a combination of inline substitution and tail recursion removal,GCC generates
the same code for top-level functionsum_list_tail_call, as it does for the iterative sum function
sum_list_iter.

Practice Problem 2:

The following is a recursive factorial function. We assume that argumentx is greater than or equal to
zero.

1 int fact_recur(int x) {
2 if (x == 0)
3 return 1;
4 else
5 return x * fact_recur(x-1);
6 }

A. Write a version of the function based on tail recursion. Show how this function would be called to
compute the factorial ofx.

B. Show a mapping between your function and the general form of a tail-recursive function.

C. Show how your tail-recursive function would be transformed into an iterative one.

Tail recursion elimination is a standard optimization usedby many compilers [4]. Its only drawback is
when we then try to monitor code execution via a debugger suchas GDB. If we set a breakpoint for the
function, we might be surprised to find the breakpoint only gets triggered once. In fact, if the compiler
uses a combination of inline substitution and tail-call elimination, we would find that calling the function
sum_list_tail_call does not trigger the breakpoint forsum_list_tail at all.

5.2 More General Forms of Recursion

Many recursive functions do not use tail recursion. In fact,we can see for our list summation example that
tail recursion was not the most natural way to express the desired computation. Instead, a more traditional
way of expressing list summation is via the recursive functionsum_list_rec shown in Figure 7(a). As
shown in part (b) of the figure,GCC is able to transform this recursive function into an iterative computation.
We see that the generated code is almost identical to that forthe iterative summation (Figure 4). The only
difference is that the inner loop requires 5 instructions todo the same computations as does the earlier
version do with 4 instructions.

Being able to transform recursion into iteration is a more advanced form of optimization, not covered in
most books on compiler optimization. Our presentation is based on a research paper [3].

Suppose the argument list consists of elementsl1, l2, . . . , ln−1, ln, wherel1 is the first element of the list.
Then our iterative summation function computes the sum as:

[· · · [[0 + l1] + l2] + · · · + ln−1] + ln (1)

13

(a) C code

1 int sum_list_rec(list_ptr ls) {
2 if (ls == NULL)
3 return 0;
4 else
5 return ls->val + sum_list_rec(ls->next);
6 }

(b) Generated assembly code, optimized-O3

Code generated for recursive version of list sum

with optimization level -O3

ls at %ebp+8

1 sum_list_rec:
2 pushl %ebp
3 xorl %ecx, %ecx Set sum = 0

4 movl %esp, %ebp
5 movl 8(%ebp), %edx Get ls

6 testl %edx, %edx
7 je .L14 If ls == NULL, goto done

8 .p2align 4,,7 (Inserted to improve instruction alignment)

9 .p2align 3
Within loop: ls in %edx, sum in %ecx

10 .L17: loop:

11 movl (%edx), %eax Get val = ls->val

12 movl 4(%edx), %edx Set ls = ls->next

13 addl %eax, %ecx Add val to sum

14 testl %edx, %edx
15 jne .L17 If ls != NULL, goto loop

16 .L14: done:

17 movl %ecx, %eax Set result = sum

18 popl %ebp Restore frame pointer

19 ret Return

Figure 7: Recursive list summation function and generated assembly code. The compiler is able to
transform the recursion into iteration, even though it is not tail recursive.

14

(We use brackets ‘[’ and ‘]’ in our expression to denote the grouping of terms. This serves to highlight the
difference between grouping and the use of parentheses to denote function application.) We can see by this
equation that the computation starts with a sum value of zeroand adds successive list elements froml1 to
ln.

Our recursive summation function computes the sum as:

l1 + [l2 + · · · + [ln−1 + [ln + 0]] · · ·] (2)

That is, the sequence of recursive calls steps through the list until it reaches the empty list, at which point the
function returns 0. Then the returns from the calls sum the list elements in reverse order fromln to l1. The
two expressions yield identical results, because integer addition is both commutative and associative. By
way of comparison, they might produce different results if we were using floating-point arithmetic, since it
is not associative. Our goal is to find a general way to convertthe first form of computation into the second,
exploiting the mathematical properties of the operation used to generate the final results.

We can express the recursion seen in functionlist_sum_rec in a general form by the functionrecur:

recur(a) {
if (a == a0) {

/* Base case */
return b0;

else {
/* Recursive call */
return V (a) op recur(N(a));

}

This general form has a single argumenta. The base case is reached when the argument matches a base
value,a0, in which case the function returns some valueb0. The recursive case involves computing a new
argumentN(a), and making the recursive call. The result of this call is then combined with valueV (a)
via acombining operationop.

For our list sum function, the correspondence between the general form and the actual code is based on the
following mappings:

Abstract value Program value
a ls
a0 NULL
b0 0
V (a) ls->val
N(a) ls->next
op +

Assume that we start the computation with argumenta, and thatN k(a) = a0, where the notationN k means

15

k applications of functionN . Then we can write the computation performed by the recursive function as:

V (a) op [V (N (a)) op · · · op [V (N k−2(a)) op [V (N k−1(a)) op b0]] · · ·] (3)

For the case where combining operationop is associative and commutative, as is integer addition, we can
rearrange the terms of this expression into a form similar toour iterative version of list summation:

[· · · [[b0 op V (a)] op V (N (a))] op · · · op V (N k−2(a))] op V (N k−1(a)) (4)

This expression can be converted to an iterative computation, much as we did for summing the elements of
a list, introducing a variabler to hold the accumulated result. We label this the “iter1” transformation.

iter1(a) {
r = b0;
while (a != a0) {

r = r op V (a);
a = N(a);

}
return r;

}

We can see that when we apply this transformation to recursive list summation, we get the C code shown
for sum_list_iter (Figure 4), wheresum serves as the accumulating variabler . As we have seen,
GCC generates nearly the same code for the functionssum_list_iter (Figure 4) andsum_list_rec
Figure 7), an indication that it applies theiter1.

Practice Problem 3:

Let us apply theiter1 transformation to convert the recursive factorial function, shown in Problem 2,
into an iterative one.

A. Show the mapping between the factorial code and the general recursive form of functionrecur.
Is operationop both associative and commutative?

B. Show the code you would get by applying theiter1 transformation.

In our experience,GCC applies theiter1 transformation when applicable. The main limitation is that
it must be able to determine that the combining operation is commutative and associative. It applies the
transformation for integer addition (as in list summation)and multiplication (as in factorial), but not for
floating-point operations. In addition, it will not apply the transformation for more complex operations,
even if they are commutative and associative. For example, consider code to find the maximum element in
a list:

16

1 int max(int x, int y) {
2 return (x > y) ? x : y;
3 }
4

5 int max_list_rec(list_ptr ls) {
6 if (ls == NULL)
7 return INT_MIN;
8 else
9 return max(ls->val,

10 max_list_rec(ls->next));
11 }

The code formax_list_recmatches the pattern forrecur, with max serving as the combining opera-
tion. This operation is both commutative and associative, but GCC has no way of determining this.

Practice Problem 4:

Consider the “list difference” computation, where we replace the addition operation of the list summation
function with subtraction:

1 int diff_list_rec(list_ptr ls) {
2 if (ls == NULL)
3 return 0;
4 else
5 return ls->val - diff_list_rec(ls->next);
6 }

Unfortunately, subtraction is neither commutative nor associative.

A. Show how you can transform this function into one that usesaddition as the combining operation,
possibly introducing a second function argument. How wouldthis be called at the top level?

B. Show the iterative form you would get by applying a transformation similar toiter1, but com-
bining the top-level call with the two-argument recursive function.

Practice Problem 5:

Consider the following code, declaring a data type for the nodes of a binary tree, and a recursive function
to sum the values of all the nodes in a tree:

1 /* Tree data structure */
2 typedef struct NODE {
3 int val;
4 struct NODE *left;
5 struct NODE *right;
6 } tree_ele, *tree_ptr;
7

8 /* Sum values in tree, recursively */
9 int sum_tree_rec(tree_ptr tp) {

17

10 if (tp == NULL)
11 return 0;
12 else {
13 return tp->val +
14 sum_tree_rec(tp->left) +
15 sum_tree_rec(tp->right);
16 }
17 }

Functionsum_tree_rec usesnonlinearrecursion. In fact, this is an example of a computation that
fundamentally requires a stack (such as is provided to support recursion) or some other data structure.

Even though it is not possible to eliminate both recursive calls, we can transform this function into one
that computes the sum of the left subtree recursively and computes the sum of the right subtree iteratively.

A. Show a mapping between the code forsum_tree_rec and the general formrecur that will
allow the recursive call to the right subtree to be a candidate for theiter1 transformation.

B. Show the C code you would get by applying theiter1 transformation.

5.3 Partial Recursion Expansion

WhenGCC is unable to remove recursion altogether, it can still attempt to reduce some of the overhead of
recursive function calls. It does this by partially expanding the recursion, generating code that steps through
the firstk recursive calls explicitly, for some value ofk. This process can be viewed as a form of inline
substitution—it replaces a recursive call with the body of the function a total of 8 times. This transformation
is only applied for optimization levels 3 and higher, since it significantly increases the amount of code
generated.

Let us examine how partial expansion can be applied to the list difference code shown in Problem 4. GCC is
unable to transform this recursion into iteration, since subtraction is not associative. Figures 8–10 show the
codeGCC generates code for optimization level 3. This code steps through the first nine levels of recursion,
storing the list elements either in registers or within the function’s stack frame. After nine steps, it then
performs a recursive call to sum the rest of the list. This recursive call, of course, will step through the next
nine elements of the list before making a second recursive call, and so on, such that the total number of
function calls is reduced by a factor of around nine.

Of course, the list may have fewer than eight elements, and sothe code has branches after each step to
bypass any remaining steps once it hits a null pointer. We show these branches as having destinations with
labels of the formlen i, meaning the branch will be taken when the argument list is oflengthi. Observe
how the explicit steps complete by stepping through the listelements in reverse order.

In our measurements of this transformation, we found that ittypically speeds up the computation by a factor
of around 1.2. It is not as effective as eliminating recursion altogether, but it does have some benefit.

Practice Problem 6:

Based on the code shown in Figures 8–10, show how to expand thegeneral form of recursion given as
functionrecur for k = 3 steps. Your code should not contain anygoto statements. You should not

18

Code generated for recursive version of list difference

with optimization level -O3

ls at %ebp+8

1 diff_list_rec:
2 pushl %ebp
3 xorl %eax, %eax Set diff to 0

4 movl %esp, %ebp
5 subl $40, %esp

ls in register %edx, diff in register %eax

6 movl 8(%ebp), %edx
7 movl %ebx, -12(%ebp)
8 movl %esi, -8(%ebp)
9 movl %edi, -4(%ebp)

10 testl %edx, %edx
11 je .L133 If ls==NULL, goto len_0

Step through up to 8 elements of list, storing values in registers and on stack

12 movl (%edx), %esi Set %esi to l_1

13 xorl %eax, %eax Set diff to 0

14 movl 4(%edx), %edx ls = ls->next

15 testl %edx, %edx
16 je .L135 If ls==NULL, goto len_1

ls in register %eax, diff in register %edx

17 movl 4(%edx), %eax ls = ls->next

18 movl (%edx), %edi Set %edi to l_2

19 xorl %edx, %edx Set diff to 0

20 testl %eax, %eax
21 je .L137 IF ls==NULL, goto len_2

22 movl (%eax), %edx
23 movl 4(%eax), %eax ls = ls->next

24 movl %edx, -36(%ebp) Store l_3 at %ebp-36

25 xorl %edx, %edx
26 testl %eax, %eax
27 je .L139 If ls==NULL, goto len_3

Figure 8:Compilation of diff list rec (Problem 4), Part I. This code demonstrates the expansion of
recursion performed for optimization levels 3 and higher.

19

28 movl (%eax), %edx
29 movl 4(%eax), %eax ls = ls->next

30 movl %edx, -32(%ebp) Store l_4 at %ebp-32

31 xorl %edx, %edx Set diff to 0

32 testl %eax, %eax
33 je .L141 If ls==NULL, goto len_4

34 movl (%eax), %edx
35 movl 4(%eax), %eax ls = ls->next

36 movl %edx, -28(%ebp) Store l_5 at %ebp-28

37 xorl %edx, %edx Set diff to 0

38 testl %eax, %eax
39 je .L143 If ls==NULL, goto len_5

40 movl (%eax), %edx
41 movl 4(%eax), %eax ls = ls->next

42 movl %edx, -24(%ebp) Store l_6 at %ebp-24

43 xorl %edx, %edx Set diff to 0

44 testl %eax, %eax
45 je .L145 If ls==NULL, goto len_6

46 movl (%eax), %edx
47 movl 4(%eax), %eax ls = ls->next

48 movl %edx, -20(%ebp) Store l_7 at %ebp-20

49 xorl %edx, %edx Set diff to 0

50 testl %eax, %eax
51 je .L147 If ls==NULL, goto len_7

52 movl (%eax), %edx
53 movl 4(%eax), %eax ls = ls->next

54 movl %edx, -16(%ebp) Store l_8 at %ebp-16

55 xorl %edx, %edx Set diff to 0

56 testl %eax, %eax
57 je .L149 If ls==NULL, goto len_8

Reach here only if list has >= 9 elements

58 movl (%eax), %ebx Set %ebx to l_9

59 movl 4(%eax), %eax ls = ls->next

60 movl %eax, (%esp)
Make recursive call to compute difference for rest of list

61 call diff_list_rec diff = diff_list_rec(ls)

Figure 9:Compilation of diff list rec (Problem 4), Part II.

20

Accumulate values for first nine elements of list, in reverse order

62 movl %ebx, %edx Retrieve l_9

63 subl %eax, %edx diff = l_9 - diff

64 .L149: len_8:

65 movl -16(%ebp), %eax Retrieve l_8

66 subl %edx, %eax
67 movl %eax, %edx diff = l_8 - diff

68 .L147: len_7:

69 movl -20(%ebp), %eax Retrieve l_7

70 subl %edx, %eax
71 movl %eax, %edx diff = l_7 - diff

72 .L145: len_6:

73 movl -24(%ebp), %eax Retrieve l_6

74 subl %edx, %eax
75 movl %eax, %edx diff = l_6 - diff

76 .L143: len_5:

77 movl -28(%ebp), %eax Retrieve l_5

78 subl %edx, %eax
79 movl %eax, %edx diff = l_5 - diff

80 .L141: len_4:

81 movl -32(%ebp), %eax Retrieve l_4

82 subl %edx, %eax
83 movl %eax, %edx diff = l_4 - diff

84 .L139: len_3:

85 movl -36(%ebp), %eax Retrieve l_3

86 subl %edx, %eax
87 movl %eax, %edx diff = l_3 - diff

88 .L137: len_2:

89 movl %edi, %eax Retrieve l_2

90 subl %edx, %eax diff = l_2 - diff

91 .L135: len_1:

92 subl %eax, %esi Retrieve l_1

93 movl %esi, %eax diff = l_1 - diff

94 .L133: len_0:

95 movl -12(%ebp), %ebx
96 movl -8(%ebp), %esi
97 movl -4(%ebp), %edi
98 movl %ebp, %esp
99 popl %ebp

100 ret Return diff

Figure 10:Compilation of diff list rec (Problem 4), Part III.

21

assume any properties of the combining operationop; for example, it may be neither commutative nor
associative.

5.4 *Other Recursion Eliminations: Beyond GCC

Although not currently implemented byGCC, it is interesting to consider other ways of converting functions
having the recursive structure ofrecur into iterative ones. We explore these via a series of exercises.

Practice Problem 7:

Consider the case where the combining operationop is associative, but not necessarily commutative.
(Examples of associative, but non-commutative operationsinclude matrix multiplication and string con-
catenation.) By being a little more careful in how we order the computation, we can devise a scheme
that will transform computations of the form shown in functionrecurse into iterative ones.

In devising theiter1 transformation, we started with the expression (Equation 3) describing the com-
putation performed by the recursive functionrecurse:

V (a) op [V (N (a)) op · · · op [V (N k−2(a)) op [V (N k−1(a)) op b0]] · · ·]

A. For an associative operationop, we can shift the parentheses in this expression, but we cannot
change the positions of any of the elements. Show how we couldreparenthesize the expression in
a way that makes it suitable for an iterative computation.

B. Express the transformation to an iterative computation with a functioniter2 that is similar to
iter1, except that it does not rely on commutativity. Be careful ofthe case where the argument
a equals the base valuea0.

Practice Problem 8:

Show the function you would get by applying theiter2 transformation you derived for Problem 7 to
the recursive factorial function of Problem 2

Practice Problem 9:

Consider the case where the combining operationop is not associative. For example, subtraction is nei-
ther associative nor commutative, and neither floating-point addition nor multiplication are associative.
Suppose on the other hand, that the functionN we use to enumerate successive elements is invertible.
That is, there is some functionP such that for any valuex, we haveP(N (x)) = x. (This property does
not apply to list summation, since there is no inverse for theexpressionls->next.)

Consider the expression describing the computation performed by the recursive functionrecurse
(Equation 3):

V (a) op [V (N (a)) op · · · op [V (N k−2(a)) op [V (N k−1(a)) op b0]] · · ·]

A. Rewrite this expression in terms of successive applications of functionP , rather thanN .

B. Convert your expression into an iterative functioniter3. Be careful of the case where argument
a equals the base valuea0.

22

Practice Problem 10:

Show how theiter3

transformation you derived in Problem 9 can be applied to therecursive factorial function of Problem 2.

A. What is the inverse operation?

B. What C code do you get by applying theiter3 transformation?

6 Sibling Call Optimization

We saw that tail recursion can generally be replaced by iteration. A related form of optimization concerns
sibling calls—tail calls to other functions. Suppose that functionf makes a tail call to functiong, as
illustrated by the following code:

int f(int x)
{

int y = P(x); /* Some computation */
return g(y); /* Tail call */

}

Once functionf has reached the tail call, it is basically done. Any computations it needs to perform have
been completed, and any local storage it has allocated (except possibly for variabley) is no longer needed.
Instead of waiting until afterg returns to deallocate its stack frame, it can do so before calling g. The
compiler can then replace the call tog by a jump. Functiong will then proceed in the normal manner, but
when it executes itsret instruction, it will return directly to the function that called f.

Before jumping tog, the code forf must make sure that argumenty is in the position thatg expects. It
can do this by storing the value ofy at the address given by%ebp + 8. In doing so, it overwrites its own
argumentx, located in the caller’s stack frame. Fortunately, this value is no longer needed.

1 /* Examples of function making sibling call */
2 int square(int x) {
3 return x * x;
4 }
5

6 int proc(int x, int y, int i) {
7 int b[2] = {x, y};
8 return square(b[i & 0x1]);
9 }

Figure 11:Example of sibling call. Function proc makes a sibling call to square.

Figure 11 shows an example of a functionproc that makes a sibling call to a second functionsquare.
Normally, with optimization level two or higher,GCC will eliminate this call by inline substitution. By
giving GCC the command-line argument ‘-fno-inline,’ we disable inline substitution, and instead it
will apply sibling-call optimization, yielding the following IA32 code forproc:

23

Function proc, optimized -O3, inline substitution disabled

x at %ebp+8

1 proc:
2 pushl %ebp
3 movl %esp, %ebp
4 subl $16, %esp Allocate 16 bytes on stack

Create array b at %ebp-8 and set %eax to b[i & 0x1]

5 movl 8(%ebp), %eax
6 movl 16(%ebp), %edx
7 movl %eax, -8(%ebp)
8 movl 12(%ebp), %eax
9 andl $1, %edx

10 movl %eax, -4(%ebp)
11 movl -8(%ebp,%edx,4), %eax

Set up sibling call

12 movl %eax, 8(%ebp) Set first argument to b[i & 0x1]

13 leave Deallocate stack frame and restore frame pointer

14 jmp square Make sibling call

This code follows the usual IA32 conventions, allocating 16bytes on the stack for local arrayb and com-
puting the argument forsquare in register%eax. Starting at line 12, we see the preparation for a sibling
call. On this, line, the argument is stored at address%ebp+ 8. On line 13, we see the current stack frame
being deallocated with aleave instruction. On line 14, we see the jump to the code forsquare.

Sibling call optimization has only a minimal benefit in termsof the execution time of the resulting code. It
replaces acall instruction by ajmp, and it eliminates one of theret instructions, but these differences
are minor. Unlike inline substitution, it does not enable a context-dependent optimization of the code for
the sibling function. On the other hand, this optimization can yield a substantial savings in the total amount
of stack space needed [1]. For example, consider functionsf andg that call each other (mutual recursion)
using tail calls. Normally, the stack space will grow in proportion to the depth of the recursion. With
sibling-call optimization, the total stack space requiredremains constant, regardless of recursion depth.

7 Concluding Observations

Compiler-based code optimization is an active area of research, adapting to the changing performance char-
acteristics of processors, as well as the ability to apply more sophisticated analyses and transformations by
exploiting the increasing power of the processors on which the compilers are run. The developers ofGCC

continue to track this work, continually improving the ability of GCC to generate more efficient code.

Trying to debug a program compiled with sophisticated optimizations can be difficult, because the connec-
tion between the source code and the actual executable code becomes more tenuous. The best strategy is to
keep the optimization level low (level one or none at all) until the program is ready for production usage.

24

Solutions to Problems

Problem 1 Solution: [Pg. 4]

A. For values ofb between 9 and 15, it will insert16 − b bytes. Otherwise, no bytes will be inserted.

B. For values ofb between 1 and 7, it will insert8 − b bytes. For values ofb between 9 and 15, it will
insert16 − b bytes.

C. The combination of the two will have the same effect as the single directive.p2align 3. It is
puzzling thatGCC inserts both directives.

Problem 2 Solution: [Pg. 12]

Recursive factorial is another example of a linear recursion. We can map it to tail recursion in a manner
similar to what we did for list summation.

A. Here is a tail-recursive version of factorial.

1 int fact_tail(int x, int sofar) {
2 if (x == 0)
3 return sofar;
4 else
5 return fact_tail(x - 1, sofar * x);
6 }
7

8 int fact_tail_call(int x) {
9 return fact_tail(x, 1);

10 }

The variablesofar accumulates the product of the successive values ofx. The top-level function
fact_tail_call initiates the computation withsofar equal to 1:

B. We can map the general form of tail recursion to this specific code as follows:

Abstract value Program value
a1 x
a2 sofar
Cond(a1, a2) x == 0
Result(a1, a2) sofar
Nval1(a1, a2) x - 1
Nval2(a1, a2) sofar * x

C. Applying the transformation, we get the following C code:

25

1 int fact_itail(int x, int sofar) {
2 while (x != 0) {
3 int nx = x - 1;
4 sofar = sofar * x;
5 x = nx;
6 }
7 return sofar;
8 }

Problem 3 Solution: [Pg. 15]

Theiter1 transformation leads to a very conventional form of iterative factorial.

A. The following table shows the mapping between the generalform and the factorial function:

Abstract value Program value
a x
a0 0
b0 1
V (a) x
N(a) x - 1
op *

B. Applying theiter1 transformation yields the following code:

1 int fact_iter1(int x) {
2 int r = 1;
3 while (x != 0) {
4 r = r * x;
5 x = x - 1;
6 }
7 return r;
8 }

Problem 4 Solution: [Pg. 16]

We can express the computation performed by this function bythe following expression:

l1 − [l2 − [l3 − [l4 − · · · [ln−1 − [ln − 0)] · · ·]]]

A. We can rewritex− y asx +−y, and exploit the property that−(−x) = x, so that the expression can
be written as the sum of alternating positive and negative terms. For the case wheren is even, this
yields the expression:

l1 + −l2 + l3 + −l4 + · · · − ln−1 + ln − 0

That is, the sum should alternate between adding the list element or its negation. A similar pattern
holds whenn is odd.

26

B. We can therefore rewrite the function, keeping its recursive form, but introducing a second argument
wt that alternates between values+1 and−1. This is called at the top level withwt equal to+1:

1 int diff_list_rec_helper(list_ptr ls, int wt) {
2 if (ls == NULL)
3 return 0;
4 else
5 return (wt * ls->val) +
6 diff_list_rec_helper(ls->next, -wt);
7 }
8

9 int diff_list_rec2(list_ptr ls) {
10 return diff_list_rec_helper(ls, 1);
11 }

C. Applying a variant of theiter1 transformation yields the following iterative form:

1 int diff_list_iter1(list_ptr ls) {
2 int wt = 1;
3 int diff = 0;
4 while (ls != NULL) {
5 diff += wt * ls->val;
6 wt = -wt;
7 ls = ls->next;
8 }
9 return diff;

10 }

Problem 5 Solution: [Pg. 16]

This example illustrates the generality of the form given byfunctionrecur.

A. The key is to expand the computationV to include the call for the left subtree:

Abstract value Program value
a tp
a0 NULL
b0 0
V (a) tp->val + sum_tree_rec(tp->left)
N(a) tp->next
op +

B. Applying theiter1 transformation gives the following code:

1 /* Sum values in tree,
2 recursively for left subtree and
3 iteratively for right subtree */

27

4 int sum_tree_lrec(tree_ptr tp) {
5 int sum = 0;
6 while (!(tp == NULL)) {
7 sum += tp->val +
8 sum_tree_lrec(tp->left);
9 tp = tp->right;

10 }
11 return sum;
12 }

GCC performs exactly this transformation when compilingsum_tree_rec.

Problem 6 Solution: [Pg. 17]

Here is the solution code. Since we are not assuming any special properties aboutop, it is important to
combine values in the proper order.

recur expand3(a) {
r = b0;
if (a != a0) {

v[1] = V (a); /* First list element */
a = N(a);
if (a != a0) {

v[2] = V (a); /* Second list element */
a = N(a);
if (a != a0) {

v[3] = V (a); /* Third list element */
a = N(a);
r = recur expand3(a);
r = v[3] op r;

}
r = v[2] op r;

}
r = v[1] op r;

}
return r;

Problem 7 Solution: [Pg. 21]

This problem shows that commutativity is not a fundamental requirement for a transformation from recur-
sion to iteration.

A. We can shift the parentheses to compute values from left toright, keeping the base value on the right:

[[· · · [V (a) op V (N (a))] op · · · op V (N k−2(a))] op V (N k−1(a))] op b0

28

B. This leads to the following general form. We must treat thecase wherea equalsa0 explicitly:

iter2(a) {
if (a == a0)

/* Special case when called with a0 */
return b0;

else {
r = V (a);
while (N(a) != a0) {

a = N(a);
r = r op V (a);

}
/* Finish with a = a0 */
r = r op b0;
return r;

}
}

Problem 8 Solution: [Pg. 21]

Applying theiter2 transformation to recursive factorial gives this slightlyunusual form:

1 int fact_iter2(int x) {
2 if (x == 0)
3 return 1;
4 else {
5 int r = x;
6 while (x-1 != 0) {
7 x = x - 1;
8 r = r * x;
9 }

10 /* Don’t need to multiply by 1 */
11 return r;
12 }
13 }

Problem 9 Solution: [Pg. 21]

This is a very interesting and powerful transformation.

A. We know that ifN k(a) = a0, thenPk(a0) = a. We can therefore rewrite the expression as:

V (Pk(a0) op [V (Pk−1(b0)) op · · · op [V (P2(a0)) op [V (P(a0)) op b0]] · · ·]

29

B. This leads to a general form, where we start froma0 and work up toa via P :

iter3(a) {
r = b0;
if (a == a0)

/* Special case when called with a0 */
return r;

else {
t = P(a0);
while (t != a) {

r = V (t) op r;
t = P(t);

}
/* Finish with t = a */
r = V (a) op r;
return r;

}
}

Problem 10 Solution: [Pg. 22]

This transformation leads to another common way to compute factorial iteratively.

A. Since subtraction is the inverse of addition, we can letP(x) be the operationx+1.

B. This leads to a version of iterative factorial where we count from 1 up tox:

1 int fact_iter3(int x) {
2 int r = 1;
3 if (x == 0)
4 return r;
5 else {
6 int t = 1;
7 while (t != x) {
8 r = t * r;
9 t = t + 1;

10 }
11 r = x * r;
12 return r;
13 }
14 }

30

References

[1] A. Bauer and M. Pizka. Tackling C++ tail calls.Dr. Dobb’s Digest, February 1 2004.

[2] GCC Online Documentation. Available athttp://gcc.gnu.org/.

[3] Y. A. Liu and S. D. Stoller. From recursion to iteration: What are the optimizations?ACM SIGPLAN
Notices, 34(11):73–82, November 1999.

[4] S. S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

Index

CS:APP2e , 1

accumulator, 10
alignment, 4
associative, 14–16, 21

base case, 11, 14
binary tree, 16
body section,3

combining operation,14, 15, 16, 21
commutative, 14–16, 21
completion section,3

debugger, 9
divide-and-conquer strategy, 9

factorial
iterative, 25, 29
recursive, 12, 15, 21, 22, 24, 28

GDB, 9

inline substitution, 5
instruction

reordering, 2
instruction scheduling, 4
is null, 5, 7
iter1, 15,15, 16, 17, 21, 25, 26
iter2, 21, 28,28
iter3, 21,29
iterative factorial, 25, 29

linear recursion, 9
list

singly-linked, 4
list difference,16, 17
list summation, 15

iterative,6, 12, 15
recursive, 12,13, 14, 15
tail-recursive,10, 11

next, 5, 7
nonlinear recursion, 17

out-of-order execution, 4

.p2align alignment directive, 4
partial recursion expansion,17

recur, 14, 15–17, 21, 26
recursion

linear, 9
nonlinear, 17

recursion removal, 9
recursive factorial, 12, 15, 21, 22, 24, 28
reordering instruction, 2
return point,3

setup section,3
sibling call,22
singly-linked list, 4

tail call, 10, 22
tail recursion, 10

val, 5, 7

31

