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1 x87 Floating Point

Inthe CS:APP2e Chapter 3, we will begin an in-depth studyt# IA32 processors, the processor found in
many of today’s personal computers. Here we highlight avsiglicrasy of these machines that can seriously
affect the behavior of programs operating on floating-pourhbers when compiled withcc.

Intel IA32 processors, like most other processors, haveigipemory elements callgdgistersfor holding
floating-point values as they are being computed and usdde®aeld in registers can be read and written
more quickly than those held in the main memory. The unusestiufe of IA32 is that the floating-point
registers use a special 80-ixtended-precisiofiormat to provide a greater range and precision than the
normal 32-bit single-precision and 64-bit double-premisformats used for values held in memory. The
extended-precision representation is similar to an IEE&ifig-point format with a 15-bit exponent (i.e.,

k = 15) and a 63-bit fraction (i.en = 63). All single and double-precision numbers are converteithit
format as they are loaded from memaory into floating-pointstegs. The arithmetic is always performed in
extended precision. Numbers are converted from extendsgilspon to single or double-precision format as
they are stored in memory.
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2 Implicationsfor Programs Executing on |A32 Machines

This extension to 80 bits for all register data and then eation to a smaller format for memory data has
some undesirable consequences for programmers. It mesrsidhing a number from a register to memory
and then retrieving it back into the register can cause ihange, due to rounding, underflow, or overflow.
This storing and retrieving is not always visible to the Cgreonmer, leading to some very peculiar results.

The following program snippet illustrates this propertyshould be noted that the anomalous behavior we
show here depends greatly on the particular compiler andhamd-line options used, and so the result
shown below may not occur when compiled with other compilexduding other versions a$cc.

1 volatile int rcnt = 0; /* Used to create side effects */

2

3 doubl e recip(int denon) {

4 rcnt ++; /+ Side effect to prevent optimization */

5 return 1.0/ (doubl e) denom

6}

7

8 i nt dequal (doubl e x, double y) {

9 return x==y;

10 }

11

12 void testl(int denonm {

13 double r1, r2;

14 int t1, t2;

15

16 ri = recip(denom; /+* Stored in nmenory */
17 r2 = reci p(denom; /+* Stored in register */
18 tl =rl ==r2; [+ Conpares register to nenory */
19 t2 = dequal (r1,r2); [+ Conpares nenory to nenory */
20 printf("testl t1: r1 % %=r2 %\n", rl, t1?2'= : "' r2);
21 printf("testl t2: r1 % %=r2 %\n", rl, t2?'= : '"1" r2);
22 }

Variablesr 1 andr 2 are computed by the same function with the same argumentwOulg expect them
to be identical. Furthermore, both variabtek andt 2 are computed by evaluating the expressidn ==

r 2, and so we would expect them both to equalWhen the complete program is compiled on an 1A32
machine with command line option O2’ and run with argument 0, however, we get the following result:

testl t1: r1 0.100000 !'=r2 0.100000
testl t2: r1 0.100000 == r2 0.100000

The first test indicates the two reciprocals are differerilevthe second indicates they are the same! This
is certainly not what we expect, nor what we want. Understandll of the details of this example requires
studying the machine-level floating-point code generatgdsbc (see Web Aside ASM:X87), but the
comments in the code provide a clue as to why this outcomerscclihe value computed by function



reci p returns its result in a floating-point register. Whenevercpduret est 1 calls a function, it must
first store any value currently in a floating-point registiemtemory. In performing this store operation,
the processor converts the extended-precision registees/do double-precision memory values. Thus,
before making the second callt@ci p (line 17), variable 1 is converted and stored as a double-precision
number. After the second call, variabl@ has the extended-precision value returned by the functan.
we have seen, no finite-precision floating-point format ceactly represent the valug1, and the 64-bit
approximationr 1 is a rounded version of the 80-bit approximatio®. In computingt 1 (line 18), these
two approximations are compared and are found to be differdhaluet 2 is computed by calling the
functiondequal (line 19.) Arguments are passed to functions by storing tmeememory. In storing 2

to memory, it is converted to double precision, and hencedmeparison withirdequal (line 9) is made
between identical, 64-bit approximations(oft.

This example demonstrates a deficiencycafc on IA32 machines (the same result occurs on both Linux
and Microsoft Windows implementations). The value asgediavith a variable changes due to operations
that are not visible to the programmer, such as the savingestdring of floating-point registers. Our
experiments with the Microsoft Visual C++ compiler indieahat it does not have this problem. When
compiled in 64-bit mode on a more recent Intel machine, tlwereaty does not occur, becausec makes
use of a different floating-point capability on these maekjrwhere all computation is done using 64-bit,
double-precision numbers. One of the fundamental priesigf optimizing compilers is that programs
should produce the exact same results whether or not ojtiimizis enabled. Unfortunatelgcc does not
satisfy this requirement for floating-point code on 1A32 imaes.

3 Possible Remediations

There are several ways to overcome this problem, althougle ideal. The most reliable method we
have found is to havecc use extended-precision format in all of its computationsieglaring all of the
variables to be of typeong doubl e, as illustrated in the following reciprocal function

| ong double recip_I(int denom {
return 1.0/ (1 ong double) denom

}

The declaratiom ong doubl e is supported by most recent C implementations, andtheimplementa-
tions on Intel-compatible machines implement it using esesl-precision format for memory data as well
as for floating point register data. This allows us to takéddivantage of the wider range and greater pre-
cision provided by the extended-precision format whileiédwvg the anomalies we have seen in our earlier
examples. Unfortunately, this solution comes at a pricec@ses 12 bytes in 32-bit mode and 16 bytes
in 64-bit mode to store a long double, increasing memory wapgion by 50-100%. (Although 10 bytes
would suffice, it rounds this up to 12 or 16 to give a better mgnperformance. The same allocation is used
on both Linux and Windows machines). Transferring thesgdomlata between registers and memory takes
more time, too. Still, this is the best option for programat tivant to get the most accurate and predictable
results.

Fortunately, newer versions of Intel processors providectisupport for single and double-precision arith-
metic. As these processors become more prevalent, and gslemrgenerate code that uses the newer



floating-point instructions, fewer programmers will enoter the anomalous behavior we have demon-
strated here



