
CS:APP Web Aside DATA:IA32-FP:
Intel IA32 Floating-Point Arithmetic∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 x87 Floating Point

In the CS:APP2e Chapter 3, we will begin an in-depth study of Intel IA32 processors, the processor found in
many of today’s personal computers. Here we highlight an idiosyncrasy of these machines that can seriously
affect the behavior of programs operating on floating-pointnumbers when compiled withGCC.

Intel IA32 processors, like most other processors, have special memory elements calledregistersfor holding
floating-point values as they are being computed and used. Values held in registers can be read and written
more quickly than those held in the main memory. The unusual feature of IA32 is that the floating-point
registers use a special 80-bitextended-precisionformat to provide a greater range and precision than the
normal 32-bit single-precision and 64-bit double-precision formats used for values held in memory. The
extended-precision representation is similar to an IEEE floating-point format with a 15-bit exponent (i.e.,
k = 15) and a 63-bit fraction (i.e.,n = 63). All single and double-precision numbers are converted tothis
format as they are loaded from memory into floating-point registers. The arithmetic is always performed in
extended precision. Numbers are converted from extended precision to single or double-precision format as
they are stored in memory.

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1



2

2 Implications for Programs Executing on IA32 Machines

This extension to 80 bits for all register data and then contraction to a smaller format for memory data has
some undesirable consequences for programmers. It means that storing a number from a register to memory
and then retrieving it back into the register can cause it to change, due to rounding, underflow, or overflow.
This storing and retrieving is not always visible to the C programmer, leading to some very peculiar results.

The following program snippet illustrates this property. It should be noted that the anomalous behavior we
show here depends greatly on the particular compiler and command-line options used, and so the result
shown below may not occur when compiled with other compilers, including other versions ofGCC.

1 volatile int rcnt = 0; /* Used to create side effects */
2

3 double recip(int denom) {
4 rcnt++; /* Side effect to prevent optimization */
5 return 1.0/(double) denom;
6 }
7

8 int dequal(double x, double y) {
9 return x==y;

10 }
11

12 void test1(int denom) {
13 double r1, r2;
14 int t1, t2;
15

16 r1 = recip(denom); /* Stored in memory */
17 r2 = recip(denom); /* Stored in register */
18 t1 = r1 == r2; /* Compares register to memory */
19 t2 = dequal(r1,r2); /* Compares memory to memory */
20 printf("test1 t1: r1 %f %c= r2 %f\n", r1, t1 ? ’=’ : ’!’, r2);
21 printf("test1 t2: r1 %f %c= r2 %f\n", r1, t2 ? ’=’ : ’!’, r2);
22 }

Variablesr1 andr2 are computed by the same function with the same argument. Onewould expect them
to be identical. Furthermore, both variablest1 andt2 are computed by evaluating the expressionr1 ==
r2, and so we would expect them both to equal1. When the complete program is compiled on an IA32
machine with command line option ‘-O2’ and run with argument10, however, we get the following result:

test1 t1: r1 0.100000 != r2 0.100000
test1 t2: r1 0.100000 == r2 0.100000

The first test indicates the two reciprocals are different, while the second indicates they are the same! This
is certainly not what we expect, nor what we want. Understanding all of the details of this example requires
studying the machine-level floating-point code generated by GCC (see Web Aside ASM:X87), but the
comments in the code provide a clue as to why this outcome occurs. The value computed by function



3

recip returns its result in a floating-point register. Whenever proceduretest1 calls a function, it must
first store any value currently in a floating-point register to memory. In performing this store operation,
the processor converts the extended-precision register values to double-precision memory values. Thus,
before making the second call torecip (line 17), variabler1 is converted and stored as a double-precision
number. After the second call, variabler2 has the extended-precision value returned by the function.As
we have seen, no finite-precision floating-point format can exactly represent the value0.1, and the 64-bit
approximationr1 is a rounded version of the 80-bit approximationr2. In computingt1 (line 18), these
two approximations are compared and are found to be different. Value t2 is computed by calling the
functiondequal (line 19.) Arguments are passed to functions by storing themin memory. In storingr2
to memory, it is converted to double precision, and hence thecomparison withindequal (line 9) is made
between identical, 64-bit approximations of0.1.

This example demonstrates a deficiency ofGCC on IA32 machines (the same result occurs on both Linux
and Microsoft Windows implementations). The value associated with a variable changes due to operations
that are not visible to the programmer, such as the saving andrestoring of floating-point registers. Our
experiments with the Microsoft Visual C++ compiler indicate that it does not have this problem. When
compiled in 64-bit mode on a more recent Intel machine, the anomaly does not occur, becauseGCC makes
use of a different floating-point capability on these machines, where all computation is done using 64-bit,
double-precision numbers. One of the fundamental principles of optimizing compilers is that programs
should produce the exact same results whether or not optimization is enabled. Unfortunately,GCC does not
satisfy this requirement for floating-point code on IA32 machines.

3 Possible Remediations

There are several ways to overcome this problem, although none is ideal. The most reliable method we
have found is to haveGCC use extended-precision format in all of its computations bydeclaring all of the
variables to be of typelong double, as illustrated in the following reciprocal function

long double recip_l(int denom) {
return 1.0/(long double) denom;

}

The declarationlong double is supported by most recent C implementations, and theGCC implementa-
tions on Intel-compatible machines implement it using extended-precision format for memory data as well
as for floating point register data. This allows us to take full advantage of the wider range and greater pre-
cision provided by the extended-precision format while avoiding the anomalies we have seen in our earlier
examples. Unfortunately, this solution comes at a price. GCC uses 12 bytes in 32-bit mode and 16 bytes
in 64-bit mode to store a long double, increasing memory consumption by 50–100%. (Although 10 bytes
would suffice, it rounds this up to 12 or 16 to give a better memory performance. The same allocation is used
on both Linux and Windows machines). Transferring these longer data between registers and memory takes
more time, too. Still, this is the best option for programs that want to get the most accurate and predictable
results.

Fortunately, newer versions of Intel processors provide direct support for single and double-precision arith-
metic. As these processors become more prevalent, and as compilers generate code that uses the newer



4

floating-point instructions, fewer programmers will encounter the anomalous behavior we have demon-
strated here


