
CS:APP2e Web Aside ASM:EASM:
Combining Assembly Code with C Programs∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Combining Assembly Code with C Programs

In the early days of computing, most programs were written inassembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.
Frederick Brooks, Jr., a pioneer in computer systems wrote afascinating account of the development of OS/360,
an early operating system for IBM machines [2] that still provides important object lessons today. He became a
devoted believer in high-level languages for systems programming as a result of this effort.End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level data representations, as isoften required by systems programmers. Programs

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

1

2

requiring maximum performance or requiring low-level access to data structures were still often written in
assembly code. Nowadays, however, optimizing compilers have largely removed performance optimization
as a reason for writing in assembly code. Code generated by a high quality compiler is generally as good
or even better than what can be achieved manually. The C language has largely eliminated low-level data
structure access as a reason for writing in assembly code. The ability to access low-level data representations
through unions and pointer arithmetic, along with the ability to operate on bit-level data representations,
provide sufficient access to the machine for most programmers. For example, almost all of the code for
modern operating systems, including Linux, Windows, and MacOS, are written in C.

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when
implementing an operating system. For example, there are a number of special registers storing process state
information that the operating system must access. There are either special instructions or special memory
locations for performing input and output operations. Evenfor application programmers, there are some
machine features, such as the values of the condition codes,that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly ofC with a small amount written in assembly
language. In this document, we will describe two such mechanisms. The first is to write a few key functions
in assembly code, using the same conventions for argument passing and register usage as are followed by the
C compiler. The linker then serves to combine the two forms ofcode into a single program. This approach
is often feasible for simple functions, and it does not require anyGCC-specific constructs. An alternative
to writing an entire function in C is to embed assembly code within a C program. GCC supportsinline
assemblyvia theasm directive. Inline assembly allows the user to insert assembly code directly into the
code sequence generated by the compiler. Features are provided to indicate to the compiler how to interface
to the inserted code. The resulting code, of course, only runs on a specific class of machines, but we will
see, for example, that it is often possible to have inline assembly that compiles properly on both IA32 and
x86-64 machines. Theasm directive is also specific toGCC, creating an incompatibility with many other
compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code to an
absolute minimum.

Our presentation is drawn both from theGCC documentation [3], as well as the book by Blum [1]. The
former is, of course, the authoritative reference, but it does not provide any examples. Blum’s book, on the
other hand, provides many practical tips and examples.

2 Program Example

For our presentation, we will develop several implementations of functions with the following prototypes.
These examples provide real-life cases where gaining access to the condition codes will enable us to monitor
the status of a computation.

/ * Multiply x and y. Store result at dest.
Return 1 if multiplication did not overflow

* /
int tmult_ok(int x, int y, int * dest);

/ * Multiply x and y. Store result at dest.

3

Return 1 if multiplication did not overflow

* /
int umult_ok(unsigned x, unsigned y, unsigned * dest);

Each function is to compute the product of argumentsx andy and store the result in the memory location
specified by argumentdest . As return values, they should return 0 when the multiplication overflows,
requiring more than 32 bits to represent the true product, and 1 when it does not. We have separate func-
tions for signed and unsigned multiplication, since their overflow conditions differ. We examined ways to
determine whether a multiplication has overflowed using C (see CS:APP2e Problem 2.35 and 2.36), but all
of these methods require performing additional operationsto check the result of a multiplication.

Examining the documentation for the x86 multiply instructions mull and imull , we see that both set
the carry flagCF when they overflow. Thus, by inserting code that checks this flag after performing a
multiplication ofx andy , we should be able to easily test for multiplicative overflow.

3 Handwritten Assembly-Code Functions

Although writing complex programs entirely in assembly code is a daunting task, we can often narrow the
amount of functionality that needs to be expressed in assembly code to a small amount and then write this
code as functions in a separate file. The compiled C code is combined with the assembled assembly code
by the linker. For example, if filep1.c contains C code and filep2.s contains assembly code, then the
compilation command

unix> gcc -o p p1.c p2.s

will cause filep1.c to be compiled, filep2.s to be assembled, and the resulting object code to be linked
to form an executable programp.

In order for the assembler to generate information requiredby the linker about a function, we must declare
the function to beglobal. Whereas in C, any function is global unless it is declared tobe static, the assembler
assumes that a file is only locally available to functions within the same file, unless it is declared global. If
we have assembly code for a functionfun in a file, then we should precede it with the declaration

.globl fun

We have found that even when writing functions in assembly code, it is best to letGCC do as much of the
work as possible. Toward that end, it often helps to write a function in C similar to the desired functionality
and then generate an initial version of the assembly code by running GCC with the command-line option
‘ -S .’ This code provides a good starting point for fetching arguments, allocating and deallocating the stack
frame, and so forth. It is much easier to edit existing assembly code than to start from scratch.

As an example, consider the following approximation to our functiontmult_ok :

/ * Starter function for tmult_ok * /
int tmult_ok_asm(int x, int y, int * dest) {

int p = x * y;

* dest = p;

4

return p > 0;
}

This function does much of what we want fortmult_ok —it multiplies argumentsx and y , stores the
product atdest , and returns a 0 or 1 based on the result. Its only shortcomingis that it checks the wrong
property, but this is just one part of the overall computation.

GCC generates the following assembly code for the initial function:

1 .globl tmult_ok_asm
2 tmult_ok_asm:
3 pushl %ebp
4 movl %esp, %ebp
5 movl 12(%ebp), %eax
6 imull 8(%ebp), %eax
7 movl 16(%ebp), %edx
8 movl %eax, (%edx)
9 testl %eax, %eax

10 setg %al
11 movzbl %al, %eax
12 popl %ebp
13 ret

Note the presence of the.globl declaration in this code. Only two lines of this code need to be changed.
Line 9 sets condition codes based on the 32-bit product ofx andy . We want to eliminate this instruction
and instead rely on the condition-code values set by theimull instruction. Line 10 sets the low-order byte
of register%eaxbased on the zero and sign flags. We want to set the byte based onthe carry flag.

Examining CS:APP2e Figure 3.11, we see that the instructionsetae can be used to set the low-order byte
of a register to 0 when the carry flag is set and to 1 otherwise. We can therefore make small edits to the
assembly code to get the desired function:

1 # Hand-generated code for tmult_ok
2 .globl tmult_ok_asm
3 tmult_ok_asm:
4 pushl %ebp
5 movl %esp, %ebp
6 movl 12(%ebp), %eax # Get y
7 imull 8(%ebp), %eax # Multiply by y
8 movl 16(%ebp), %edx # Get dest
9 movl %eax, (%edx) # Store product at dest

10 # Deleted code
11 # testl %eax, %eax
12 # setg %al
13 # Inserted code
14 setae %al # Set low-order byte
15 # End of inserted code
16 movzbl %al, %eax # Zero remaining bytes
17 popl %ebp
18 ret

5

We show this code in the exact form it appears in the file, rather than the more stylized way we have
presented assembly code. As this example shows, it helps to add annotations to the assembly code as
documentation. Anything to the right of the symbol ‘#’ is treated as a comment by the assembler.

Practice Problem 1:

Create an x86-64 implementation oftmult_ok suitable for assembling and linking with C code. You
might find it useful to start with assembly code generated fora similar function, as we did for the IA32
code.

4 Basic Inline Assembly

The basic form of inline assembly is to write code that looks like a procedure call:

asm(code-strings);

The termcode-stringsdenotes an assembly code sequence given as one or more quotedstrings (with no
delimiters between them.) The compiler will insert these strings verbatim into the assembly code being
generated, and hence the compiler-supplied and the user-supplied assembly will be combined. The compiler
does not check the string for errors, and so the first indication of a problem might be an error report from
the assembler.

In an attempt to use the least amount of both assembly code anddetailed analysis, we attempt to implement
tmult_ok with the following code:

/ * First attempt. Does not work * /
int tmult_ok1(int x, int y, int * dest)
{

int result = 0;

* dest = x * y;
asm("setae %al");
return result;

}

The strategy here is to exploit the fact that register%eax is used to store the return value. Assuming the
compiler uses this register for variableresult , our intention is that the first line of the C code will set the
register to 0. The inline assembly will insert code that setsthe low-order byte of this register appropriately,
and the register will be used as the return value.

Unfortunately, the generated code does not work as desired.In running tests, it returns 0 every time it is
called. On examining the generated assembly code for this function, we find the following:

IA32 code for tmult_ok1 (Does not work)

x at %ebp+8, y at %ebp+12, dest at %ebp+16

1 tmult_ok1:
2 pushl %ebp

6

3 movl %esp, %ebp
4 movl 12(%ebp), %eax Get y

5 imull 8(%ebp), %eax Multiply by x

6 movl 16(%ebp), %edx get dest

7 movl %eax, (%edx) store product at dest

Code generated by asm

8 setae %al Set low-order byte

End of asm-generated code

9 movl $0, %eax Set result to 0

10 popl %ebp
11 ret

GCC has its own ideas of code generation. Instead of setting register%eax to 0 at the beginning of the
function, the generated code does so at the very end (line 9),and so the function always returns 0. The
fundamental problem is that the compiler has no way to know what the programmer’s intentions are, and
how the assembly code should interface with the rest of the generated code. Clearly, more sophisticated
mechanisms are required to embed assembly code within C code.

5 Extended Form of asm

GCC provides an extended version ofasm that allows the programmer to specify which program values are
to be used as operands to an assembly code sequence, and whichregisters are overwritten by the assembly
code. With this information the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa-
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

The general syntax of an extendedasm directive is

asm(code-strings[: output-list[: input-list [: overwrite-list]]]);

where the square brackets denote optional arguments. The directive contains one or more strings giving
stylized versions of the lines of assembly code. These are followed by optional lists ofoutputs(i.e., results
generated by the assembly code),inputs (i.e., source values for the assembly code), and registers that are
overwritten by the assembly code. These lists are separatedby the colon (‘: ’) character. As the square
brackets show, we only include lists up to the last nonempty list.

The syntax for a code string is reminiscent of that for the format string in aprintf statement. It consists an
assembly code instruction, but the operands are written in asymbolic form, with references to the operand
expressions in the output and input lists. Within the assembly code, we give names to the operands. Earlier
versions ofGCC required these names to be of the from%0, %1, and so on, up to%9, based on the order of
the operands in the two lists. Since version 3.1, a more descriptive naming convention is supported, where
names are written with the notation%[name] . Register names such as “%eax” must be written with an
extra ‘%’ symbol, such as “%%eax.”

If multiple instructions are given, it is critical that return characters be inserted between them. The con-
ventional method of doing this is to finish all but the final string with the sequence “\n\t ,” so that the

7

generated assembly code follows the normal formatting conventions for assembly code [1].

The output input list is a comma-separated list, with each list element of the form[name] "=r" (expr) ,
giving the name of the operand, the fact that it is an output, and the C expression indicating the destination
for the instruction result. It can be any assignable value (known in C as anlvalue). The compiler will gener-
ate the necessary code sequence to perform the assignment. The tag"=r" indicates that the instruction will
write its result in an integer register. The input list entries have the same format, except that each entry has
tag"r" , indicating that it will be read from an integer register. Each input operand can be any C expression.
The compiler will generate the necessary code to evaluate the expression. The overwrite list consists of a
comma-separated list of register names, with each in doublequotes.

As an illustration, the following is a better implementation of tmult_ok using the extended assembly
directive to indicate to the compiler that the assembly codegenerates the value for the variableresult :

int tmult_ok2(int x, int y, int * dest)
{

int result;

* dest = x * y;
asm("setae %%bl # Set low-order byte\n\t"

"movzbl %%bl,%[val] # Zero extend to be result"
: [val] "=r" (result) / * Output * /
: / * No inputs * /
: "%bl" / * Overwrites * /
);

return result;
}

We see that theasm directive has two code strings: one for thesetae instruction, and one to zero-extend
the low-order byte to form the result. We can see that we have chosen register%bl as the destination of the
setae instruction and as the source of themovzbl instruction. The register operand must be written as
“%%bl.” Observe also that we can add comments to our code, and that all but the last lines are terminated
with “ \n\t .” We have given the nameval to indicate the final value generated by the code. This is
shown in the output list as corresponding to program variable result . We also indicate that our code will
overwrite register%bl .

When we compile this code for IA32,GCC generates the following assembly code:

IA32 code for tmult_ok2

x at %ebp+8, y at %ebp+12, dest at %ebp+16

1 tmult_ok2:
2 pushl %ebp
3 movl %esp, %ebp
4 pushl %ebx
5 movl 12(%ebp), %eax Get y

6 imull 8(%ebp), %eax Multiply by x

7 movl 16(%ebp), %edx Get dest

8 movl %eax, (%edx) Store product at dest

Code generated by asm

8

9 setae %bl Set low-order byte

10 movzbl %bl,%eax Zero extend to be result

End of asm-generated code

11 popl %ebx
12 popl %ebp
13 ret

We see here thatGCC has designated register%eax to hold program valueresult . We also see that the
program saves the value of%ebxon the stack (line 4) and restores it at the end (line 11.) Since this register
is a callee-saved register, and we have indicated that our code will overwrite its low-order byte (register
%bl), GCC takes the necessary steps to preserve its value. The code compiles correctly for x86-64, as well,
something that would not be possible if we wrote the entire function in assembly code.

As a further refinement, we can simplify the code even more andmake use ofGCC’s ability to work with
different data types. GCC uses the type information for an operand in determining which register to substi-
tute for an operand name in the code string. In the version given as functiontmult_ok2 , it used a 32-bit
register%eax, based on the fact that variableresult has data typeint . Instead, we can use a variable
bresult of type unsigned char in the output list, and have this operand be the destination of the
setae instruction:

/ * Uses extended asm to get reliable code * /
int tmult_ok3(int x, int y, int * dest)
{

unsigned char bresult;

* dest = x * y;

asm("setae %[b] # Set result"
: [b] "=r" (bresult) / * Output * /
);

return (int) bresult;
}

The compiler will use a single-byte register identifier as the destination for thesetae instruction, and then
use this register as the source operand of amovzbl instruction to implement the casting ofbresult to
data typeint . This simplified form also avoids the need for us to make use ofa specific register, and hence
we need not specify any overwritten registers.

One would expect the same code sequence could be used forumult_ok , but GCC uses theimull (signed
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for either
product, since we are only concerned with the low-order 32 bits, but it sets the carry flag according to the
rules for signed multiplication. We therefore need to include an assembly-code sequence that explicitly
performs unsigned multiplication using themull instruction as documented in CS:APP2e Figure 3.9. This
instruction is only available in single-operand form, implicitly using register%eaxas a source, and registers
%eaxand%edxas destinations. All of this requires a more elaborateasm directive:

int umult_ok(unsigned x, unsigned y, unsigned * dest)

9

{
unsigned char bresult;

asm("movl %[x],%%eax # Get x\n\t"
"mull %[y] # Unsigned multiply by y\n\t"
"movl %%eax,%[p] # Store low-order 4 bytes at dest\n\t"
"setae %[b] # Set result"
: [p] "=r" (* dest), [b] "=r" (bresult) / * Outputs * /
: [x] "r" (x), [y] "r" (y) / * Inputs * /
: "%eax", "%edx" / * Overwrites * /
);

return (int) bresult;
}

This code makes use of many of the features of the extendedasm directive. The two output operands are
given symbolic namesp (the product) andb (the status byte), while the two input operands have symbolic
namesx andy . We can see that output operandp is associated with the expression* dest , while b is
associated with local variablebresult . We need to list both registers%eax and%edx on the overwrite
list.

To see how the compiler generates code in connection with anasm directive, here is the code generated for
umult_ok :

IA32 code for umult_ok

x at %ebp+8, y at %ebp+12, dest at %ebp+16

1 umult_ok:
2 pushl %ebp
3 movl %esp, %ebp
4 pushl %ebx
5 movl 12(%ebp), %ebx Get y

6 movl 8(%ebp), %ecx Get x

Code generated by asm

7 movl %ecx,%eax Copy y

8 mull %ebx Unsigned multiply by y

9 movl %eax,%ecx Copy low-order 4 bytes

10 setae %bl Set result

End of code generated by asm

11 movl 16(%ebp), %eax Get dest

12 movl %ecx, (%eax) Store product at dest

13 movzbl %bl, %eax Zero-extend result

14 popl %ebx
15 popl %ebp
16 ret

We can see thatGCC has chosen the following register allocations for the operands:%ecx for x , %ebx for
y , %ecx for p, and%bl for b.

10

6 Concluding Remarks

We have explored two ways to combine assembly code with C codeto generate a program. Writing a
complete function in assembly code as a separate file has the advantage that it uses existing and familiar
technology: the assembler and the linker. Using the facility for GCC to insert assembly code directly in a C
function has the advantage that we can greatly limit the amount of machine-specific code.

Although the syntax of theasmdirective is somewhat arcane, and its use makes the code lessportable, it can
be very useful for writing programs that access machine-level features using a minimal amount of assembly
code. We have found that a certain amount of trial and error isrequired to get code that works. The best
strategy is to compile the code with the-S command-line option and then examine the generated assembly
code to see if it will have the desired effect. It is importantto note that in processing anasm directive,GCC

has no real understanding of the assembly code it is generating. It merely follows a set of syntactic rules for
replacing the symbolic names of operands with different register identifiers. The code should be tested with
different settings of switches such as with different levels of optimization.

Practice Problem 2:

Write the complete function forumult_ok in IA32 assembly code. How does the effort required for
this compare to using theasm directive?

Practice Problem 3:

Use theasm directive to implement an IA32 function with the prototype

/ * Multiply two n-bit numbers to get 2n-bit result,
where n = 8 * sizeof(unnsigned long)

* /
typedef unsigned long ulong_t;
void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest);

This function should compute the full 64-bit product of its arguments and store the result in the desti-
nation array, withdest[0] having the low-order four bytes anddest[1] having the high-order four
bytes.

Practice Problem 4:

Implement the functionulmult_full in x86-64 code, computing the 128-bit product of 64-bit values
x andy .

Practice Problem 5:

X86 machines have a parity flag PF as one of the condition codes. Every arithmetic or logical operation
sets this flag when the low-order eight bits of a result have even parity, meaning that they contain an even
number of ones. Whether the operation computes an 8-bit result or a larger one, the parity flag depends
only on the low-order 8 bits.

Consider the following function prototype:

11

int odd_parity(unsigned long x);

This function should determine whether its argument has oddparity, meaning that it contains an odd
number of ones. We want this function to operate correctly when compiled for either IA32, in which
case the argument is 32 bits, or for x86-64, in which case the argument is 64 bits.

Write a C function including anasm directive to implement this function, using the parity flag to com-
pute the parity 8 bits at a time.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 5]

The x86-64 code is much simpler than the IA32 code, due to the passing of arguments through registers:

1 .globl tmult_ok_asm
2 tmult_ok_asm:
3 imull %edi, %esi
4 movl %esi, (%rdx)
5 setae %al # Set low-order byte
6 movzbl %al, %eax
7 ret

Problem 2 Solution: [Pg. 10]

We can once again start with code generated for a similar function by GCC, but more extensive editing is
required:

1 # Hand-generated code for umult_ok
2 .globl umult_ok_asm
3 umult_ok_asm:
4 pushl %ebp
5 movl %esp, %ebp
6 movl 12(%ebp), %eax # Get y
7 movl 8(%ebp), %ecx # Get x
8 mull %ecx # Unsigned multiply
9 movl 16(%ebp), %edx # Get dest

10 movl %eax, (%edx) # Store product at dest
11 setae %al # Set low-order byte
12 movzbl %al, %eax # Zero remaining bytes
13 popl %ebp
14 ret

Problem 3 Solution: [Pg. 10]

This function bears many similarities to the functionumult_ok , except that we want to store both the high
and the low-order words of the product:

12

/ * 32-bit version * /
void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest)
{

asm("movl %[x],%%eax # Get x\n\t"
"mull %[y] # Unsigned multiply by y\n\t"
"movl %%eax,%[lo] # Store low-order 4 bytes\n\t"
"movl %%edx,%[hi] # Store high-order 4 bytes"
: [lo] "=r" (dest[0]), [hi] "=r" (dest[1]) / * Outputs * /
: [x] "r" (x), [y] "r" (y) / * Inputs * /
: "%eax", "%edx" / * Overwrites * /
);

}

Problem 4 Solution: [Pg. 10]

The code for this function is very similar to the 32-bit version, except that we want to use the “q” form of
the instructions, and the “r ” form of the registers:

/ * 64-bit version * /
void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest)
{

asm("movq %[x],%%rax # Get x\n\t"
"mulq %[y] # Unsigned multiply by y\n\t"
"movq %%rax,%[lo] # Store low-order 8 bytes\n\t"
"movq %%rdx,%[hi] # Store high-order 8 bytes"
: [lo] "=r" (dest[0]), [hi] "=r" (dest[1]) / * Outputs * /
: [x] "r" (x), [y] "r" (y) / * Inputs * /
: "%rax", "%rdx" / * Overwrites * /
);

}

Problem 5 Solution: [Pg. 10]

There are many solutions to this problem. This one is perhapsthe simplest. It simply shifts the successive
bytes of argumentx into the low-order byte and thereby tests the parity of each non-zero byte. We use the
testb instruction to test each byte, since the parity flag depends only on the low-order byte, and this makes
the code portable between IA32 and x86-64.

/ * Using ASM to access parity flag * /
int odd_parity(unsigned long x) {

int result = 0;
while (x != 0) {

char bresult;
unsigned char bx = x & 0xff;
asm("testb %[bx],%[bx] # Test value of low-order byte\n\t"

"setnp %[v] # Set if odd parity"
: [v] "=r" (bresult) / * Output * /
: [bx] "r" (bx) / * Input * /
);

result ˆ= (int) bresult;

13

x = x >> 8;
}
return result;

}

References

[1] R. Blum. Professional Assembly Language. Wiley, 2005.

[2] F. P. Brooks, Jr.The Mythical Man-Month, Second Edition. Addison-Wesley, 1995.

[3] GCC Online Documentation. Available athttp://gcc.gnu.org/ .

