CS:APP2e Web Aside ASM:EASM:
Combining Assembly Code with C Programs

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary materiahtoliookComputer Systems, A Programmer’s
Perspective, Second Editiohy Randal E. Bryant and David R. O’Hallaron, published biftice-Hall
and copyrighted 2011. In this document, all referencesriregg with “CS:APP2e ” are to this book. More
information about the book is available @asapp. cs. crmu. edu.

This document is being made available to the public, sultigecbpyright provisions. You are free to copy
and distribute it, but you should not use any of this matevighout attribution.

1 Combining Assembly Code with C Programs

In the early days of computing, most programs were writteasisembly code. Even large-scale operating
systems were written without the help of high-level langgagThis becomes unmanageable for programs
of significant complexity. Since assembly code does notigeoany form of type checking, it is very easy
to make basic mistakes, such as using a pointer as an intier than dereferencing the pointer. Even
worse, writing in assembly code locks the entire program &particular class of machine. Rewriting an
assembly language program to run on a different machine eas lifficult as writing the entire program
from scratch.

Aside: Writing large programsin assembly code.

Frederick Brooks, Jr., a pioneer in computer systems wrdésenating account of the development of OS/360,
an early operating system for IBM machines [2] that still\pdes important object lessons today. He became a
devoted believer in high-level languages for systems jamogning as a result of this effofEnd Aside.

Early compilers for higher-level programming languages bt generate very efficient code and did not
provide access to the low-level data representations,dt®is required by systems programmers. Programs

*Copyright(© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

requiring maximum performance or requiring low-level a&x& data structures were still often written in
assembly code. Nowadays, however, optimizing compileve lagely removed performance optimization
as a reason for writing in assembly code. Code generated ighaghality compiler is generally as good
or even better than what can be achieved manually. The C dageghas largely eliminated low-level data
structure access as a reason for writing in assembly codeafility to access low-level data representations
through unions and pointer arithmetic, along with the &piid operate on bit-level data representations,
provide sufficient access to the machine for most prograrmmEor example, almost all of the code for
modern operating systems, including Linux, Windows, and¢®I&, are written in C.

Nonetheless, there are times when writing in assembly ctheionly option. This is especially true when
implementing an operating system. For example, there anender of special registers storing process state
information that the operating system must access. Thereidrer special instructions or special memory
locations for performing input and output operations. Ef@mapplication programmers, there are some
machine features, such as the values of the condition ctidas;annot be accessed directly in C.

The challenge then is to integrate code consisting mainl¢ efith a small amount written in assembly
language. In this document, we will describe two such meisha The first is to write a few key functions
in assembly code, using the same conventions for argumssitngeand register usage as are followed by the
C compiler. The linker then serves to combine the two formsoafe into a single program. This approach
is often feasible for simple functions, and it does not regjainy Gcc-specific constructs. An alternative
to writing an entire function in C is to embed assembly codthiwia C program. GcC supportsinline
assemblyia theasm directive. Inline assembly allows the user to insert as$gmdde directly into the
code sequence generated by the compiler. Features ardguideiindicate to the compiler how to interface
to the inserted code. The resulting code, of course, onlg aima specific class of machines, but we will
see, for example, that it is often possible to have inlinemédy that compiles properly on both 1A32 and
x86-64 machines. Thasm directive is also specific tacc, creating an incompatibility with many other
compilers. Nonetheless, this can be a useful way to keeprtfmu@t of machine-dependent code to an
absolute minimum.

Our presentation is drawn both from tieec documentation [3], as well as the book by Blum [1]. The
former is, of course, the authoritative reference, but @égdoot provide any examples. Blum’s book, on the
other hand, provides many practical tips and examples.

2 Program Example

For our presentation, we will develop several implemeatetiof functions with the following prototypes.
These examples provide real-life cases where gaining siweéise condition codes will enable us to monitor
the status of a computation.

[+ Multiply x and y. Store result at dest.
Return 1 if multiplication did not overflow

*/

int tmult_ok(int x, int y, int * dest);

/* Multiply x and y. Store result at dest.

Return 1 if multiplication did not overflow
* |
int umult_ok(unsigned x, unsigned vy, unsigned * dest);

Each function is to compute the product of argumentndy and store the result in the memory location
specified by argumerdest . As return values, they should return 0 when the multiplicabverflows,
requiring more than 32 bits to represent the true product,lawhen it does not. We have separate func-
tions for signed and unsigned multiplication, since the®rfiow conditions differ. We examined ways to
determine whether a multiplication has overflowed usingee §S:APP2e Problem 2.35 and 2.36), but all
of these methods require performing additional operatiortheck the result of a multiplication.

Examining the documentation for the x86 multiply instroag mull andimull , we see that both set
the carry flagCF when they overflow. Thus, by inserting code that checks thig #fter performing a
multiplication ofx andy, we should be able to easily test for multiplicative overflow

3 Handwritten Assembly-Code Functions

Although writing complex programs entirely in assembly edsla daunting task, we can often narrow the
amount of functionality that needs to be expressed in adyernde to a small amount and then write this
code as functions in a separate file. The compiled C code ibio@u with the assembled assembly code
by the linker. For example, if filpl.c contains C code and filg2.s contains assembly code, then the
compilation command

unix> gcc -o p pl.c p2.s

will cause filepl.c to be compiled, filp2.s to be assembled, and the resulting object code to be linked
to form an executable program

In order for the assembler to generate information requisethe linker about a function, we must declare
the function to bglobal. Whereas in C, any function is global unless it is declarduktetatic, the assembler

assumes that a file is only locally available to functionshimithe same file, unless it is declared global. If
we have assembly code for a functitum in a file, then we should precede it with the declaration

.globl fun

We have found that even when writing functions in assembtiecit is best to leccc do as much of the
work as possible. Toward that end, it often helps to writerefion in C similar to the desired functionality
and then generate an initial version of the assembly codeituyimg Gcc with the command-line option
-S . This code provides a good starting point for fetching anguts, allocating and deallocating the stack
frame, and so forth. It is much easier to edit existing as$godale than to start from scratch.

As an example, consider the following approximation to aunctiontmult_ok

[= Starter function for tmult_ok */

int tmult_ok_asm(int x, int y, int xdest) {
int p = x =*y;
xdest = p;

return p > 0;

This function does much of what we want fonult_ok —it multiplies argumentx andy, stores the
product atdest , and returns a 0 or 1 based on the result. Its only shortcomitiat it checks the wrong
property, but this is just one part of the overall computatio

Gcc generates the following assembly code for the initial fiorct

1 .globl tmult_ok _asm

2 tmult_ok_asm:

3 pushl %ebp

4 movl %esp, %ebp

5 movl 12(%ebp), %eax
6 imull 8(%ebp), %eax

7 movl 16(%ebp), %edx
8 movl %eax, (Yoedx)

9 testl %eax, %Yeax

10 setg %al

11 movzbl %al, %eax
12 popl! %ebp
13 ret

Note the presence of thglobl declaration in this code. Only two lines of this code needdelanged.
Line 9 sets condition codes based on the 32-bit produgt afidy. We want to eliminate this instruction
and instead rely on the condition-code values set byt instruction. Line 10 sets the low-order byte
of register%eaxbased on the zero and sign flags. We want to set the byte bagsked oarry flag.

Examining CS:APP2e Figure 3.11, we see that the instrusét@e can be used to set the low-order byte
of a register to 0 when the carry flag is set and to 1 otherwise.c@vi therefore make small edits to the
assembly code to get the desired function:

1 # Hand-generated code for tmult_ok
2 .globl tmult_ok _asm

3 tmult_ok _asm:

4 pushl %ebp

5 movl %esp, %ebp

6 movl 12(%ebp), %eax # Get y

7 imull 8(%ebp), %eax # Multiply by y
8 movl 16(%ebp), %edx # Get dest

9

movl %eax, (Yedx) # Store product at dest
10 # Deleted code
11 # testl %eax, %eax
12 # setg %al
13 # Inserted code
14 setae %al # Set low-order byte
15 # End of inserted code
16 movzbl %al, %eax # Zero remaining bytes
17 popl %ebp

18 ret

We show this code in the exact form it appears in the file, rath@n the more stylized way we have
presented assembly code. As this example shows, it helpddi@anotations to the assembly code as
documentation. Anything to the right of the symb#l is treated as a comment by the assembler.

Practice Problem 1:

Create an x86-64 implementationtofiult_ok suitable for assembling and linking with C code. You
might find it useful to start with assembly code generatecfsimilar function, as we did for the 1A32
code.

4 BasicInline Assembly

The basic form of inline assembly is to write code that lodks & procedure call:
asm(code-string9;

The termcode-stringsdenotes an assembly code sequence given as one or more gtroigd (with no
delimiters between them.) The compiler will insert thesengs verbatim into the assembly code being
generated, and hence the compiler-supplied and the ugpliesiiassembly will be combined. The compiler
does not check the string for errors, and so the first indinadif a problem might be an error report from
the assembler.

In an attempt to use the least amount of both assembly coddeadailed analysis, we attempt to implement
tmult_ok with the following code:

[+ First attempt. Does not work */
int tmult_okl1(int x, int y, int * dest)
{

int result = 0;

xdest = X *y;

asm("setae %al");

return result;

The strategy here is to exploit the fact that regi$tazax is used to store the return value. Assuming the
compiler uses this register for variallesult , our intention is that the first line of the C code will set the
register to 0. The inline assembly will insert code that #etlow-order byte of this register appropriately,

and the register will be used as the return value.

Unfortunately, the generated code does not work as desiredinning tests, it returns 0 every time it is
called. On examining the generated assembly code for thgitin, we find the following:

| A32 code for tnult_okl (Does not work)

x at %bp+8, y at %bp+12, dest at %bp+16
1 tmult_ok1:
2 pushl %ebp

3 movl %esp, %ebp

4 movl 12(%ebp), %eax Get y

5 imull 8(%ebp), %eax Ml tiply by x

6 movl 16(%ebp), %edx get dest

7 movl %eax, (Yoedx) store product at dest
Code generated by asm

8 setae %al Set |ow order byte
End of asm generated code

9 movl $0, %eax Set result to O

10 popl %ebp

11 ret

Gcc has its own ideas of code generation. Instead of settingte@ibeax to 0 at the beginning of the
function, the generated code does so at the very end (linen®l) so the function always returns 0. The
fundamental problem is that the compiler has no way to knowtwie programmer’s intentions are, and
how the assembly code should interface with the rest of tinergéed code. Clearly, more sophisticated
mechanisms are required to embed assembly code within C code

5 Extended Form of asm

Gcce provides an extended versionagm that allows the programmer to specify which program values a

to be used as operands to an assembly code sequence, andegistérs are overwritten by the assembly
code. With this information the compiler can generate ctd Wwill correctly set up the required source

values, execute the assembly instructions, and make uke abmputed results. It will also have informa-

tion it requires about register usage so that importantraragvalues are not overwritten by the assembly
code instructions.

The general syntax of an extendasin directive is
asm(code-stringg : output-list] : input-list[: overwrite-list]]]);

where the square brackets denote optional arguments. Tégide contains one or more strings giving
stylized versions of the lines of assembly code. These #ivied by optional lists obutputs(i.e., results
generated by the assembly codeputs (i.e., source values for the assembly code), and regidtatsate
overwritten by the assembly code. These lists are sepabgtéide colon (') character. As the square
brackets show, we only include lists up to the last nonemigty |

The syntax for a code string is reminiscent of that for thetatrstring in grintf statement. It consists an
assembly code instruction, but the operands are writtersim#olic form, with references to the operand
expressions in the output and input lists. Within the as$gioirle, we give names to the operands. Earlier
versions ofccc required these names to be of the fré6Q %1 and so on, up t&69 based on the order of
the operands in the two lists. Since version 3.1, a more i¢iser naming convention is supported, where
names are written with the notatiét[nane] . Register names such a¥%tax’ must be written with an
extra 9% symbol, such as%%eax’

If multiple instructions are given, it is critical that retucharacters be inserted between them. The con-
ventional method of doing this is to finish all but the finalirggr with the sequence\ri\t ,” so that the

generated assembly code follows the normal formatting eatons for assembly code [1].

The output input list is a comma-separated list, with eastlelement of the forrhnane] "=r* (expr),
giving the name of the operand, the fact that it is an outpd,the C expression indicating the destination
for the instruction result. It can be any assignable valme\in in C as afvalue). The compiler will gener-

ate the necessary code sequence to perform the assignrhertagl=r" indicates that the instruction will
write its result in an integer register. The input list eegrhave the same format, except that each entry has
tag"r" , indicating that it will be read from an integer registercBkaput operand can be any C expression.
The compiler will generate the necessary code to evaluatexpression. The overwrite list consists of a
comma-separated list of register names, with each in dayzees.

As an illustration, the following is a better implementatiof tmult_ok using the extended assembly
directive to indicate to the compiler that the assembly apeteerates the value for the variabésult

int tmult_ok2(int x, int y, int * dest)
{

int result;

xdest = X *y;

asm("setae %%bl # Set low-order byte\n\t"
"movzbl %%bl,%][val] # Zero extend to be result"
: [val] "=r" (result) / * Output */
: / = No inputs =/
: "%bl" [+ Overwrites =/
)i

return result;

We see that thasm directive has two code strings: one for thetae instruction, and one to zero-extend
the low-order byte to form the result. We can see that we hiawsan registe¥obl as the destination of the
setae instruction and as the source of tir@vzbl instruction. The register operand must be written as
“0%bl” Observe also that we can add comments to our code, andlkiait #he last lines are terminated
with “\n\t .” We have given the nameal to indicate the final value generated by the code. This is
shown in the output list as corresponding to program vesigggult . We also indicate that our code will
overwrite registefaobl .

When we compile this code for IA325cC generates the following assembly code:

| A32 code for tnult_ok2
x at %bp+8, y at %bp+12, dest at %bp+16

1 tmult_ok2:

2 pushl %ebp

3 movl %esp, %ebp

4 pushl %ebx

5 movl 12(%ebp), %eax Get y

6 imull 8(%ebp), %eax Ml tiply by x

7 movl 16(%ebp), %edx Get dest

8 movl %eax, (Yoedx) Store product at dest

Code generated by asm

9 setae %bl Set |ow order byte

10 movzbl %bl,%eax Zero extend to be result
End of asm generated code

11 popl! %ebx

12 popl %ebp

13 ret

We see here thatcc has designated regist&eax to hold program valueesult . We also see that the
program saves the value &febx on the stack (line 4) and restores it at the end (line 11.)eSinis register
is a callee-saved register, and we have indicated that ale wal overwrite its low-order byte (register
%bl), Gcctakes the necessary steps to preserve its value. The coglescorrectly for x86-64, as well,
something that would not be possible if we wrote the entirefion in assembly code.

As a further refinement, we can simplify the code even moremaakle use ofsccC's ability to work with
different data types. Gc uses the type information for an operand in determining Wwiégjister to substi-
tute for an operand name in the code string. In the versioangas functionmult_ok2 it used a 32-bit
register%eax, based on the fact that variabidesult has data typent . Instead, we can use a variable
bresult of type unsigned char in the output list, and have this operand be the destinaticheo
setae instruction:

[+ Uses extended asm to get reliable code */
int tmult_ok3(int x, int y, int * dest)
{

unsigned char bresult;
xdest = X *y;

asm("setae %[b] # Set result”
. [b] "=r" (bresult) / * Output */
)i

return (int) bresult;

The compiler will use a single-byte register identifier as destination for theetae instruction, and then
use this register as the source operand wfcwzbl instruction to implement the casting bfesult to
data typant . This simplified form also avoids the need for us to make usesgfecific register, and hence
we need not specify any overwritten registers.

One would expect the same code sequence could be usechfdr ok , butcccuses themull (signed
multiply) instruction for both signed and unsigned multgtion. This generates the correct value for either
product, since we are only concerned with the low-order 82 bt it sets the carry flag according to the
rules for signed multiplication. We therefore need to idelan assembly-code sequence that explicitly
performs unsigned multiplication using thaull instruction as documented in CS:APP2e Figure 3.9. This
instruction is only available in single-operand form, imjily using registeoeaxas a source, and registers
%eax and%edx as destinations. All of this requires a more elaboes® directive:

int umult_ok(unsigned x, unsigned y, unsigned * dest)

This code makes use of many of the features of the exteadeddirective. The two output operands are
given symbolic namep (the product) and (the status byte), while the two input operands have syrmboli
namesx andy. We can see that output operapds associated with the expressiedest , while b is

associated with local variableresult . We need to list both registef$eax and%edx on the overwrite

list.

To see how the compiler generates code in connection wittsardirective, here is the code generated for

unsigned char bresult;

asm("'movl %][x],%%eax # Get x\n\t"
"mull %ly] # Unsigned multiply by y\n\t"
"movl %%eax,%][p] # Store low-order 4 bytes at dest\n\t"
"setae %[b] # Set result"
s Ip] "=rt(xdest), [b] "=r" (bresult) / * Qutputs */
SIXUTTO(X), Iyl trt (y) / * |nputs * [
: "%eax", "%edx" /= Overwrites */
)i

return (int) bresult;

umult_ok

o g~ WDN PP

~

10

11
12
13
14
15
16

We can see thatcc has chosen the following register allocations for the opasa%ecx for x, %ebx for

| A32 code for unult_ok
x at %bp+8, y at %bp+12, dest at %bp+16
umult_ok:
pushl %ebp
movl %esp, %ebp
pushl %ebx
movl 12(%ebp), %ebx
movl 8(%ebp), %ecx
Code generated by asm
mov! %ecx,%eax

mull %ebx
movl %eax,%ecx
setae %bl

End of code generated by asm
movl 16(%ebp), %eax
movl %ecx, (%eax)
movzbl %bl, %eax
popl %ebx
popl %ebp
ret

y, %ecxfor p, and%bl for b.

Get y
Cet x

Copy y

Unsigned nultiply by y
Copy | oworder 4 bytes
Set result

Get dest
Store product at dest
Zero-extend result

10

6 Concluding Remarks

We have explored two ways to combine assembly code with C tmdgenerate a program. Writing a
complete function in assembly code as a separate file hagltfamtage that it uses existing and familiar
technology: the assembler and the linker. Using the fgditit GCcto insert assembly code directly ina C
function has the advantage that we can greatly limit the aholumachine-specific code.

Although the syntax of thasmdirective is somewhat arcane, and its use makes the codedeable, it can

be very useful for writing programs that access machineli@atures using a minimal amount of assembly
code. We have found that a certain amount of trial and errceqgsired to get code that works. The best
strategy is to compile the code with tH® command-line option and then examine the generated asgembl
code to see if it will have the desired effect. It is importamhote that in processing @sm directive,Gcc

has no real understanding of the assembly code it is gengratimerely follows a set of syntactic rules for
replacing the symbolic names of operands with differenistegidentifiers. The code should be tested with
different settings of switches such as with different Isva optimization.

Practice Problem 2:

Write the complete function foumult_ok in IA32 assembly code. How does the effort required for
this compare to using thesm directive?

Practice Problem 3:
Use theasm directive to implement an IA32 function with the prototype

[* Multiply two n-bit nhumbers to get 2n-bit result,
where n = 8 *sizeof(unnsigned long)
*/
typedef unsigned long ulong_t;
void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest);

This function should compute the full 64-bit product of itg@aments and store the result in the desti-
nation array, wittdest[0] having the low-order four bytes amntést[1] having the high-order four
bytes.

Practice Problem 4:

Implement the functionlmult_full in x86-64 code, computing the 128-bit product of 64-bit eslu
x andy.

Practice Problem 5:

X86 machines have a parity flag PF as one of the condition c&tlesy arithmetic or logical operation
sets this flag when the low-order eight bits of a result haem@arity, meaning that they contain an even
number of ones. Whether the operation computes an 8-bit @sa larger one, the parity flag depends
only on the low-order 8 bits.

Consider the following function prototype:

11

int odd_parity(unsigned long x);

This function should determine whether its argument haspatddy, meaning that it contains an odd
number of ones. We want this function to operate correctlgmvbompiled for either 1A32, in which
case the argument s 32 bits, or for x86-64, in which caseripenaent is 64 bits.

Write a C function including amasm directive to implement this function, using the parity flagcom-
pute the parity 8 bits at a time.

Solutions to Practice Problems

Problem 1 Solution: [Pg. 5]
The x86-64 code is much simpler than the 1A32 code, due todlssipg of arguments through registers:

1 .globl tmult_ok _asm
2 tmult_ok_asm:

3 imull %edi, %esi

4 movl %esi, (%rdx)

5 setae %al # Set low-order byte
6 movzbl %al, %eax

7 ret

Problem 2 Solution: [Pg. 10]

We can once again start with code generated for a similatimby Gcc, but more extensive editing is
required:

1 # Hand-generated code for umult_ok
2 .globl umult_ok_asm
3 umult_ok_asm:

4 pushl %ebp

5 movl %esp, %ebp

6 movl 12(%ebp), %eax # Get y

7 movl 8(%ebp), %ecx # Get X

8 mull %ecx # Unsigned multiply

9 movl 16(%ebp), %edx # Get dest

10 movl %eax, (Yedx) # Store product at dest
11 setae %al # Set low-order byte
12 movzbl %al, %eax # Zero remaining bytes
13 popl %ebp

14 ret

Problem 3 Solution: [Pg. 10]

This function bears many similarities to the functieamult_ok , except that we want to store both the high
and the low-order words of the product:

12

[* 32-bit version */

void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest)

{

asm("'movl %][x],%%eax # Get x\n\t"

"mull %ly] # Unsigned multiply by y\n\t"
"movl %%eax,%llo] # Store low-order 4 bytes\n\t"
"movl %%edx,%l[hi] # Store high-order 4 bytes"
: [lo] "=r" (dest[0]), [hi] "=r" (dest[1]) / * QOutputs */
SIXUTTO(X), Iyl Tt (y) / * Inputs */
: "%eax", "%edx" /[* Overwrites */
)i

}

Problem 4 Solution: [Pg. 10]

The code for this function is very similar to the 32-bit versi except that we want to use thg’*form of
the instructions, and the * form of the registers:

[* 64-bit version */

void ulmult_full(ulong_t x, ulong_t y, ulong_t * dest)

{

asm("movq %[x],%%rax # Get x\n\t"

"mulq %l[y] # Unsigned multiply by y\n\t"
"movqg %%rax,%llo] # Store low-order 8 bytes\n\t"
"movqg %%rdx,%lhi] # Store high-order 8 bytes"
: [lo] "=r" (dest[0]), [hi] "=r" (dest[1]) / * QOutputs */
STT0, Iyl Tt (y) / * Inputs */
: "%rax", "%rdx" / * Overwrites */
)i

}

Problem 5 Solution: [Pg. 10]

There are many solutions to this problem. This one is pertiapsimplest. It simply shifts the successive
bytes of argument into the low-order byte and thereby tests the parity of eamhrzero byte. We use the
testb instruction to test each byte, since the parity flag depentysam the low-order byte, and this makes
the code portable between IA32 and x86-64.

[+ Using ASM to access parity flag */
int odd_parity(unsigned long x) {
int result = 0;
while (x = 0) {
char bresult;
unsigned char bx = x & Oxff;
asm("testb %[bx],%[bx] # Test value of low-order byte\n\t"

"setnp %][V] # Set if odd parity"
o [v] "=r (bresult) [/ * QOutput =/
o [bx] "rt (bx) / * |Input */
);

result "= (int) bresult;

X = X >> 8;

}

return result;
}
References

[1] R. Blum. Professional Assembly Languag#&iley, 2005.
[2] F. P. Brooks, JrThe Mythical Man-Month, Second EditioAddison-Wesley, 1995.

[3] GCC Online DocumentatiorAvailable athttp://gcc.gnu.org/

13

