
CS:APP Web Aside DATA:BOOL:
More on Boolean Algebra and Boolean Rings∗

Randal E. Bryant
David R. O’Hallaron

June 5, 2012

Notice

The material in this document is supplementary material to the bookComputer Systems, A Programmer’s
Perspective, Second Edition, by Randal E. Bryant and David R. O’Hallaron, published by Prentice-Hall
and copyrighted 2011. In this document, all references beginning with “CS:APP2e ” are to this book. More
information about the book is available atcsapp.cs.cmu.edu.

This document is being made available to the public, subjectto copyright provisions. You are free to copy
and distribute it, but you should not use any of this materialwithout attribution.

1 Motivation

Since binary values are at the core of how computers encode, store, and manipulate information, a rich body
of mathematical knowledge has evolved around the study of the values 0 and 1. This started with the work
of George Boole (1815–1864) around 1850 and thus is known asBoolean algebra. Boole observed that
by encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate an algebra that
captures the properties of propositional logic.

∗Copyright c© 2010, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

˜

0 1

1 0

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

ˆ 0 1

0 0 1

1 1 0

Figure 1:Operations of Boolean algebra. Binary values 1 and 0 encode logic values TRUE and FALSE,
while operations ˜ , &, | , and ˆ encode logical operations NOT, AND, OR, and EXCLUSIVE-OR, respectively.

1

2

2 From Logic to Algebra

There is an infinite number of different Boolean algebras, where the simplest is defined over the two-element
set{0, 1}. Figure 1 defines several operations in this Boolean algebra. Our symbols for representing these
operations are chosen to match those used by the C bit-level operations, as will be discussed later. The
Boolean operatioñ corresponds to the logical operation NOT, denoted in propositional logic as¬. That
is, we say that¬P is true whenP is not true, and vice-versa. Correspondingly,˜ p equals 1 whenp equals
0, and vice-versa. Boolean operation& corresponds to the logical operation AND, denoted in propositional
logic as∧. We say thatP ∧ Q holds when bothP and Q are true. Correspondingly,p & q equals 1
only whenp = 1 andq = 1. Boolean operation| corresponds to the logical operation OR, denoted in
propositional logic as∨. We say thatP ∨Q holds when eitherP or Q is true. Correspondingly,p | q equals
1 when eitherp = 1 or q = 1. Boolean operation̂ corresponds to the logical operation EXCLUSIVE-OR,
denoted in propositional logic as⊕. We say thatP ⊕ Q holds when eitherP or Q are true, but not both.
Correspondingly,p ˆ q equals 1 when eitherp = 1 andq = 0, or p = 0 andq = 1.

Claude Shannon (1916–2001), who later founded the field of information theory, first made the connection
between Boolean algebra and digital logic. In his 1937 master’s thesis, he showed that Boolean algebra
could be applied to the design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central role in the design and
analysis of digital systems.

3 Properties of Boolean Algebras and Rings

There are many parallels between integer arithmetic and Boolean algebra, as well as several important dif-
ferences. In particular, the set of integers, denotedZ, forms a mathematical structure known as aring,
denoted〈Z,+,×,−, 0, 1〉, with addition serving as thesumoperation, multiplication as theproduct op-
eration, negation as the additive inverse, and elements 0 and 1 serving as the additive and multiplicative
identities. The Boolean algebra〈{0, 1}, | , &, ˜ , 0, 1〉 has similar properties. Figure 2 highlights properties
of these two structures, showing the properties that are common to both and those that are unique to one or
the other. One important difference is that˜ a is not an inverse fora under| .

Aside: What good is abstract algebra?
Abstract algebra involves identifying and analyzing the common properties of mathematical operations in different
domains. Typically, an algebra is characterized by a set of elements, some of its key operations, and some im-
portant elements. As an example, modular arithmetic also forms a ring. For modulusn, the algebra is denoted
〈Zn, +n,×n,−n, 0, 1〉, with components defined as follows:

Zn = {0, 1, . . . , n − 1}

a +n b = a + b mod n

a ×n b = a × b mod n

−na =



0, a = 0

n − a, a > 0

Even though modular arithmetic yields different results from integer arithmetic, it has many of the same mathemat-
ical properties. Other well-known rings include rational and real numbers.End Aside.

3

Shared properties
Property Integer ring Boolean algebra
Commutativity a + b = b + a a | b = b | a

a × b = b × a a & b = b & a

Associativity (a + b) + c = a + (b + c) (a | b) | c = a | (b | c)
(a × b) × c = a × (b × c) (a & b) & c = a & (b & c)

Distributivity a × (b + c) = (a × b) + (a × c) a & (b | c) = (a & b) | (a & c)

Identities a + 0 = a a | 0 = a

a × 1 = a a & 1 = a

Annihilator a × 0 = 0 a & 0 = 0

Cancellation −(−a) = a ˜ (˜ a) = a

Unique to Rings
Inverse a + −a = 0 —

Unique to Boolean Algebras
Distributivity — a | (b & c) = (a | b) & (a | c)

Complement — a | ˜ a = 1
— a & ˜ a = 0

Idempotency — a &a = a

— a | a = a

Absorption — a | (a & b) = a

— a & (a | b) = a

DeMorgan’s laws — ˜ (a & b) = ˜ a | ˜ b

— ˜ (a | b) = ˜ a & ˜ b

Figure 2: Comparison of integer ring and Boolean algebra. The two mathematical structures share
many properties, but there are key differences, particularly between − and ˜ .

4

If we replace the OR operation of Boolean algebra by the EXCLUSIVE-OR operation, and the complement
operatioñ with the identity operationI —whereI (a) = a for all a—we have a structure〈{0, 1}, ˆ , &, I , 0, 1〉.
This structure is no longer a Boolean algebra—in fact it’s a ring. It can be seen to be a particularly simple
form of the ring consisting of all integers{0, 1, . . . , n− 1} with both addition and multiplication performed
modulon. In this case, we haven = 2. That is, the Boolean AND and EXCLUSIVE-OR operations cor-
respond to multiplication and addition modulo 2, respectively. One curious property of this algebra is that
every element is its own additive inverse:a ˆ I (a) = a ˆ a = 0.

Aside: Who, besides mathematicians, care about Boolean rings?
Every time you enjoy the clarity of music recorded on a CD or the quality of video recorded on a DVD, you are
taking advantage of Boolean rings. These technologies relyon error-correcting codesto reliably retrieve the bits
from a disk even when dirt and scratches are present. The mathematical basis for these error-correcting codes is a
linear algebra based on Boolean rings.End Aside.

4 General forms of Boolean Algebras and Rings

We can extend the four Boolean operations to also operate on bit vectors, i.e., strings of zeros and ones of
some fixed lengthw. We define the operations over bit vectors according their applications to the matching
elements of the arguments. Leta andb denote the bit vectors[aw−1, aw−2, . . . , a0] and[bw−1, bw−2, . . . , b0],
respectively. We definea & b to also be a bit vector of lengthw, where theith element equalsai & bi, for
0 ≤ i < w. The operations| , ˆ , and˜ are extended to bit vectors in a similar fashion

As examples, consider the case wherew = 4, and with argumentsa = [0110] andb = [1100]. Then the
four operationsa & b, a | b, a ˆ b, and˜ b yield

0110 0110 0110
& 1100 | 1100 ˆ 1100 ˜ 1100

0100 1110 1010 0011

To express this generalization in algebraic terms, let{0, 1}w denote the set of all strings of zeros and ones
having lengthw, andaw denote the string consisting ofw repetitions of symbola. Then one can see that
the resulting algebras:〈{0, 1}w , | , &, ˜ , 0w, 1w〉 and〈{0, 1}w , ˆ , &, I , 0w, 1w〉 form Boolean algebras and
rings, respectively. Each value ofw defines a different Boolean algebra and a different Boolean ring.

Aside: Are Boolean rings the same as modular arithmetic?
The two-element Boolean ring〈{0, 1}, ˆ , &, I , 0, 1〉 is identical to the ring of integers modulo two〈Z2, +2,×2,−2, 0, 1〉.
The generalization to bit vectors of lengthw, however, yields a very different ring from modular arithmetic. End
Aside.

5 Representing and Manipulating Sets

One useful application of bit vectors is to represent finite sets. We can encode any subsetA ⊆ {0, 1, . . . , w−
1} with a bit vector[aw−1, . . . , a1, a0], whereai = 1 if and only if i ∈ A. For example, (recalling that we
write aw−1 on the left anda0 on the right), bit vectora

.
= [01101001] encodes the setA = {0, 3, 5, 6}, while

5

bit vectorb
.
= [01010101] encodes the setB = {0, 2, 4, 6}. With this way of encoding sets, Boolean opera-

tions | and& correspond to set union and intersection, respectively, and ˜ corresponds to set complement.
Continuing our earlier example, the operationa & b yields bit vector[01000001], while A ∩ B = {0, 6}.

In fact, for any setS, the structure〈P(S),∪,∩, , ∅, S〉 forms a Boolean algebra, whereP(S) denotes the
set of all subsets ofS, and denotes the set complement operator. That is, for any setA, its complement is
the setA = {a ∈ S|a 6∈ A}. The ability to represent and manipulate finite sets using bit-vector operations
is a practical outcome of a deep mathematical principle.

Index

absorption, 2
annihilator, 2
associativity, 2

Boole, George, 1
Boolean algebra,1
Boolean ring,2

cancellation, 2
code

error-correcting, 3
commutativity, 2
complement, 2

DeMorgan’s laws, 2
distributivity, 2

error-correcting codes, 3

idempotency, 2
identities, 2

ring, 2

Shannon, Claude, 1

6

