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1 Motivation

Since binary values are at the core of how computers enctmie, and manipulate information, a rich body
of mathematical knowledge has evolved around the studyeovdfues O and 1. This started with the work
of George Boole (1815-1864) around 1850 and thus is knowBoatean algebra Boole observed that

by encoding logic values RUE and FALSE as binary values 1 and 0, he could formulate an algebra that
captures the properties of propositional logic.
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Figure 1:Operations of Boolean algebra. Binary values 1 and 0 encode logic values TRUE and FALSE,
while operations ~, &, | , and ~ encode logical operations NOT, AND, OR, and EXCLUSIVE-OR, respectively.



2 From Logicto Algebra

There is an infinite number of different Boolean algebrasstthe simplest is defined over the two-element
set{0, 1}. Figure 1 defines several operations in this Boolean algegbua symbols for representing these
operations are chosen to match those used by the C bit-lpesations, as will be discussed later. The
Boolean operatiofi corresponds to the logical operatiorolN denoted in propositional logic as That

is, we say that-P is true whenP is not true, and vice-versa. Correspondingly,equals 1 whemp equals

0, and vice-versa. Boolean operati@corresponds to the logical operatiom®, denoted in propositional
logic asA. We say thatP A @ holds when bothP and @ are true. Correspondingly; & ¢ equals 1
only whenp = 1 andq = 1. Boolean operatio corresponds to the logical operatiorrQdenoted in
propositional logic ay’. We say that’ vV (Q holds when eitheP or @) is true. Correspondingly;| ¢ equals

1 when eithep = 1 or ¢ = 1. Boolean operatiof corresponds to the logical operatiox& USIVE-OR,
denoted in propositional logic as. We say that”? & Q holds when eithe or () are true, but not both.
Correspondinglyp ™ ¢ equals 1 when eithgr= 1 andg = 0, orp = 0 andq = 1.

Claude Shannon (1916-2001), who later founded the fieldfofrimation theory, first made the connection
between Boolean algebra and digital logic. In his 1937 nnastieesis, he showed that Boolean algebra
could be applied to the design and analysis of networks afrelmechanical relays. Although computer
technology has advanced considerably since, Booleanralgitl plays a central role in the design and
analysis of digital systems.

3 Properties of Boolean Algebras and Rings

There are many parallels between integer arithmetic andeBoalgebra, as well as several important dif-
ferences. In particular, the set of integers, denafedorms a mathematical structure known asray,
denoted(Z, +, x, —, 0, 1), with addition serving as theumoperation, multiplication as thproduct op-
eration, negation as the additive inverse, and elementsi@ aerving as the additive and multiplicative
identities. The Boolean algebf&0,1},| ,& ~,0,1) has similar properties. Figure 2 highlights properties
of these two structures, showing the properties that arereamto both and those that are unique to one or
the other. One important difference is that is not an inverse fos under| .

Aside: What good is abstract algebra?

Abstract algebra involves identifying and analyzing thenawon properties of mathematical operations in different
domains. Typically, an algebra is characterized by a seteshents, some of its key operations, and some im-
portant elements. As an example, modular arithmetic alsmda ring. For modulus, the algebra is denoted
(Zn,+n, Xn, —n, 0, 1), with components defined as follows:

zZ, = {0,1,...,n—1}
a+nb = a+bmodn
aXpb = axbmodn
o = {0, a=20
n—a, a>0

Even though modular arithmetic yields different resultirinteger arithmetic, it has many of the same mathemat-
ical properties. Other well-known rings include rationatlaeal numbersEnd Aside.



Shared properties

Property Integer ring Boolean algebra
Commutativity at+b=b+a al b=>b]| a
axb=bxa a&b=>b&a

Associativity (a+b)+c=a+(b+c)

(axb)xc=ax(bxc)

@I BT c=al BT 0
(a&b) &c=a&(b&c)

Distributivity ax(b+c)=(axb)+(axc)|a&b]| c)=(a&d)]| (a&ec)
Identities a+0=a al 0=a
axl=a a&l=a
Annihilator ax0=0 a&0=0
Cancellation —(—a)=a “"(Ta)=ua
Unique to Rings
| Inverse \ a+—a=0 —

Unique to Boolean Algebras

Distributivity — al (b&e)=(a| b)&(a] c)
Complement — al” a=1

— a&"a=0
Idempotency — a&a=a

— a|l a=a
Absorption — al (a&b)=a

— a&(a]| b)=a
DeMorgan’s laws — “(a&b)="al|" b

— “(a]l b)="a& b

Figure 2: Comparison of integer ring and Boolean algebra. The two mathematical structures share
many properties, but there are key differences, particularly between — and ™.




If we replace the @ operation of Boolean algebra by thec& usivE-OR operation, and the complement
operatiori” with the identity operatiod—where! (a) = a for all a—we have a structurg0,1},” , &, 7,0, 1).
This structure is no longer a Boolean algebra—in fact it'sg.rIt can be seen to be a particularly simple
form of the ring consisting of all integef$), 1, ... ,n — 1} with both addition and multiplication performed
modulon. In this case, we have = 2. That is, the Boolean RD and ExcLUSIVE-OR operations cor-
respond to multiplication and addition modulo 2, respetyivOne curious property of this algebra is that
every element is its own additive inverse? [(a) =a” a = 0.

Aside: Who, besides mathematicians, care about Boolean rings?

Every time you enjoy the clarity of music recorded on a CD @ gfuality of video recorded on a DVD, you are
taking advantage of Boolean rings. These technologiesamebrror-correcting codego reliably retrieve the bits
from a disk even when dirt and scratches are present. Theematital basis for these error-correcting codes is a
linear algebra based on Boolean ringsd Aside.

4 General forms of Boolean Algebras and Rings

We can extend the four Boolean operations to also operatét @rdiors, i.e., strings of zeros and ones of
some fixed lengthw. We define the operations over bit vectors according theidli@aions to the matching
elements of the arguments. Leandb denote the bit vectotig,,—1, aw—2, - . . , ap] @nd[by—_1, byw—2, . .., bo],
respectively. We define & b to also be a bit vector of lengtlr, where theith element equals; & b;, for

0 <i < w. The operation$,” , and™ are extended to bit vectors in a similar fashion

As examples, consider the case where= 4, and with argumenta = [0110] andb = [1100]. Then the
four operationst &b, a | b,a” b, and™ byield

0110 0110 0110
& 1100 | 1100 © 1100 ~ 1100
0100 1110 1010 0011

To express this generalization in algebraic terms{(et }"” denote the set of all strings of zeros and ones
having lengthw, anda® denote the string consisting af repetitions of symbok. Then one can see that
the resulting algebrasi{0,1}*,| ,& ~,0%,1*) and ({0,1}",” &, 1,0",1") form Boolean algebras and
rings, respectively. Each value afdefines a different Boolean algebra and a different Boolewan r

Aside: AreBoolean ringsthe same asmodular arithmetic?

The two-element Boolean ring0, 1}, , &, 1,0, 1) is identical to the ring of integers modulo tW&-, 42, X2, —2, 0, 1).
The generalization to bit vectors of lengih however, yields a very different ring from modular arithine End
Aside.

5 Representing and Manipulating Sets

One useful application of bit vectors is to represent firgtis s\WWe can encode any subdet {0,1,...,w—
1} with a bit vector[a,,—1, . .., a1, ap], wherea; = 1if and only ifi € A. For example, (recalling that we
write a,,—1 on the left andi, on the right), bit vector = [01101001] encodes the set = {0, 3,5, 6}, while



bit vectorb = [01010101] encodes the sé® = {0, 2,4, 6}. With this way of encoding sets, Boolean opera-
tions| andé& correspond to set union and intersection, respectively, arorresponds to set complement.
Continuing our earlier example, the operatio& b yields bit vectorj01000001], while AN B = {0,6}.

In fact, for any setS, the structurd P(S),U, N, ,0,S) forms a Boolean algebra, whefS) denotes the
set of all subsets of, and denotes the set complement operator. That is, for anyl siés complement is
the setd = {a € S|a & A}. The ability to represent and manipulate finite sets usibgesitor operations
is a practical outcome of a deep mathematical principle.
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