
Introducing Computer Systems  
from a  

Programmer’s Perspective"
Randal E. Bryant, David R. O’Hallaron"

Computer Science and Electrical Engineering"
Carnegie Mellon University"

– 2 –! ICS!

Outline"
Introduction to Computer Systems"

n  Course taught at CMU since Fall, 1998"
n  Some ideas on labs, motivations, …"

Computer Systems: A Programmer’s Perspective"
n  Our textbook, now in its second edition"
n  Ways to use the book in different courses"

– 3 –! ICS!

Background"
1995-1997: REB/DROH teaching computer

architecture course at CMU."
n  Good material, dedicated teachers, but students hate it"
n  Don’t see how it will affect their lives as programmers"

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

CS Average

REB: Computer Architecture

– 4 –! ICS!

Computer Arithmetic  
Builder’s Perspective!

n  How to design high performance arithmetic circuits"

32-bit"
Multiplier"

– 5 –! ICS!

Computer Arithmetic  
Programmer’s Perspective!

n  Numbers are represented using a finite word size"
n  Operations can overflow when values too large"

l  But behavior still has clear, mathematical properties"

void show_squares()
{
 int x;
 for (x = 5; x <= 5000000; x*=10)
 printf("x = %d x^2 = %d\n", x, x*x);
}

x = 5 x2 = 25
x = 50 x2 = 2500
x = 500 x2 = 250000
x = 5000 x2 = 25000000
x = 50000 x2 = -1794967296
x = 500000 x2 = 891896832
x = 5000000 x2 = -1004630016

– 6 –! ICS!

Memory System  
Builder’s Perspective!
Builder’s Perspective"
"
"
"
"
"
"
"

n  Must make many difficult design decisions"
n  Complex tradeoffs and interactions between components"

Main!
memory! Disk!

L1 i-cache!

L1 d-cache!Regs! L2 !
unified!
cache!CPU!

Write
through or
write back?"

Direct
mapped or

set
indexed?"

How many
lines?"

Virtual or
physical
indexing?"

Synchronous"
or"

asynchronous?"

– 7 –! ICS!

Memory System  
Programmer’s Perspective!

n  Hierarchical memory organization"
n  Performance depends on access patterns"

l  Including how step through multi-dimensional array"

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

5.2 ms" 162 ms"

30 times slower!"
(Measured on 2.7 GHz"

Intel Core i7)"

– 8 –! ICS!

The Memory Mountain" Core i7!
2.67 GHz!
32 KB L1 d-cache!
256 KB L2 cache!
8 MB L3 cache!

– 9 –! ICS!

Background (Cont.)"
1997: OS instructors complain about lack of

preparation"
n  Students don’t know machine-level programming well

enough"
l  What does it mean to store the processor state on the run-

time stack?"
n  Our architecture course was not part of prerequisite

stream"

– 10 –! ICS!

Birth of ICS"
1997: REB/DROH pursue new idea:"

n  Introduce them to computer systems from a programmer's
perspective rather than a system designer's perspective."

n  Topic Filter: What parts of a computer system affect the
correctness, performance, and utility of my C programs?"

1998: Replace architecture course with new course: "
n  15-213: Introduction to Computer Systems"

Curriculum Changes"
n  Sophomore level course"
n  Eliminated digital design & architecture as required

courses for CS majors"

"

– 11 –! ICS!

15-213: Intro to Computer Systems"
Goals"

n  Teach students to be sophisticated application programmers"
n  Prepare students for upper-level systems courses"

Taught every semester to 400+ students ""
n  All CS undergrads (core course)"
n  All ECE undergrads (core course)"
n  Many masters students"

l  To prepare them for upper-level systems courses"
n  Variety of others from math, physics, statistics, …"

Preparation"
n  Optional: Introduction to CS in Python or Ruby"
n  Imperative programming in C subset"

– 12 –! ICS!

ICS Feedback"
Students"
"
"
"
"
"
"
"
"
Faculty"

n  Prerequisite for most upper level CS systems courses"
n  Also required for ECE embedded systems, architecture, and

network courses"

Course Evaluations

2

2.5

3

3.5

4

4.5

5

1995 1996 1997 1998 1999 2000 2001 2002

REB: Intro. Comp. Systems

CS Average

REB: Computer Architecture

– 13 –! ICS!

Lecture Coverage ""
Data representations [3]"

n  It’s all just bits.
n  int’s are not integers and float’s are not reals."

IA32 & x86-64 machine language [5]"
n  Analyzing and understanding compiler-generated machine

code."

Program optimization [2]"
n  Understanding compilers and modern processors."

Memory Hierarchy [3]"
n  Caches matter!"

Linking [1]"
n  With DLL’s, linking is cool again!"

– 14 –! ICS!

Lecture Coverage (cont)"
Exceptional Control Flow [2]"

n  The system includes an operating system that you must
interact with."

Virtual memory [4]"
n  How it works, how to use it, and how to manage it."

Application level concurrency [3]"
n  Processes and threads"
n  Races, synchronization"

I/O and network programming [4]"
n  Programs often need to talk to other programs."

Total: 27 lectures, 14 week semester"

– 15 –! ICS!

Labs"
Key teaching insight: "

n  Cool Labs ⇒ Great Course"

"
A set of 1 and 2 week labs define the course."
"
Guiding principles:"

n  Be hands on, practical, and fun."
n  Be interactive, with continuous feedback from automatic

graders"
n  Find ways to challenge the best while providing worthwhile

experience for the rest"
n  Use healthy competition to maintain high energy."

– 16 –! ICS!

Lab Exercises"
Data Lab (2 weeks)"

n  Manipulating bits."
Bomb Lab (2 weeks) "

n  Defusing a binary bomb."
Buffer Lab (1 week) "

n  Exploiting a buffer overflow bug."
Performance Lab (2 weeks)"

n  Optimizing kernel functions."
Shell Lab (1 week) "

n  Writing your own shell with job control."
Malloc Lab (2-3 weeks) "

n  Writing your own malloc package."
Proxy Lab (2 weeks) "

n  Writing your own concurrent Web proxy."

– 17 –! ICS!

Data Lab"
Goal: Solve some “bit puzzles” in C using a limited set

of logical and arithmetic operators."
n  Examples: absval(x), greaterthan(x,y), log2(x)

Lessons:"
n  Information is just bits in context."
n  C int’s are not the same as integers. "
n  C float’s are not the same as reals."

Infrastructure"
n  Configurable source-to-source C compiler that checks for

compliance."
n  Instructor can automatically select from 45 puzzles."
n  Automatic testing using formal verification tools"

– 18 –! ICS!

Let’s Solve a Bit Puzzle!"

/*
 * abs - absolute value of x (except returns TMin for TMin)
 * Example: abs(-1) = 1.
 * Legal ops: ! ~ & ^ | + << >>
 * Max ops: 10
 * Rating: 4
 */
int abs(int x) {
 int mask = x>>31;

 return ____________________________;
}

11…12, = –1, !x < 0!
00…02, = 0, !x ≥ 0!

(x^mask)

–x – 1, !x < 0!
x, !x ≥ 0!

 + 1+~mask

1, !x < 0!
0, !x ≥ 0!

–x, !x < 0!
x, !x ≥ 0!+! =!

– 19 –! ICS!

Verifying Solutions"

Do these functions produce
identical results?"

How could you find out?"

int abs(int x) {
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

int test_abs(int x) {
 return (x < 0) ? -x : x;
}

– 20 –! ICS!

Bit-Level Program Model"

n  View computer word as 32 separate bit values"
n  Each output becomes Boolean function of inputs"

abs"

x0"

x1"

x2"

•"
"
•"
"
•"

x31"

y0"

y1"

y2"

•"
"
•"
"
•"

y31"

•"
"
•"
"
•"

•"
"
•"
"
•"

x0"

x1"

x2"

•"
"
•"
"
•"

x31"

•"
"
•"
"
•"

yi!absi!

int abs(int x) {
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

– 21 –! ICS!

Bit-Level Program Verification"

n  Determine whether functions equivalent for all outputs j"
n  Exhaustive checking:"

l  Single input:"

l  Two input: 264 cases è 8,800 years!"
n  Other approaches"

l  BDDs, SAT solvers"
l  Easily handle these functions (< 1.0 seconds)"

232 cases X 50 cycles"
2 X 109 cycles / second"

≈ 60 seconds"

– 22 –! ICS!

Verification Example"

Almost Correct"
n  Valid for all but one input value"
n  Overlooked by our test suite"

int iabs(int x) {
 if (x == 1234567) x++;
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

– 23 –! ICS!

Counterexample Generation"

Detected By Checking Code"
n  Since covers all cases"
n  Generate counterexample to demonstrate problem"

int iabs(int x) {
 if (x == 1234567) x++;
 int mask = x>>31;
 return (x ^ mask) + ~mask + 1;
}

int main()
{
 int val1 = iabs(1234567);
 int val2 = test_iabs(1234567);
 printf("iabs(1234567) --> %d [0x%x]\n", val1, val1);
 printf("test_iabs(1234567) --> %d [0x%x]\n", val2, val2);
 if (val1 == val2) {

 printf(".. False negative\n");
 } else

 printf(".. A genuine counterexample\n");
}

– 24 –! ICS!

Bomb Lab"
n  Idea due to Chris Colohan, TA during inaugural offering"

Bomb: C program with six phases."
Each phase expects student to type a specific string."

n  Wrong string: bomb explodes by printing BOOM! (- ½ pt)"
n  Correct string: phase defused (+10 pts)"
n  In either case, bomb sends message to grading server"
n  Server posts current scores anonymously and in real time on

Web page"

Goal: Defuse the bomb by defusing all six phases."
n  For fun, we include an unadvertised seventh secret phase"

The challenge:"
n  Each student get only binary executable of a unique bomb"
n  To defuse their bomb, students must disassemble and

reverse engineer this binary"

– 25 –! ICS!

Properties of Bomb Phases"
Phases test understanding of different C constructs

and how they are compiled to machine code"
n  Phase 1: string comparison"
n  Phase 2: loop"
n  Phase 3: switch statement/jump table"
n  Phase 4: recursive call ""
n  Phase 5: pointers"
n  Phase 6: linked list/pointers/structs"
n  Secret phase: binary search (biggest challenge is figuring

out how to reach phase)"

Phases start out easy and get progressively harder "

– 26 –! ICS!

Let’s defuse a bomb phase!"
08048b48 <phase_2>:
 ... # function prologue not shown
 8048b50: mov 0x8(%ebp),%edx
 8048b53: add $0xfffffff8,%esp
 8048b56: lea 0xffffffe8(%ebp),%eax
 8048b59: push %eax
 8048b5a: push %edx
 8048b5b: call 8048f48 <read_six_nums>

 8048b60: mov $0x1,%ebx
 8048b68: lea 0xffffffe8(%ebp),%esi

 8048b70: mov 0xfffffffc(%esi,%ebx,4),%eax
 8048b74: add $0x5,%eax
 8048b77: cmp %eax,(%esi,%ebx,4)
 8048b7a: je 8048b81 <phase_2+0x39>
 8048b7c: call 804946c <explode_bomb>
 8048b81: inc %ebx
 8048b82: cmp $0x5,%ebx
 8048b85: jle 8048b70 <phase_2+0x28>
 ... # function epilogue not shown
 8048b8f: ret

else explode!

LOOP: eax = num[i-1]

then goto LOOP:

edx = &str

eax = &num[] on stack
push function args

rd 6 ints from str 2 num

i = 1
esi = &num[] on stack

eax = num[i-1] + 5
if num[i-1] + 5 == num[i]
then goto OK:

OK: i++
if (i <= 5)

YIPPEE!

– 27 –! ICS!

Source Code for Bomb Phase"
/*
 * phase2b.c - To defeat this stage the user must enter arithmetic
 * sequence of length 6 and delta = 5.
 */
void phase_2(char *input)
{
 int ii;
 int numbers[6];

 read_six_numbers(input, numbers);

 for (ii = 1; ii < 6; ii++) {
 if (numbers[ii] != numbers[ii-1] + 5)
 explode_bomb();
 }
}

– 28 –! ICS!

The Beauty of the Bomb"
For the Student"

n  Get a deep understanding of machine code in the context of
a fun game"

n  Learn about machine code in the context they will encounter
in their professional lives"
l  Working with compiler-generated code"

n  Learn concepts and tools of debugging"
l  Forward vs backward debugging"
l  Students must learn to use a debugger to defuse a bomb"

For the Instructor"
n  Self-grading"
n  Scales to different ability levels"
n  Easy to generate variants and to port to other machines"

– 29 –! ICS!

Buffer Bomb"

Task"
n  Each student assigned “cookie”"

l  Randomly generated 8-digit hex string"
n  Type string that will cause getbuf to return cookie"

l  Instead of 1

int getbuf()
{
 char buf[12];
 /* Read line of text and store in buf */
 gets(buf);
 return 1;
}

– 30 –! ICS!

Buffer Code"

n  Calling function gets(p) reads characters up to ‘\n’"
n  Stores string + terminating null as bytes starting at p
n  Assumes enough bytes allocated to hold entire string"

void getbuf() {
 char buf[12];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return"
address"

Return address"
Saved %ebp

buf

%ebp

Stack"
Frame"

for test

Stack when gets called"

Increasing"
addresses"

Frame"
pointer"

– 31 –! ICS!

Buffer Code: Good case"

n  Fits within allocated storage"
l String is 11 characters long + 1 byte terminator"

void getbuf() {
 char buf[12];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return"
address"

Return address"
Saved %ebp

buf

%ebp

Stack"
Frame"

for test

00 30 39 38

37 36 35 34

33 32 31 30

Input string"
“01234567890”"

Increasing"
addresses"

– 32 –! ICS!

Buffer Code: Bad case"

n  Overflows allocated storage"
l Corrupts saved frame pointer and return address"

n  Jumps to address 0x00383736 when getbuf attempts to return"
l Invalid address, causes program to abort"

void getbuf() {
 char buf[12];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return"
address"

Return address"
Saved %ebp

buf

%ebp

Stack"
Frame"

for test

31 30 39 38

37 36 35 34

33 32 31 30

Input string"
“0123456789012345678”"

Increasing"
addresses"

35 34 33 32

00 38 37 36

– 33 –! ICS!

Malicious Use of Buffer Overflow"

n  Input string contains byte representation of executable code"
n  Overwrite return address with address of buffer"
n  When getbuf() executes return instruction, will jump to exploit

code"

buf
(0xfffb896)

%ebp

Stack"
Frame"

for test

90 c3 12 34

56 78 b8 08

04 78 ee 68

Exploit string"
for cookie 0x12345678
(not printable as ASCII)"

bf ff b8 c8

bf ff b8 9c
void getbuf() {
 char buf[12];
 gets(buf);
 return 1;
}

void test(){
 int v = getbuf();
 ...
}

Return"
address"

00

– 34 –! ICS!

Return address"
Saved %ebp

Exploit Code"

n  Repairs corrupted stack values"
n  Sets 0x12345678 as return value"
n  Reexecutes return instruction"
n  As if getbuf returned 0x12345678

 pushl $ 0x80489ee # Restore return pointer
 movl $ 0x12345678 ,%eax # Alter return value
 ret # Re-execute return
 .long 0xbfffb8c8 # Saved value of %ebp
 .long 0xbfffb89c # Location of buf

buf
(0xfffb89c)

%ebp

Stack"
Frame"

for test

90 c3 12 34

56 78 b8 08

04 78 ee 68

After executing code"
void getbuf() {
 char buf[12];
 gets(buf);
 return 1;
} 00

– 35 –! ICS!

Why Do We Teach This Stuff?"
Important Systems Concepts"

n  Stack discipline and stack organization"
n  Instructions are byte sequences"
n  Making use of tools"

l  Debuggers, assemblers, disassemblers"

Computer Security"
n  What makes code vulnerable to buffer overflows"
n  The most exploited vulnerability in systems"

Impact"
n  CMU student teams consistently win international Capture

the Flag Competitions"

– 36 –! ICS!

Performance Lab"
Goal: Make small C kernels run as fast as possible"

n  Examples: DAG to UDG conversion, convolution, rotate,
matrix transpose, matrix multiply"

Lessons: "
n  Caches and locality of reference matter."
n  Simple transformations can help the compiler generate

better code."
n  Improvements of 3–10X are possible."

Infrastructure"
n  Students submit solutions to an evaluation server. "
n  Server posts sorted scores in real-time on Web page"

– 37 –! ICS!

Shell Lab"
Goal: Write a Unix shell with job control "

n  (e.g., ctrl-z, ctrl-c, jobs, fg, bg, kill)"

Lessons:"
n  First introduction to systems-level programming and

concurrency"
n  Learn about processes, process control, signals, and

catching signals with handlers"
n  Demystifies command line interface"

Infrastructure"
n  Students use a scripted autograder to incrementally test

functionality in their shells"

– 38 –! ICS!

Malloc Lab"
Goal: Build your own dynamic storage allocator "

void *malloc(size_t size)

void *realloc(void *ptr, size_t size)

void free(void *ptr)

Lessons "
n  Sense of programming underlying system"
n  Large design space with classic time-space tradeoffs"
n  Develop understanding of scary “action at a distance”

property of memory-related errors"
n  Learn general ideas of resource management"

Infrastructure"
n  Trace driven test harness evaluates implementation for

combination of throughput and memory utilization"
n  Evaluation server and real time posting of scores"

– 39 –! ICS!

Proxy Lab"
Goal: write concurrent Web proxy."
"
"
Lessons: Ties together many ideas from earlier"

n  Data representations, byte ordering, memory management,
concurrency, processes, threads, synchronization, signals,
I/O, network programming, application-level protocols
(HTTP)"

Infrastructure:"
n  Plugs directly between existing browsers and Web servers"
n  Grading is done via autograders and one-on-one demos"
n  Very exciting for students, great way to end the course"

Web!
Browser!

Web"
Proxy"

Web!
Server!

– 40 –! ICS!

ICS Summary"
Proposal"

n  Introduce students to computer systems from the
programmer's perspective rather than the system builder's
perspective "

Themes"
n  What parts of the system affect the correctness, efficiency,

and utility of my C programs?"
n  Makes systems fun and relevant for students"
n  Prepare students for builder-oriented courses"

l  Architecture, compilers, operating systems, networks,
distributed systems, databases, …"

l  Since our course provides complementary view of systems,
does not just seem like a watered-down version of a more
advanced course"

l  Gives them better appreciation for what to build"

– 41 –! ICS!

ICS"

CMU Courses that Build on ICS"
CS"

Operating"
Systems"

Networks"

Dist."
Systems"

Parallel"
Systems"

Software"
Engin."

Secure"
Coding"

Compilers"

Databases"

Storage"
Systems"

Robotics"

Computer"
Graphics"

Comp."
Photo."

Cog."
Robotics"

ECE"

Embedded"
Systems"

Real-Time"
Systems"

Embedded"
Control"

Computer"
Arch."

– 42 –! ICS!

Fostering “Friendly Competition”"
Desire"

n  Challenge the best without frustrating everyone else"

Method"
n  Web-based submission of solutions"
n  Server checks for correctness and computes performance

score"
l  How many stages passed, program throughput, …"

n  Keep updated results on web page"
l  Students choose own nom de guerre!

Relationship to Grading"
n  Students get full credit once they reach set threshold"
n  Push beyond this just for own glory/excitement"

– 43 –! ICS!

Shameless
Promotin"

n  http://csapp.cs.cmu.edu

n  Second edition Published
2010"

n  In use at 186 institutions
worldwide"

– 44 –! ICS!

International Editions"

– 45 –! ICS!

Overall Sales"
n  First + Second Editions"
n  As of 12/31/2011"
n  116,574 total"

English	

English	
 /	
 China	

English	
 /	
 India	

Chinese	

Korean	

Russian	

– 46 –! ICS!

Worldwide Adoptions"

186 total"

– 47 –! ICS!

North American Adoptions"

114 total"

– 48 –! ICS!

Asian Adoptions"

– 49 –! ICS!

CS:APP2e"
Vital stats:"

n  12 chapters"
n  233 practice problems (solutions in book)"
n  180 homework problems (solutions in instructor’s manual)"
n  475 figures, 282 line drawings"
n  Many C & machine code examples"

Turn-key course provided with book:
n  Electronic versions of all code examples."
n  Powerpoint, EPS, and PDF versions of each line drawing"
n  Password-protected Instructors Page, with Instructor’s

Manual, Lab Infrastructure, Powerpoint lecture notes, and
Exam problems."

– 50 –! ICS!

Coverage"
Material Used by ICS at CMU"

n  Pulls together material previously covered by multiple
textbooks, system programming references, and man pages"

Greater Depth on Some Topics"
n  Dynamic linking"
n  I/O multiplexing"

Additional Topic"
n  Computer Architecture"
n  Added to cover all topics in “Computer Organization” course"

– 51 –! ICS!

Architecture"
Material"

n  Y86 instruction set"
l  Simplified/reduced IA32"

n  Implementations"
l  Sequential"
l  5-stage pipeline"

Presentation"
n  Simple hardware description

language to describe control logic"
n  Descriptions translated and linked

with simulator code"

Labs"
n  Modify / extend processor design"

l  New instructions"
l  Change branch prediction policy"

n  Simulate & test results"

E

M

W

F

D

Instruction
memory

Instruction
memory

PC
increment

PC
increment

Register
file

Register
file

ALUALU

Data
memory

Data
memory

Select
PC

rB

dstE dstMSelect
A

ALU
A

ALU
B

Mem.
control

Addr

srcA srcB

read

write

ALU
fun.

Fetch

Decode

Execute

Memory

Write back

icode

data out

data in

A B
M

E

M_valA

W_valM

W_valE

M_valA

W_valM

d_rvalA

f_PC

Predict
PC

valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

CCCC

d_srcBd_srcA

e_Bch

M_Bch

– 52 –! ICS!

Web Asides"
n  Supplementary material via web"
n  Topics either more advanced or more arcane"

Examples"
n  Boolean algebra & Boolean rings"
n  Combining assembly & C code"
n  x87 and SSE floating point code"
n  Using SIMD instructions"
n  Asynchronous signal safety"

– 53 –! ICS!

Courses Based on CS:APP"
Computer Organization"

ORG "Topics in conventional computer organization course,
but with a different flavor"

ORG+ "Extends computer organization to provide more
emphasis on helping students become better
application programmers"

Introduction to Computer Systems"
ICS "Create enlightened programmers who understand

enough about processor/OS/compilers to be effective"
ICS+ "What we teach at CMU. More coverage of systems

software"

Systems Programming"
SP "Prepare students to become competent system

programmers"

– 54 –! ICS!

Courses Based on CS:APP"
Chapter" Topic" Course"

ORG" ORG+" ICS" ICS+" SP"
1" Introduction" Å" Å" Å" Å" Å"
2" Data representations" Å" Å" Å" Å" �"
3" Machine language" Å" Å" Å" Å" Å"
4" Processor architecture" Å" Å"
5" Code optimization" Å" Å" Å"
6" Memory hierarchy" �" Å" Å" Å" �"
7" Linking" �" �" Å"
8" Exceptional control flow" Å" Å" Å"
9" Virtual memory" �" Å" Å" Å" Å"
10" System-level I/O" Å" Å"
11" Concurrent programming" Å" Å"
12" Network programming" Å" Å"

� "Partial Coverage " Å "Complete Coverage"

– 55 –! ICS!

Conclusions"
ICS Has Proved Its Success"

n  Thousands of students at CMU over 13 years"
n  Positive feedback from alumni"
n  Positive feedback from systems course instructors"

CS:APP is International Success"
n  Supports variety of course styles"
n  Many purchases for self study"

