Introducing Computer Systems
from a
Programmer’s Perspective

Randal E. Bryant, David R. O’Hallaron

Computer Science and Electrical Engineering

Carnegie Mellon University

L

Outline

Introduction to Computer Systems
m Course taught at CMU since Fall, 1998
m Some ideas on labs, motivations, ...

Computer Systems: A Programmer’s Perspective
m Our textbook, now in its second edition
m Ways to use the book in different courses

ICS

Background

1995-1997: REB/DROH teaching computer
architecture course at CMU.

m Good material, dedicated teachers, but students hate it
= Don’t see how it will affect their lives as programmers

Course Evaluations

4.5

CS Awerage N
4 A A

- : /’A\\‘
3.5

\ / REB: Computer Architecture
3 V

25

1995 1996 1997 1998 1999 2000 2001 2002

—_3— ICS

Computer Arithmetic
Builder’s Perspective

Se4545 Sm3%44 SepSeg Ss194z Smp S Sz3Sw S2513 5218z S84 S0 S
1 1|.|J®§315 534 5&3 532 Sos 304 30:3 30:2 3011
.[10

o

3 _Ij?

Seg “}B}
B iy

full
Py Pm\ Pq Ps Ps L adder ¥

Sum

=

= How to design high performance arithmetic circuits

ICS

Computer Arithmetic
Programmer’s Perspective

void show_squares()
{
int x;
for (x = 5; x <= 5000000, x*=10)
printf("x = %d x*2 = %d\n", x, x*x);

[—

X = 5 x2 = 25
X = 50 x°? = 2500
X = 500 x2 = 250000
X = 5000 x? = 25000000
X = 50000 x? = -1794967296
x = 500000 x? = 891896832
x = 5000000 x? = -1004630016

= Numbers are represented using a finite word size

m Operations can overflow when values too large
e But behavior still has clear, mathematical properties

ICS

Memory System
Builder’s Perspective

Builder’s Perspective

Direct Synchronous
] mapped or or
Write set asynchronous?
through or indexed?

write back?

.................

L1 d-cache

Regs L2 Main

unified memorv
CPU L1 i-cache cache y

A

Virtual or
physical
indexing?

How many
lines?

= Must make many difficult design decisions
m Complex tradeoffs and interactions between components

—6— ICS

Memory System
Programmer’s Perspective

void copyij (int src[2048][2048],

void copyji(int

src[2048] [2048],

int dst[2048] [2048]) int dst[2048] [2048])
{ {
int i,j; int i,j;
for (i = 0; i < 2048; i++) —| — for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++r—”’:=><=:::~* for (i = 0; i < 2048; i++)
dst[i] [j] = src[i][j]; dst[i] [j] = src[i][j]:
} }
5.2 ms 162 ms

~

30 times slower!

m Hierarchical memory organization

m Performance depends on

access patterns

(Measured on 2.7 GHz
Intel Core i7)

® Including how step through multi-dimensional array

ICS

The Memory Mountain

7000 — [Copyij

\
\ \ / /

3000 A A

\’yl—' \ ‘f \\‘ /

| Y\ \/ X/

A A/

201¢XK] T’ N\ 4

Read throughpul (MB/s)

Stride (x8 bylas)

Core i7

2.67 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

ICS

Background (Cont.)

1997: OS instructors complain about lack of
preparation
m Students don’t know machine-level programming well
enough

® What does it mean to store the processor state on the run-
time stack?

m Our architecture course was not part of prerequisite
stream

—9-— ICS

Birth of ICS

1997: REB/DROH pursue new idea:

m Introduce them to computer systems from a programmer's
perspective rather than a system designer's perspective.

m Topic Filter: What parts of a computer system affect the
correctness, performance, and utility of my C programs?

1998: Replace architecture course with new course:
m 15-213: Introduction to Computer Systems

Curriculum Changes
m Sophomore level course

m Eliminated digital design & architecture as required
courses for CS majors

~10- ICS

15-213: Intro to Computer Systems

Goals
m Teach students to be sophisticated application programmers
m Prepare students for upper-level systems courses

Taught every semester to 400+ students
m All CS undergrads (core course)
m All ECE undergrads (core course)

m Many masters students
® To prepare them for upper-level systems courses

m Variety of others from math, physics, statistics, ...

Preparation
m Optional: Introduction to CS in Python or Ruby
m Imperative programming in C subset

o ICS

ICS Feedback

Students

4.5

3.5

25

Course Evaluations

REB: Intro. Comp. Systems

CS Awerage
A A

A

A

A

P

/A

A
e

\ / REB: Computer Architecture

1995

1996

1997

1998

1999

2000

2001

2002

Faculty

—12—

m Prerequisite for most upper level CS systems courses

m Also required for ECE embedded systems, architecture, and
network courses

ICS

Lecture Coverage

Data representations [3]
m It’s all just bits.
m int’s are not integers and £1loat’s are not reals.

IA32 & x86-64 machine language [5]

m Analyzing and understanding compiler-generated machine
code.

Program optimization [2]
m Understanding compilers and modern processors.

Memory Hierarchy [3]
m Caches matter!

Linking [1]

= With DLL’s, linking is cool again!
13— ICS

Lecture Coverage (cont)

Exceptional Control Flow [2]

m The system includes an operating system that you must
interact with.

Virtual memory [4]
= How it works, how to use it, and how to manage it.

Application level concurrency [3]
m Processes and threads
m Races, synchronization

I/0 and network programming [4]
m Programs often need to talk to other programs.

Total: 27 lectures, 14 week semester

—14 — ICS

Labs

Key teaching insight:
m Cool Labs = Great Course

A set of 1 and 2 week labs define the course.

Guiding principles:
m Be hands on, practical, and fun.

m Be interactive, with continuous feedback from automatic
graders

= Find ways to challenge the best while providing worthwhile
experience for the rest

m Use healthy competition to maintain high energy.

— 15— ICS

Lab Exercises

Data Lab (2 weeks)
= Manipulating bits.

Bomb Lab (2 weeks)
m Defusing a binary bomb.

Buffer Lab (1 week)
m Exploiting a buffer overflow bug.

Performance Lab (2 weeks)
m Optimizing kernel functions.

Shell Lab (1 week)
m Writing your own shell with job control.

Malloc Lab (2-3 weeks)
m Writing your own malloc package.

Proxy Lab (2 weeks)

m Writing your own concurrent Web proxy.

—16 —

ICS

Data Lab

Goal: Solve some “bit puzzles” in C using a limited set
of logical and arithmetic operators.

m Examples: absval (x) , greaterthan(x,y), log2(x)

Lessons:
= Information is just bits in context.
m C int’s are not the same as integers.
m C float’s are not the same as reals.

Infrastructure

m Configurable source-to-source C compiler that checks for
compliance.

m Instructor can automatically select from 45 puzzies.
m Automatic testing using formal verification tools

—17 — ICS

Let’s Solve a Bit Puzzie!

/%
* abs - absolute value of x (except returns TMin for TMin)
* Example: abs(-1) = 1.
* Legal ops: ! ~ & * | + << >>
* Max ops: 10
* Rating: 4
*/ 11..1,,=-1, x<0
int abs(int x) { —00...0,,= 0, x=0
int mask = x>>31;
return (x"mask) + 1+~mask
) // /I
—x—-1, x<0 1, x<0 =X x<0
X, x=0 + 0, x=0 — x x=0

~ 18— ICS

Verifying Solutions

—19 —

int abs(int x) {
int mask = x>>31;
return (x * mask) + ~mask + 1;

}

int test abs(int x) ({
return (x < 0) ? -x : x;

}

Do these functions produce
identical results?

How could you find out?

ICS

Bit-Level Program Model

—20 -

int abs(int x) {
int mask = x>>31;
return (x * mask) + ~mask + 1;

Xo Yo Xo
X4 Y1 X4
X, Yo X,
X34 Y31 X34

m View computer word as 32 separate bit values
m Each output becomes Boolean function of inputs

ICS

Yi

Bit-Level Program Verification

m Determine whether functions equivalent for all outputs j

= Exhaustive checking:
e Single input: 232 cases X 50 cycles

= 60 seconds
2 X 10° cycles / second

® Two input: 254 cases = 8,800 years!
m Other approaches
e BDDs, SAT solvers

e Easily handle these functions (< 1.0 seconds)
—21— ICS

Verification Example

int iabs(int x) {
if (x == 1234567) x++;
int mask = x>>31;

}

return (x * mask) + ~mask + 1;

Almost Correct
m Valid for all but one input value
m Overlooked by our test suite

— 22 _

ICS

Counterexample Generation

int iabs(int x) {
if (x == 1234567) x++;
int mask = x>>31;
return (x ~ mask) + ~mask + 1;

}
Detected By Checking Code

m Since covers all cases
m Generate counterexample to demonstrate problem

int main|()
{
int vall = iabs(1234567) ;
int val2 = test iabs(1234567);
printf ("iabs (1234567) --> %d [0x%x]\n", vall, wvall);
printf ("test iabs(1234567) --> %d [0x%x]\n", val2, val2);
if (vall == val2) {
printf(".. False negative\n") ;
} else

printf(".. A genuine counterexample\n");

Bomb Lab

m ldea due to Chris Colohan, TA during inaugural offering
Bomb: C program with six phases.

Each phase expects student to type a specific string.
m Wrong string: bomb explodes by printing BOOM! (- 12 pt)
m Correct string: phase defused (+10 pts)
= In either case, bomb sends message to grading server
m Server posts current scores anonymously and in real time on
Web page
Goal: Defuse the bomb by defusing all six phases.
m For fun, we include an unadvertised seventh secret phase

The challenge:
m Each student get only binary executable of a unique bomb

m To defuse their bomb, students must disassemble and
—24- reverse engineer this binary ICS

Properties of Bomb Phases

Phases test understanding of different C constructs
and how they are compiled to machine code

m Phase 1: string comparison

m Phase 2: loop

m Phase 3: switch statement/jump table
m Phase 4: recursive call

m Phase 5: pointers

m Phase 6: linked list/pointers/structs

|

Secret phase: binary search (biggest challenge is figuring
out how to reach phase)

Phases start out easy and get progressively harder

— 25— ICS

Let’s defuse a bomb phase!

08048b48 <phase 2>:
function prologue not shown

8048b50: mov 0x8 (%ebp) , $edx # edx = &str
8048b53: add SOxffff£££8, Sesp
8048b56: lea Oxffffffe8 (%ebp) , %Seax # eax = &num[] on stack
8048b59: push $eax # push function args
8048b5a: push sedx
8048b5b: call 8048£f48 <read six nums> # rd 6 ints from str 2 num
8048b60: mov $0x1, $ebx #i=1
8048b68: lea Oxffffffe8 (%ebp) , %esi # esi = &num[] on stack
8048b70: mov Oxfffffffc(%esi,%ebx,4) ,%eax # LOOP: eax = num[i-1]
8048b74: add $0x5, $eax # eax = num[i-1] + 5
8048b77: cmp %eax, (%esi, %$ebx,4) # if num[i-1] + 5 == num[i]
8048b7a: je 8048b81 <phase 2+0x39> # then goto OK:
8048b7c: call 804946c <explode bomb> # else explode!
8048b81: inc %ebx # OK: i++
8048b82: cmp $0x5, $ebx # if (i <= 5)
8048b85: jle 8048b70 <phase 2+0x28> # then goto LOOP:

function epilogue not shown
8048b8f: ret # YIPPEE!

— 26—

ICS

Source Code for Bomb Phase

/%
* phase2b.c - To defeat this stage the user must enter arithmetic
* sequence of length 6 and delta = 5.
*/
void phase 2 (char *input)
{
int ii;
int numbers[6];

read six numbers (input, numbers) ;
for (ii = 1; ii < 6; ii++) {

if (numbers[ii] != numbers[ii-1] + 5)
explode bomb () ;

_ 27— ICS

The Beauty of the Bomb

For the Student

m Get a deep understanding of machine code in the context of
a fun game

m Learn about machine code in the context they will encounter
in their professional lives

e Working with compiler-generated code

= Learn concepts and tools of debugging
® Forward vs backward debugging

e Students must learn to use a debugger to defuse a bomb

For the Instructor
m Self-grading
m Scales to different ability levels
m Easy to generate variants and to port to other machines

— 28 — ICS

Buffer Bomb

{

int getbuf ()

char buf[l1l2];

/* Read line of text and store in buf */
gets (buf) ;

return 1;

Task

m Each student assigned “cookie”
e Randomly generated 8-digit hex string

m Type string that will cause getbuf to return cookie
® Instead of 1

— 29—

ICS

Buffer Code

Stack when gets called

void test() { Stack
R int v = getbuf() ; Frame
eturn _ | for test
address }
Frame
- Return address pointer
void getbuf () { 1 Saved %ebp [*— %ebp
char buf[l2]; I]
gets (buf) ; addresses
return 1; | buf
}

m Calling function gets (p) reads characters up to ‘\n’
m Stores string + terminating null as bytes starting at p
m Assumes enough bytes allocated to hold entire string

~30-— ICS

Buffer Code: Good case

Input string
“01234567890”
void test () { Stack
R int v = getbuf() ; Frame
eturn __ |, - for test
address }
Return address
void getbuf () { 1 Saved %ebp [*— %ebp
char buf[l2]; p
e () ¢ Increasing 0013013938
2 7 addresses |37|36|35/(34
} return 1; | 33[32(31]30]|buf

m Fits within allocated storage
e String is 11 characters long + 1 byte terminator

—31 - ICS

Buffer Code: Bad case

Input string
“0123456789012345678”

void test () {

int v = getbuf () ;
Return g Q)

address }

void getbuf () {
char buf[l1l2];
gets (buf) ;
return 1;

m Overflows allocated storage

1

Increasing
addresses

Stack
Frame
for test

Rét

138 pAdass

3Sasdo

3abB2

 %ebp

31

30

39

38

37

36

35

34

33

32

31

30

buf

e Corrupts saved frame pointer and return address

= Jumps to address 0x00383736 when getbuf attempts to return
e Invalid address, causes program to abort

—32—

ICS

Malicious Use of Buffer Overflow

Exploit string
for cookie 0x12345678
(not printable as ASCII)

void test () { Stack
R int v = getbuf() ; Frame
eturn _ | & for test
address
} 00
bf | ££|b8|9c
void getbuf () { bf |££f|b8|c8 [+ 2ebp
char buf[l2]; 90| c3|12]|34
gets (buf) ; 56|78 |b8 |08
return 1;
04|78 |ee|68]|but
} (Ox£££fb896)

m Input string contains byte representation of executable code
m Overwrite return address with address of buffer

m When getbuf () executes return instruction, will jump to exploit
code

—33— ICS

Exploit Code

void getbuf () ({
char buf[l2];
gets (buf) ;
return 1;

}

m Repairs corrupted stack values
m Sets 0x12345678 as return value
m Reexecutes return instruction

m As if getbuf returned 0x12345678

After executing code

Stack
Frame
for test

00

Return address

Saved %ebp

 %ebp

90

c3|12

34

56

78 | b8

08

04

78 | ee

68

buf

(Ox£f££fb89c)

pushl $ 0x80489%ee

movl $ 0x12345678 ,%eax
ret

.long Oxbfffb8c8

.long O0xbfffb89c

3H = H HF

Restore return pointer
Alter return value

Re-execute return
Saved value of %ebp

Location of buf

— 34—

ICS

Why Do We Teach This Stuff?

Important Systems Concepts
m Stack discipline and stack organization
m Instructions are byte sequences

m Making use of tools
® Debuggers, assemblers, disassemblers

Computer Security
= What makes code vuinerable to buffer overflows
m The most exploited vulnerability in systems

Impact

m CMU student teams consistently win international Capture
the Flag Competitions

— 35— ICS

Performance Lab

Goal: Make small C kernels run as fast as possible

m Examples: DAG to UDG conversion, convolution, rotate,
matrix transpose, matrix multiply

Lessons:
m Caches and locality of reference matter.

m Simple transformations can help the compiler generate
better code.

= Improvements of 3—10X are possible.

Infrastructure
m Students submit solutions to an evaluation server.
m Server posts sorted scores in real-time on Web page

— 36— ICS

Shell Lab

Goal: Write a Unix shell with job control
= (e.g., ctrl-z, ctrl-c, jobs, fg, bg, kill)

Lessons:

m First introduction to systems-level programming and
concurrency

m Learn about processes, process control, signals, and
catching signals with handlers

= Demystifies command line interface

Infrastructure

m Students use a scripted autograder to incrementally test
functionality in their shells

—37-— ICS

Malloc Lab

Goal: Build your own dynamic storage allocator
void *malloc(size t size)
void *realloc(void *ptr, size t size)

void free (void *ptr)

Lessons
m Sense of programming underlying system
m Large design space with classic time-space tradeoffs

m Develop understanding of scary “action at a distance”
property of memory-related errors

m Learn general ideas of resource management

Infrastructure

m Trace driven test harness evaluates implementation for
combination of throughput and memory utilization

m Evaluation server and real time posting of scores

— 38— ICS

Proxy Lab

Goal: write concurrent Web proxy.

Web >® »/ Web
Browser /< @4 Server
Lessons: Ties together many ideas from earlier

m Data representations, byte ordering, memory management,
concurrency, processes, threads, synchronization, signals,
I/0, network programming, application-level protocols
(HTTP)

Infrastructure:
m Plugs directly between existing browsers and Web servers
m Grading is done via autograders and one-on-one demos
m Very exciting for students, great way to end the course

~ 39— ICS

ICS Summary

Proposal

m Introduce students to computer systems from the
programmer's perspective rather than the system builder's
perspective

Themes

m What parts of the system affect the correctness, efficiency,
and utility of my C programs?

m Makes systems fun and relevant for students

m Prepare students for builder-oriented courses
® Architecture, compilers, operating systems, networks,
distributed systems, databases, ...
® Since our course provides complementary view of systems,
does not just seem like a watered-down version of a more
advanced course

® Gives them better appreciation for what to build
— 40— ICS

CMU Courses that Build on ICS

—41 -

Parallel
Systems

Dist.
Systems

Operating
Systems

Storage
Systems

Databases

Robotics

Cog.

Robotics

Comp.
Photo.

Computer
Graphics

ICS

mbeddec
Control

Real-Time
Systems

mbedded
Systems

Computer
Arch.

ICS

Fostering “Friendly Competition”

Desire
m Challenge the best without frustrating everyone else

Method

m Web-based submission of solutions

m Server checks for correctness and computes performance
score
® How many stages passed, program throughput, ...

m Keep updated results on web page
® Students choose own nom de guerre

Relationship to Grading
m Students get full credit once they reach set threshold
m Push beyond this just for own glory/excitement

—42 — ICS

Shameless
Promotin

m http://csapp.cs.cmu.edu

m Second edition Published
2010

m In use at 186 institutions
worldwide

—43 —

A Programmer’s Perspective

BRVAE S QNVas

Bryant - O'Hallaron

International Editions

Edition

‘ﬁi)\l'l'fl'l
Rl RS

Computer Systems

A PROGRAMMER'S PERSPECTIVE
""" : Second Edition

(2] Q0 O 06 Randal E. Bryant » David R. O'Hallaron

(SRR %2R)

===
Comnurcp Svsrms

| second cire |
COMPUTER SYSTEMS

A Programmer’s Perspective

Bryant - O'Hallaron

Computer Systems
A Proagrammer's Perspective

S econd Edition

////////_/' é /7.;/////.;‘

b3
a
w
£
b4
a
<

ix

Bryant « O'Hallaron

— 44 — ICS

Overall Sales

m First + Second Editions
m As of 12/31/2011
m 116,574 total

& English
& English / China
“ English / India
& Chinese
“ Korean

. Russian

— 45— ICS

L]

A e

Yg% "
. % R L 3" 4
" - -, 4 , Sk S
- A+
N > B
<
.
{

Worldwide Ador

186 total

North American Adoptions

-

o

i i
{ A8 e 8 1*
Y b 4%
| - . |
e~ X L
14
I (i, ™ ‘
e & SO
i
v -
N . I G d
N

el

2 Unlte“dSt‘étas “““ PREE AR

san
Francisco

1
I

o : i Kansas -
] \ ==l
I
|

e d W Callfomla S
Fresno

Arizona
\X Carolma p

-

—5Q"
~ Phoenix

e\ _

114 total
—47 — ICS

Asian Adopti

— 48 —

. X
@ uangzhou

Yr*: :

Aomon

Akita® o Morioka

ICS

CS:APP2e

Vital stats:
m 12 chapters
m 233 practice problems (solutions in book)
m 180 homework problems (solutions in instructor’s manual)
m 475 figures, 282 line drawings
= Many C & machine code examples

Turn-key course provided with book:
m Electronic versions of all code examples.
m Powerpoint, EPS, and PDF versions of each line drawing

m Password-protected Instructors Page, with Instructor’s
Manual, Lab Infrastructure, Powerpoint lecture notes, and
Exam problems.

— 49 — ICS

Coverage

Material Used by ICS at CMU

m Pulls together material previously covered by multiple
textbooks, system programming references, and man pages

Greater Depth on Some Topics
m Dynamic linking
= I/O multiplexing

Additional Topic

m Computer Architecture
m Added to cover all topics in “Computer Organization” course

— 50— ICS

Architecture _

b

4 data out
Material) B,
emory } data in
= Y86 instruction set _ti
e Simplified/reduced 1A32 m e | oo [e
= Implementations W.
® Sequentlalll . e -
® 5-stage pipeline
Presentation ﬂicode ifun - valC valA val? dstE | dstM src:\ s;ch B
= Simple hardware description 1| e
language to describe control logic ™ i
m D?ticrl_ptlolnts tranzlated and linked ﬂ{ 1 rflrfl = I~ I
with simulator code 1 :
Instruction] Pﬂ
La b s Fetch n:zr:ory . |ncre‘ment

W_valM

m Modify / extend processor design
® New instructions
e Change branch prediction policy

m Simulate & test results
—51— ICS

Web Asides

= Supplementary material via web
m Topics either more advanced or more arcane

Examples
m Boolean algebra & Boolean rings
m Combining assembly & C code
m Xx87 and SSE floating point code
m Using SIMD instructions
m Asynchronous signal safety

— 52—

ICS

Courses Based on CS:APP

Computer Organization

ORG Topics in conventional computer organization course,
but with a different flavor

ORG+ Extends computer organization to provide more
emphasis on helping students become better
application programmers

Introduction to Computer Systems

ICS Create enlightened programmers who understand
enough about processor/OS/compilers to be effective

ICS+ What we teach at CMU. More coverage of systems
software

Systems Programming

SP Prepare students to hecome competent system

programmers
— 53— ICS

Courses Based on CS:APP

Chapter |Topic Course
ORG |ORG+ |ICS ICS+ |SP

1 Introduction @ @ @ @ @
2 Data representations @ @ @ @ (o
3 Machine language ® ® @ ® ®
£ Processor architecture ® ®
5 Code optimization @ ® ®
6 Memory hierarchy o | ® ® o
7 Linking o o @
8 Exceptional control flow @ @ @
9 Virtual memory o @ @ @ @
10 System-level I/O ® ®
11 Concurrent programming ® @
12 Network programming | |

O Partial Coverage @ Complete Coverage

— 54 — ICS

Conclusions

ICS Has Proved Its Success
m Thousands of students at CMU over 13 years
m Positive feedback from alumni
m Positive feedback from systems course instructors

CS:APP is International Success
m Supports variety of course styles
m Many purchases for self study

— 55—

ICS

