
Chapter 9

Virtual Memory

Processes in a system share the CPU and main memory with otherprocesses. However, sharing the main
memory poses some special challenges. As demand on the CPU increases, processes slow down in some
reasonably smooth way. But if too many processes need too much memory, then some of them will simply
not be able to run. When a program is out of space, it is out of luck. Memory is also vulnerable to corruption.
If some process inadvertently writes to the memory used by another process, that process might fail in some
bewildering fashion totally unrelated to the program logic.

In order to manage memory more efficiently and with fewer errors, modern systems provide an abstraction
of main memory known asvirtual memory (VM). Virtual memory is an elegant interaction of hardware
exceptions, hardware address translation, main memory, disk files, and kernel software that provides each
process with a large, uniform, and private address space. With one clean mechanism, virtual memory
provides three important capabilities. (1) It uses main memory efficiently by treating it as a cache for an
address space stored on disk, keeping only the active areas in main memory, and transferring data back and
forth between disk and memory as needed. (2) It simplifies memory management by providing each process
with a uniform address space. (3) It protects the address space of each process from corruption by other
processes.

Virtual memory is one of the great ideas in computer systems.A major reason for its success is that it works
silently and automatically, without any intervention fromthe application programmer. Since virtual memory
works so well behind the scenes, why would a programmer need to understand it? There are several reasons.

• Virtual memory is central. Virtual memory pervades all levels of computer systems, playing key roles
in the design of hardware exceptions, assemblers, linkers,loaders, shared objects, files, and processes.
Understanding virtual memory will help you better understand how systems work in general.

• Virtual memory is powerful. Virtual memory gives applications powerful capabilities to create and
destroy chunks of memory, map chunks of memory to portions ofdisk files, and share memory with
other processes. For example, did you know that you can read or modify the contents of a disk file
by reading and writing memory locations? Or that you can loadthe contents of a file into memory
without doing any explicit copying? Understanding virtualmemory will help you harness its powerful
capabilities in your applications.

741

742 CHAPTER 9. VIRTUAL MEMORY

• Virtual memory is dangerous. Applications interact with virtual memory every time they reference a
variable, dereference a pointer, or make a call to a dynamic allocation package such asmalloc. If
virtual memory is used improperly, applications can sufferfrom perplexing and insidious memory-
related bugs. For example, a program with a bad pointer can crash immediately with a “Segmentation
fault” or a “Protection fault,” run silently for hours before crashing, or scariest of all, run to completion
with incorrect results. Understanding virtual memory, andthe allocation packages such asmalloc
that manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. The first half of the chapter describes how virtual
memory works. The second half describes how virtual memory is used and managed by applications. There
is no avoiding the fact that VM is complicated, and the discussion reflects this in places. The good news is
that if you work through the details, you will be able to simulate the virtual memory mechanism of a small
system by hand, and the virtual memory idea will be forever demystified.

The second half builds on this understanding, showing you how to use and manage virtual memory in your
programs. You will learn how to manage virtual memory via explicit memory mapping and calls to dynamic
storage allocators such as themalloc package. You will also learn about a host of common memory-related
errors in C programs and how to avoid them.

9.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an array of M contiguous byte-sized cells. Each
byte has a uniquephysical address (PA). The first byte has an address of 0, the next byte an address of 1,
the next byte an address of 2, and so on. Given this simple organization, the most natural way for a CPU to
access memory would be to use physical addresses. We call this approachphysical addressing. Figure 9.1
shows an example of physical addressing in the context of a load instruction that reads the word starting at
physical address 4.

0:
1:

M -1:

Main memory

Physical
address

(PA)
CPU

2:
3:
4:
5:
6:
7:

4

Data word

8: ...

Figure 9.1:A system that uses physical addressing.

When the CPU executes the load instruction, it generates an effective physical address and passes it to main
memory over the memory bus. The main memory fetches the 4-byte word starting at physical address 4 and
returns it to the CPU, which stores it in a register.

9.2. ADDRESS SPACES 743

Early PCs used physical addressing, and systems such as digital signal processors, embedded microcon-
trollers, and Cray supercomputers continue to do so. However, modern processors use a form of addressing
known asvirtual addressing, as shown in Figure 9.2.

MMU

Physical
address

(PA)

...
0:
1:

M-1:

Main memory

Virtual
address

(VA)
CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip

Address
translation

Figure 9.2:A system that uses virtual addressing.

With virtual addressing, the CPU accesses main memory by generating avirtual address (VA), which is
converted to the appropriate physical address before beingsent to the memory. The task of converting a
virtual address to a physical one is known asaddress translation. Like exception handling, address transla-
tion requires close cooperation between the CPU hardware and the operating system. Dedicated hardware
on the CPU chip called thememory management unit (MMU) translates virtual addresses on the fly, using a
look-up table stored in main memory whose contents are managed by the operating system.

9.2 Address Spaces

An address space is an ordered set of nonnegative integer addresses

{0, 1, 2, . . .}.

If the integers in the address space are consecutive, then wesay that it is alinear address space. To simplify
our discussion, we will always assume linear address spaces. In a system with virtual memory, the CPU
generates virtual addresses from an address space ofN = 2n addresses called thevirtual address space:

{0, 1, 2, . . . , N − 1}.

The size of an address space is characterized by the number ofbits that are needed to represent the largest
address. For example, a virtual address space withN = 2n addresses is called ann-bit address space.
Modern systems typically support either 32-bit or 64-bit virtual address spaces.

A system also has aphysical address space that corresponds to theM bytes of physical memory in the
system:

{0, 1, 2, . . . ,M − 1}.

M is not required to be a power of two, but to simplify the discussion we will assume thatM = 2m.

744 CHAPTER 9. VIRTUAL MEMORY

The concept of an address space is important because it makesa clean distinction between data objects
(bytes) and their attributes (addresses). Once we recognize this distinction, then we can generalize and
allow each data object to have multiple independent addresses, each chosen from a different address space.
This is the basic idea of virtual memory. Each byte of main memory has a virtual address chosen from the
virtual address space, and a physical address chosen from the physical address space.

Practice Problem 9.1:

Complete the following table, filling in the missing entriesand replacing each question mark with the
appropriate integer. Use the following units: K= 210 (Kilo), M = 220 (Mega), G= 230 (Giga), T= 240

(Tera), P= 250 (Peta), or E= 260 (Exa).

virtual address bits (n) # virtual addresses (N) Largest possible virtual address

8

2? = 64K
232 − 1 = ?G− 1

2? = 256T
64

9.3 VM as a Tool for Caching

Conceptually, a virtual memory is organized as an array ofN contiguous byte-sized cells stored on disk.
Each byte has a unique virtual address that serves as an indexinto the array. The contents of the array on
disk are cached in main memory. As with any other cache in the memory hierarchy, the data on disk (the
lower level) is partitioned into blocks that serve as the transfer units between the disk and the main memory
(the upper level). VM systems handle this by partitioning the virtual memory into fixed-sized blocks called
virtual pages (VPs). Each virtual page isP = 2p bytes in size. Similarly, physical memory is partitioned
into physical pages (PPs), alsoP bytes in size. (Physical pages are also referred to aspage frames.)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated

 Cached

Uncached

Unallocated

 Cached

Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Figure 9.3:How a VM system uses main memory as a cache.

At any point in time, the set of virtual pages is partitioned into three disjoint subsets:

• Unallocated: Pages that have not yet been allocated (or created) by the VM system. Unallocated
blocks do not have any data associated with them, and thus do not occupy any space on disk.

9.3. VM AS A TOOL FOR CACHING 745

• Cached: Allocated pages that are currently cached in physical memory.

• Uncached: Allocated pages that are not cached in physical memory.

The example in Figure 9.3 shows a small virtual memory with eight virtual pages. Virtual pages 0 and 3
have not been allocated yet, and thus do not yet exist on disk.Virtual pages 1, 4, and 6 are cached in physical
memory. Pages 2, 5, and 7 are allocated, but are not currentlycached in main memory.

9.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchy straight, we will use the termSRAM cache to
denote the L1, L2, and L3 cache memories between the CPU and main memory, and the termDRAM cache
to denote the VM system’s cache that caches virtual pages in main memory.

The position of the DRAM cache in the memory hierarchy has a big impact on the way that it is organized.
Recall that a DRAM is at least 10 times slower than an SRAM and that disk is about 100,000 times slower
than a DRAM. Thus, misses in DRAM caches are very expensive compared to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAM cache misses are usually served from
DRAM-based main memory. Further, the cost of reading the first byte from a disk sector is about 100,000
times slower than reading successive bytes in the sector. The bottom line is that the organization of the
DRAM cache is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of accessing the first byte, virtual pages tend to be large,
typically 4 KB to 2 MB. Due to the large miss penalty, DRAM caches are fully associative, that is, any
virtual page can be placed in any physical page. The replacement policy on misses also assumes greater
importance, because the penalty associated with replacingthe wrong virtual page is so high. Thus, operating
systems use much more sophisticated replacement algorithms for DRAM caches than the hardware does for
SRAM caches. (These replacement algorithms are beyond our scope here.) Finally, because of the large
access time of disk, DRAM caches always use write-back instead of write-through.

9.3.2 Page Tables

As with any cache, the VM system must have some way to determine if a virtual page is cached somewhere
in DRAM. If so, the system must determine which physical pageit is cached in. If there is a miss, the
system must determine where the virtual page is stored on disk, select a victim page in physical memory,
and copy the virtual page from disk to DRAM, replacing the victim page.

These capabilities are provided by a combination of operating system software, address translation hardware
in the MMU (memory management unit), and a data structure stored in physical memory known as apage
table that maps virtual pages to physical pages. The address translation hardware reads the page table each
time it converts a virtual address to a physical address. Theoperating system is responsible for maintaining
the contents of the page table and transferring pages back and forth between disk and DRAM.

Figure 9.4 shows the basic organization of a page table. A page table is an array ofpage table entries (PTEs).
Each page in the virtual address space has a PTE at a fixed offset in the page table. For our purposes, we
will assume that each PTE consists of avalid bit and ann-bit address field. The valid bit indicates whether

746 CHAPTER 9. VIRTUAL MEMORY

the virtual page is currently cached in DRAM. If the valid bitis set, the address field indicates the start of
the corresponding physical page in DRAM where the virtual page is cached. If the valid bit is not set, then
a null address indicates that the virtual page has not yet been allocated. Otherwise, the address points to the
start of the virtual page on disk.

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Figure 9.4:Page table.

The example in Figure 9.4 shows a page table for a system with eight virtual pages and four physical pages.
Four virtual pages (VP 1, VP 2, VP 4, and VP 7) are currently cached in DRAM. Two pages (VP 0 and
VP 5) have not yet been allocated, and the rest (VP 3 and VP 6) have been allocated but are not currently
cached. An important point to notice about Figure 9.4 is thatbecause the DRAM cache is fully associative,
any physical page can contain any virtual page.

Practice Problem 9.2:

Determine the number of page table entries (PTEs) that are needed for the following combinations of
virtual address size (n) and page size (P):

n P = 2p # PTEs

16 4K
16 8K
32 4K
32 8K

9.3.3 Page Hits

Consider what happens when the CPU reads a word of virtual memory contained in VP 2, which is cached
in DRAM (Figure 9.5). Using a technique we will describe in detail in Section 9.6, the address translation
hardware uses the virtual address as an index to locate PTE 2 and read it from memory. Since the valid bit is
set, the address translation hardware knows that VP 2 is cached in memory. So it uses the physical memory

9.3. VM AS A TOOL FOR CACHING 747

address in the PTE (which points to the start of the cached page in PP 1) to construct the physical address
of the word.

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 9.5:VM page hit. The reference to a word in VP 2 is a hit.

9.3.4 Page Faults

In virtual memory parlance, a DRAM cache miss is known as apage fault. Figure 9.6 shows the state of
our example page table before the fault. The CPU has referenced a word in VP 3, which is not cached in
DRAM. The address translation hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is
not cached, and triggers a page fault exception.

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 9.6:VM page fault (before). The reference to a word in VP 3 is a miss and triggers a page fault.

The page fault exception invokes a page fault exception handler in the kernel, which selects a victim page,

748 CHAPTER 9. VIRTUAL MEMORY

in this case VP 4 stored in PP 3. If VP 4 has been modified, then the kernel copies it back to disk. In either
case, the kernel modifies the page table entry for VP 4 to reflect the fact that VP 4 is no longer cached in
main memory.

Next, the kernel copies VP 3 from disk to PP 3 in memory, updates PTE 3, and then returns. When the
handler returns, it restarts the faulting instruction, which resends the faulting virtual address to the address
translation hardware. But now, VP 3 is cached in main memory,and the page hit is handled normally by the
address translation hardware. Figure 9.7 shows the state ofour example page table after the page fault.

null

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 9.7:VM page fault (after). The page fault handler selects VP 4 as the victim and replaces it with
a copy of VP 3 from disk. After the page fault handler restarts the faulting instruction, it will read the word
from memory normally, without generating an exception.

Virtual memory was invented in the early 1960s, long before the widening CPU-memory gap spawned
SRAM caches. As a result, virtual memory systems use a different terminology from SRAM caches, even
though many of the ideas are similar. In virtual memory parlance, blocks are known as pages. The activity of
transferring a page between disk and memory is known asswapping or paging. Pages areswapped in (paged
in) from disk to DRAM, andswapped out (paged out) from DRAM to disk. The strategy of waiting until the
last moment to swap in a page, when a miss occurs, is known asdemand paging. Other approaches, such
as trying to predict misses and swap pages in before they are actually referenced, are possible. However, all
modern systems use demand paging.

9.3.5 Allocating Pages

Figure 9.8 shows the effect on our example page table when theoperating system allocates a new page of
virtual memory, for example, as a result of callingmalloc. In the example, VP 5 is allocated by creating
room on disk and updating PTE 5 to point to the newly created page on disk.

9.4. VM AS A TOOL FOR MEMORY MANAGEMENT 749

null

Memory resident
page table
(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Figure 9.8:Allocating a new virtual page. The kernel allocates VP 5 on disk and points PTE 5 to this new
location.

9.3.6 Locality to the Rescue Again

When many of us learn about the idea of virtual memory, our first impression is often that it must be terribly
inefficient. Given the large miss penalties, we worry that paging will destroy program performance. In
practice, virtual memory works well, mainly because of our old friend locality.

Although the total number of distinct pages that programs reference during an entire run might exceed the
total size of physical memory, the principle of locality promises that at any point in time they will tend to
work on a smaller set ofactive pages known as theworking set or resident set. After an initial overhead
where the working set is paged into memory, subsequent references to the working set result in hits, with no
additional disk traffic.

As long as our programs have good temporal locality, virtualmemory systems work quite well. But of
course, not all programs exhibit good temporal locality. Ifthe working set size exceeds the size of physi-
cal memory, then the program can produce an unfortunate situation known asthrashing, where pages are
swapped in and out continuously. Although virtual memory isusually efficient, if a program’s performance
slows to a crawl, the wise programmer will consider the possibility that it is thrashing.

Aside: Counting page faults.
You can monitor the number of page faults (and lots of other information) with the Unixgetrusage function.
End Aside.

9.4 VM as a Tool for Memory Management

In the last section, we saw how virtual memory provides a mechanism for using the DRAM to cache pages
from a typically larger virtual address space. Interestingly, some early systems such as the DEC PDP-11/70
supported a virtual address space that wassmaller than the available physical memory. Yet virtual memory

750 CHAPTER 9. VIRTUAL MEMORY

was still a useful mechanism because it greatly simplified memory management and provided a natural way
to protect memory.

To this point, we have assumed a single page table that maps a single virtual address space to the physical
address space. In fact, operating systems provide a separate page table, and thus a separate virtual address
space, for each process. Figure 9.9 shows the basic idea. In the example, the page table for processi maps
VP 1 to PP 2 and VP 2 to PP 7. Similarly, the page table for process j maps VP 1 to PP 7 and VP 2 to PP
10. Notice that multiple virtual pages can be mapped to the same shared physical page.

Process i:

Virtual address spaces Physical memory

VP 1
VP 2

Process j:

Address translation0

0

N-1

0

N-1

M-1

VP 1
VP 2

Shared page

Figure 9.9:How VM provides processes with separate address spaces. The operating system main-
tains a separate page table for each process in the system.

The combination of demand paging and separate virtual address spaces has a profound impact on the way
that memory is used and managed in a system. In particular, VMsimplifies linking and loading, the sharing
of code and data, and allocating memory to applications.

• Simplifying linking. A separate address space allows each process to use the same basic format for
its memory image, regardless of where the code and data actually reside in physical memory. For
example, as we saw in Figure 8.13, every process on a given Linux system has a similar memory
format. The text sectionalways starts at virtual address0x08048000 (for 32-bit address spaces),
or at address0x400000 (for 64-bit address spaces). The data and bss sections follow immediately
after the text section. The stack occupies the highest portion of the process address space and grows
downward. Such uniformity greatly simplifies the design andimplementation of linkers, allowing
them to produce fully linked executables that are independent of the ultimate location of the code and
data in physical memory.

• Simplifying loading. Virtual memory also makes it easy to load executable and shared object files
into memory. Recall from Chapter 7 that the.text and.data sections in ELF executables are
contiguous. To load these sections into a newly created process, the Linux loader allocates a contigu-
ous chunk of virtual pages starting at address0x08048000 (32-bit address spaces) or0x400000
(64-bit address spaces), marks them as invalid (i.e., not cached), and points their page table entries
to the appropriate locations in the object file. The interesting point is that the loader never actually
copies any data from disk into memory. The data is paged in automatically and on demand by the
virtual memory system the first time each page is referenced,either by the CPU when it fetches an
instruction, or by an executing instruction when it references a memory location.

9.5. VM AS A TOOL FOR MEMORY PROTECTION 751

This notion of mapping a set of contiguous virtual pages to anarbitrary location in an arbitrary file
is known asmemory mapping. Unix provides a system call calledmmap that allows application
programs to do their own memory mapping. We will describe application-level memory mapping in
more detail in Section 9.8.

• Simplifying sharing. Separate address spaces provide the operating system with aconsistent mecha-
nism for managing sharing between user processes and the operating system itself. In general, each
process has its own private code, data, heap, and stack areasthat are not shared with any other pro-
cess. In this case, the operating system creates page tablesthat map the corresponding virtual pages
to disjoint physical pages.

However, in some instances it is desirable for processes to share code and data. For example, every
process must call the same operating system kernel code, andevery C program makes calls to routines
in the standard C library such asprintf. Rather than including separate copies of the kernel and
standard C library in each process, the operating system canarrange for multiple processes to share a
single copy of this code by mapping the appropriate virtual pages in different processes to the same
physical pages, as we saw in Figure 9.9.

• Simplifying memory allocation. Virtual memory provides a simple mechanism for allocating addi-
tional memory to user processes. When a program running in a user process requests additional heap
space (e.g., as a result of callingmalloc), the operating system allocates an appropriate number, say,
k, of contiguous virtual memory pages, and maps them tok arbitrary physical pages located anywhere
in physical memory. Because of the way page tables work, there is no need for the operating system
to locatek contiguous pages of physical memory. The pages can be scattered randomly in physical
memory.

9.5 VM as a Tool for Memory Protection

Any modern computer system must provide the means for the operating system to control access to the
memory system. A user process should not be allowed to modifyits read-only text section. Nor should it be
allowed to read or modify any of the code and data structures in the kernel. It should not be allowed to read
or write the private memory of other processes, and it shouldnot be allowed to modify any virtual pages
that are shared with other processes, unless all parties explicitly allow it (via calls to explicit interprocess
communication system calls).

As we have seen, providing separate virtual address spaces makes it easy to isolate the private memories
of different processes. But the address translation mechanism can be extended in a natural way to provide
even finer access control. Since the address translation hardware reads a PTE each time the CPU generates
an address, it is straightforward to control access to the contents of a virtual page by adding some additional
permission bits to the PTE. Figure 9.10 shows the general idea.

In this example, we have added three permission bits to each PTE. The SUP bit indicates whether processes
must be running in kernel (supervisor) mode to access the page. Processes running in kernel mode can
access any page, but processes running in user mode are only allowed to access pages for which SUP is 0.
The READ and WRITE bits control read and write access to the page. For example, if processi is running

752 CHAPTER 9. VIRTUAL MEMORY

Page tables with permission bits

Process i:

AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

PP 0

Physical memory

Yes

•
•
•

PP 4

PP 6

PP 9

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes

•
•
•

Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

PP 2

PP 11

Figure 9.10:Using VM to provide page-level memory protection.

in user mode, then it has permission to read VP 0 and to read or write VP 1. However, it is not allowed to
access VP 2.

If an instruction violates these permissions, then the CPU triggers a general protection fault that transfers
control to an exception handler in the kernel. Unix shells typically report this exception as a “segmentation
fault.”

9.6 Address Translation

This section covers the basics of address translation. Our aim is to give you an appreciation of the hardware’s
role in supporting virtual memory, with enough detail so that you can work through some concrete examples
by hand. However, keep in mind that we are omitting a number ofdetails, especially related to timing, that
are important to hardware designers but are beyond our scope. For your reference, Figure 9.11 summarizes
the symbols that we will be using throughout this section.

Formally, address translation is a mapping between the elements of anN -element virtual address space
(VAS) and anM -element physical address space (PAS),

MAP: VAS → PAS∪ ∅

where

MAP(A) = A′ if data at virtual addrA is present at physical addrA′ in PAS,

= ∅ if data at virtual addrA is not present in physical memory.

Figure 9.12 shows how the MMU uses the page table to perform this mapping. A control register in the
CPU, thepage table base register (PTBR) points to the current page table. Then-bit virtual address has two
components: ap-bit virtual page offset (VPO) and an(n − p)-bit virtual page number (VPN). The MMU
uses the VPN to select the appropriate PTE. For example, VPN 0selects PTE 0, VPN 1 selects PTE 1, and

9.6. ADDRESS TRANSLATION 753

Basic parameters
Symbol Description

N = 2n Number of addresses in virtual address space
M = 2m Number of addresses in physical address space
P = 2p Page size (bytes)

Components of a virtual address (VA)
Symbol Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index
TLBT TLB tag

Components of a physical address (PA)
Symbol Description

PPO Physical page offset (bytes)
PPN Physical page number
CO Byte offset within cache block
CI Cache index
CT Cache tag

Figure 9.11:Summary of address translation symbols.

so on. The corresponding physical address is the concatenation of thephysical page number (PPN) from
the page table entry and the VPO from the virtual address. Notice that since the physical and virtual pages
are bothP bytes, thephysical page offset (PPO) is identical to the VPO.

Figure 9.13(a) shows the steps that the CPU hardware performs when there is a page hit.

• Step 1: The processor generates a virtual address and sends it to the MMU.

• Step 2: The MMU generates the PTE address and requests it from the cache/main memory.

• Step 3: The cache/main memory returns the PTE to the MMU.

• Step 3: The MMU constructs the physical address and sends it to cache/main memory.

• Step 4: The cache/main memory returns the requested data word to the processor.

Unlike a page hit, which is handled entirely by hardware, handling a page fault requires cooperation between
hardware and the operating system kernel (Figure 9.13(b)).

• Steps 1 to 3: The same as Steps 1 to 3 in Figure 9.13(a).

• Step 4: The valid bit in the PTE is zero, so the MMU triggers an exception, which transfers control in
the CPU to a page fault exception handler in the operating system kernel.

754 CHAPTER 9. VIRTUAL MEMORY

Virtual page number (VPN) Virtual page offset (VPO)

 VIRTUAL ADDRESS

Physical page number (PPN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
 base register

(PTBR)

If valid=0
then page
not in memory
(page fault)

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

Page
table

Physical page offset (PPO)

Figure 9.12:Address translation with a page table.

VA

1
Processor MMU Cache/

memory

PTEA

PTE

PA

Data

2

3

4

5

CPU chip

(a) Page hit.

Page fault exception handler
Exception

VA

1
Processor MMU Cache/

memory

4

5

CPU chip

Disk

Victim page

New page

6

7

PTEA

PTE

2

3

(b) Page fault.

Figure 9.13:Operational view of page hits and page faults. VA: virtual address. PTEA: page table entry
address. PTE: page table entry. PA: physical address.

9.6. ADDRESS TRANSLATION 755

• Step 5: The fault handler identifies a victim page in physical memory, and if that page has been
modified, pages it out to disk.

• Step 6: The fault handler pages in the new page and updates the PTE inmemory.

• Step 7: The fault handler returns to the original process, causingthe faulting instruction to be restarted.
The CPU resends the offending virtual address to the MMU. Because the virtual page is now cached
in physical memory, there is a hit, and after the MMU performsthe steps in Figure 9.13(b), the main
memory returns the requested word to the processor

Practice Problem 9.3:

Given a 32-bit virtual address space and a 24-bit physical address, determine the number of bits in the
VPN, VPO, PPN, and PPO for the following page sizesP :

P # VPN bits # VPO bits # PPN bits # PPO bits

1 KB
2 KB
4 KB
8 KB

9.6.1 Integrating Caches and VM

In any system that uses both virtual memory and SRAM caches, there is the issue of whether to use virtual
or physical addresses to access the SRAM cache. Although a detailed discussion of the trade-offs is beyond
our scope here, most systems opt for physical addressing. With physical addressing, it is straightforward for
multiple processes to have blocks in the cache at the same time and to share blocks from the same virtual
pages. Further, the cache does not have to deal with protection issues because access rights are checked as
part of the address translation process.

Figure 9.14 shows how a physically addressed cache might be integrated with virtual memory. The main
idea is that the address translation occurs before the cachelookup. Notice that page table entries can be
cached, just like any other data words.

9.6.2 Speeding up Address Translation with a TLB

As we have seen, every time the CPU generates a virtual address, the MMU must refer to a PTE in order
to translate the virtual address into a physical address. Inthe worst case, this requires an additional fetch
from memory, at a cost of tens to hundreds of cycles. If the PTEhappens to be cached in L1, then the cost
goes down to one or two cycles. However, many systems try to eliminate even this cost by including a small
cache of PTEs in the MMU called atranslation lookaside buffer (TLB).

A TLB is a small, virtually addressed cache where each line holds a block consisting of a single PTE. A
TLB usually has a high degree of associativity. As shown in Figure 9.15, the index and tag fields that are
used for set selection and line matching are extracted from the virtual page number in the virtual address. If

