
Chapter 8

Exceptional Control Flow

From the time you first apply power to a processor until the time you shut it off, the program counter assumes
a sequence of values

a0, a1, . . . , an−1

where eachak is the address of some corresponding instructionIk. Each transition fromak to ak+1 is called
a control transfer. A sequence of such control transfers is called theflow of control, or control flowof the
processor.

The simplest kind of control flow is a “smooth” sequence whereeachIk andIk+1 are adjacent in memory.
Typically, abrupt changes to this smooth flow, whereIk+1 is not adjacent toIk, are caused by familiar
program instructions such as jumps, calls, and returns. Such instructions are necessary mechanisms that
allow programs to react to changes in internal program staterepresented by program variables.

But systems must also be able to react to changes in system state that are not captured by internal program
variables and are not necessarily related to the execution of the program. For example, a hardware timer
goes off at regular intervals and must be dealt with. Packetsarrive at the network adapter and must be stored
in memory. Programs request data from a disk and then sleep until they are notified that the data are ready.
Parent processes that create child processes must be notified when their children terminate.

Modern systems react to these situations by making abrupt changes in the control flow. In general, we refer
to these abrupt changes asexceptional control flow(ECF). Exceptional control flow occurs at all levels of a
computer system. For example, at the hardware level, eventsdetected by the hardware trigger abrupt control
transfers to exception handlers. At the operating systems level, the kernel transfers control from one user
process to another via context switches. At the applicationlevel, a process can send asignal to another
process that abruptly transfers control to a signal handlerin the recipient. An individual program can react
to errors by sidestepping the usual stack discipline and making nonlocal jumps to arbitrary locations in other
functions.

As programmers, there are a number of reasons why it is important for you to understand ECF:

• Understanding ECF will help you understand important systems concepts.ECF is the basic mech-
anism that operating systems use to implement I/O, processes, and virtual memory. Before you can
really understand these important ideas, you need to understand ECF.

667

668 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

• Understanding ECF will help you understand how applications interact with the operating system.
Applications request services from the operating system byusing a form of ECF known as atrap or
system call. For example, writing data to a disk, reading data from a network, creating a new process,
and terminating the current process are all accomplished byapplication programs invoking system
calls. Understanding the basic system call mechanism will help you understand how these services
are provided to applications.

• Understanding ECF will help you write interesting new application programs.The operating system
provides application programs with powerful ECF mechanisms for creating new processes, waiting
for processes to terminate, notifying other processes of exceptional events in the system, and detecting
and responding to these events. If you understand these ECF mechanisms, then you can use them to
write interesting programs such as Unix shells and Web servers.

• Understanding ECF will help you understand concurrency.ECF is a basic mechanism for imple-
menting concurrency in computer systems. An exception handler that interrupts the execution of an
application program, processes and threads whose execution overlap in time, and a signal handler that
interrupts the execution of an application program are all examples of concurrency in action. Under-
standing ECF is a first step to understanding concurrency. Wewill return to study it in more detail in
Chapter 12.

• Understanding ECF will help you understand how software exceptions work.Languages such as C++
and Java provide software exception mechanisms viatry, catch, andthrow statements. Software
exceptions allow the program to makenonlocal jumps (i.e., jumps that violate the usual call/return
stack discipline) in response to error conditions. Nonlocal jumps are a form of application-level ECF,
and are provided in C via thesetjmp andlongjmp functions. Understanding these low-level
functions will help you understand how higher-level software exceptions can be implemented.

Up to this point in your study of systems, you have learned howapplications interact with the hardware.
This chapter is pivotal in the sense that you will begin to learn how your applications interact with the
operating system. Interestingly, these interactions all revolve around ECF. We describe the various forms
of ECF that exist at all levels of a computer system. We start with exceptions, which lie at the intersection
of the hardware and the operating system. We also discuss system calls, which are exceptions that provide
applications with entry points into the operating system. We then move up a level of abstraction and describe
processes and signals, which lie at the intersection of applications and the operating system. Finally, we
discuss nonlocal jumps, which are an application-level form of ECF.

8.1 Exceptions

Exceptions are a form of exceptional control flow that are implemented partly by the hardware and partly
by the operating system. Because they are partly implemented in hardware, the details vary from system to
system. However, the basic ideas are the same for every system. Our aim in this section is to give you a
general understanding of exceptions and exception handling, and to help demystify what is often a confusing
aspect of modern computer systems.

8.1. EXCEPTIONS 669

An exceptionis an abrupt change in the control flow in response to some change in the processor’s state.
Figure 8.1 shows the basic idea. In the figure, the processor is executing some current instructionIcurr when

Application
program

Exception
handler

Exception
Exception
processing

Exception
return

(optional)

Icurr
Inext

Event
occurs
 here

Figure 8.1:Anatomy of an exception. A change in the processor’s state (event) triggers an abrupt control
transfer (an exception) from the application program to an exception handler. After it finishes processing,
the handler either returns control to the interrupted program or aborts.

a significant change in the processor’sstateoccurs. The state is encoded in various bits and signals inside
the processor. The change in state is known as anevent. The event might be directly related to the execution
of the current instruction. For example, a virtual memory page fault occurs, an arithmetic overflow occurs,
or an instruction attempts a divide by zero. On the other hand, the event might be unrelated to the execution
of the current instruction. For example, a system timer goesoff or an I/O request completes.

In any case, when the processor detects that the event has occurred, it makes an indirect procedure call (the
exception), through a jump table called anexception table, to an operating system subroutine (theexception
handler) that is specifically designed to process this particular kind of event.

When the exception handler finishes processing, one of threethings happens, depending on the type of event
that caused the exception:

1. The handler returns control to the current instructionIcurr, the instruction that was executing when
the event occurred.

2. The handler returns control toInext, the instruction that would have executed next had the exception
not occurred.

3. The handler aborts the interrupted program.

Section 8.1.2 says more about these possibilities.

Aside: Hardware vs. software exceptions.
C++ and Java programmers will have noticed that the term “exception” is also used to describe the application-level
ECF mechanism provided by C++ and Java in the form ofcatch, throw, andtry statements. If we wanted to be
perfectly clear, we might distinguish between “hardware” and “software” exceptions, but this is usually unnecessary
because the meaning is clear from the context.End Aside.

670 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

8.1.1 Exception Handling

Exceptions can be difficult to understand because handling them involves close cooperation between hard-
ware and software. It is easy to get confused about which component performs which task. Let’s look at the
division of labor between hardware and software in more detail.

Each type of possible exception in a system is assigned a unique nonnegative integerexception number.
Some of these numbers are assigned by the designers of the processor. Other numbers are assigned by the
designers of the operating systemkernel (the memory-resident part of the operating system). Examples
of the former include divide by zero, page faults, memory access violations, breakpoints, and arithmetic
overflows. Examples of the latter include system calls and signals from external I/O devices.

At system boot time (when the computer is reset or powered on), the operating system allocates and initial-
izes a jump table called anexception table, so that entryk contains the address of the handler for exception
k. Figure 8.2 shows the format of an exception table.

Exception
table

0
1
2 ...

n-1

 Code for
exception handler 0

 Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler 2

Code for
exception handler n-1

Code for
exception handler n-1

...

Figure 8.2:Exception table. The exception table is a jump table where entry k contains the address of the
handler code for exception k.

At run time (when the system is executing some program), the processor detects that an event has occurred
and determines the corresponding exception numberk. The processor then triggers the exception by making
an indirect procedure call, through entryk of the exception table, to the corresponding handler. Figure 8.3
shows how the processor uses the exception table to form the address of the appropriate exception handler.
The exception number is an index into the exception table, whose starting address is contained in a special
CPU register called theexception table base register.

Exception table

+

Exception number
(x 4)

0
1
2

n-1

Address of entry
for exception # kException table

base register

...

Figure 8.3:Generating the address of an exception handler. The exception number is an index into the
exception table.

An exception is akin to a procedure call, but with some important differences.

8.1. EXCEPTIONS 671

• As with a procedure call, the processor pushes a return address on the stack before branching to
the handler. However, depending on the class of exception, the return address is either the current
instruction (the instruction that was executing when the event occurred) or the next instruction (the
instruction that would have executed after the current instruction had the event not occurred).

• The processor also pushes some additional processor state onto the stack that will be necessary to
restart the interrupted program when the handler returns. For example, an IA32 system pushes the
EFLAGS register containing, among other things, the current condition codes, onto the stack.

• If control is being transferred from a user program to the kernel, all of these items are pushed onto the
kernel’s stack rather than onto the user’s stack.

• Exception handlers run inkernel mode(Section 8.2.4), which means they have complete access to all
system resources.

Once the hardware triggers the exception, the rest of the work is done in software by the exception handler.
After the handler has processed the event, it optionally returns to the interrupted program by executing a
special “return from interrupt” instruction, which pops the appropriate state back into the processor’s control
and data registers, restores the state touser mode(Section 8.2.4) if the exception interrupted a user program,
and then returns control to the interrupted program.

8.1.2 Classes of Exceptions

Exceptions can be divided into four classes:interrupts, traps, faults, andaborts. The table in Figure 8.4
summarizes the attributes of these classes.

Class Cause Async/Sync Return behavior

Interrupt Signal from I/O device Async Always returns to next instruction
Trap Intentional exception Sync Always returns to next instruction
Fault Potentially recoverable error Sync Might return to current instruction
Abort Nonrecoverable error Sync Never returns

Figure 8.4:Classes of exceptions. Asynchronous exceptions occur as a result of events in I/O devices that
are external to the processor. Synchronous exceptions occur as a direct result of executing an instruction.

Interrupts

Interruptsoccurasynchronouslyas a result of signals from I/O devices that are external to the processor.
Hardware interrupts are asynchronous in the sense that theyare not caused by the execution of any particular
instruction. Exception handlers for hardware interrupts are often calledinterrupt handlers.

Figure 8.5 summarizes the processing for an interrupt. I/O devices such as network adapters, disk con-
trollers, and timer chips trigger interrupts by signaling apin on the processor chip and placing onto the
system bus the exception number that identifies the device that caused the interrupt.

672 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

(2) Control passes
to handler after current

instruction finishes
(3) Interrupt
handler runs

(4) Handler
returns to

next instruction

Icurr
Inext

(1) Interrupt pin
goes high during

execution of
current instruction

Figure 8.5:Interrupt handling. The interrupt handler returns control to the next instruction in the applica-
tion program’s control flow.

After the current instruction finishes executing, the processor notices that the interrupt pin has gone high,
reads the exception number from the system bus, and then calls the appropriate interrupt handler. When
the handler returns, it returns control to the next instruction (i.e., the instruction that would have followed
the current instruction in the control flow had the interruptnot occurred). The effect is that the program
continues executing as though the interrupt had never happened.

The remaining classes of exceptions (traps, faults, and aborts) occursynchronouslyas a result of executing
the current instruction. We refer to this instruction as thefaulting instruction.

Traps and System Calls

Trapsare intentionalexceptions that occur as a result of executing an instruction. Like interrupt handlers,
trap handlers return control to the next instruction. The most important use of traps is to provide a procedure-
like interface between user programs and the kernel known asasystem call.

User programs often need to request services from the kernelsuch as reading a file (read), creating a new
process (fork), loading a new program (execve), or terminating the current process (exit). To allow
controlled access to such kernel services, processors provide a special “syscall n” instruction that user
programs can execute when they want to request servicen. Executing thesyscall instruction causes a
trap to an exception handler that decodes the argument and calls the appropriate kernel routine. Figure 8.6
summarizes the processing for a system call. From a programmer’s perspective, a system call is identical

(2) Control passes
to handler

(3) Trap
handler runs

(4) Handler returns
to instruction

following the syscall

syscall
Inext

(1) Application
makes a

system call

Figure 8.6:Trap handling. The trap handler returns control to the next instruction in the application pro-
gram’s control flow.

to a regular function call. However, their implementationsare quite different. Regular functions run inuser
mode, which restricts the types of instructions they can execute, and they access the same stack as the calling
function. A system call runs inkernel mode, which allows it to execute instructions, and accesses a stack
defined in the kernel. Section 8.2.4 discusses user and kernel modes in more detail.

8.1. EXCEPTIONS 673

Faults

Faults result from error conditions that a handler might be able to correct. When a fault occurs, the processor
transfers control to the fault handler. If the handler is able to correct the error condition, it returns control
to the faulting instruction, thereby reexecuting it. Otherwise, the handler returns to anabort routine in the
kernel that terminates the application program that causedthe fault. Figure 8.7 summarizes the processing
for a fault.

(2) Control passes
to handler

(3) Fault
handler runs

(4) Handler either reexecutes
current instruction or aborts.

Icurr

(1) Current
instruction

causes a fault

abort

Figure 8.7:Fault handling. Depending on whether the fault can be repaired or not, the fault handler either
re-executes the faulting instruction or aborts.

A classic example of a fault is the page fault exception, which occurs when an instruction references a virtual
address whose corresponding physical page is not resident in memory and must therefore be retrieved from
disk. As we will see in Chapter 9, a page is a contiguous block (typically 4 KB) of virtual memory. The page
fault handler loads the appropriate page from disk and then returns control to the instruction that caused the
fault. When the instruction executes again, the appropriate physical page is resident in memory and the
instruction is able to run to completion without faulting.

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors such as parity errors that occur
when DRAM or SRAM bits are corrupted. Abort handlers never return control to the application program.
As shown in Figure 8.8, the handler returns control to anabort routine that terminates the application
program.

(2) Control passes
to handler

(3) Abort
handler runs

(4) Handler returns
to abort routine

Icurr
(1) Fatal hardware

error occurs

abort

Figure 8.8:Abort handling. The abort handler passes control to a kernel abort routine that terminates
the application program.

8.1.3 Exceptions in Linux/IA32 Systems

To help make things more concrete, let’s look at some of the exceptions defined for IA32 systems. There
are up to 256 different exception types [27]. Numbers in the range from 0 to 31 correspond to exceptions

674 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

that are defined by the Intel architects, and thus are identical for any IA32 system. Numbers in the range
from 32 to 255 correspond to interrupts and traps that are defined by the operating system. Figure 8.9 shows
a few examples.

Exception Number Description Exception Class

0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort

32–127 OS-defined exceptions Interrupt or trap
128 (0x80) System call Trap

129–255 OS-defined exceptions Interrupt or trap

Figure 8.9:Examples of exceptions in IA32 systems.

Linux/IA32 Faults and Aborts

Divide error. A divide error (exception 0) occurs when an application attempts to divide by zero, or when
the result of a divide instruction is too big for the destination operand. Unix does not attempt to recover from
divide errors, opting instead to abort the program. Linux shells typically report divide errors as “Floating
exceptions.”

General protection fault.The infamous general protection fault (exception 13) occurs for many reasons,
usually because a program references an undefined area of virtual memory, or because the program attempts
to write to a read-only text segment. Linux does not attempt to recover from this fault. Linux shells typically
report general protection faults as “Segmentation faults.”

Page fault. A page fault (exception 14) is an example of an exception where the faulting instruction is
restarted. The handler maps the appropriate page of physical memory on disk into a page of virtual memory,
and then restarts the faulting instruction. We will see how page faults work in detail in Chapter 9.

Machine check.A machine check (exception 18) occurs as a result of a fatal hardware error that is de-
tected during the execution of the faulting instruction. Machine check handlers never return control to the
application program.

Linux/IA32 System Calls

Linux provides hundreds of system calls that application programs use when they want to request services
from the kernel, such as reading a file, writing a file, or creating a new process. Figure 8.10 shows some of
the more popular Linux system calls. Each system call has a unique integer number that corresponds to an
offset in a jump table in the kernel.

System calls are provided on IA32 systems via a trapping instruction calledint n, wheren can be the
index of any of the 256 entries in the IA32 exception table. Historically, system calls are provided through
exception 128 (0x80).

8.1. EXCEPTIONS 675

Number Name Description Number Name Description

1 exit Terminate process 27 alarm Set signal delivery alarm clock
2 fork Create new process 29 pause Suspend process until signal arrives
3 read Read file 37 kill Send signal to another process
4 write Write file 48 signal Install signal handler
5 open Open file 63 dup2 Copy file descriptor
6 close Close file 64 getppid Get parent’s process ID
7 waitpid Wait for child to terminate 65 getpgrp Get process group
11 execve Load and run program 67 sigaction Install portable signal handler
19 lseek Go to file offset 90 mmap Map memory page to file
20 getpid Get process ID 106 stat Get information about file

Figure 8.10:Examples of popular system calls in Linux/IA32 systems. Linux provides hundreds of
system calls. Source: /usr/include/sys/syscall.h.

C programs can invoke any system call directly by using thesyscall function. However, this is rarely
necessary in practice. The standard C library provides a setof convenient wrapper functions for most system
calls. The wrapper functions package up the arguments, trapto the kernel with the appropriate system call
number, and then pass the return status of the system call back to the calling program. Throughout this
text, we will refer to system calls and their associated wrapper functions interchangeably assystem-level
functions.

It is quite interesting to study how programs can use theint instruction to invoke Linux systems calls
directly. All parameters to Linux system calls are passed through general purpose registers rather than the
stack. By convention, register%eax contains the syscall number, and registers%ebx, %ecx, %edx, %esi,
%edi, and%ebp contain up to six arbitrary arguments. The stack pointer%esp cannot be used because it
is overwritten by the kernel when it enters kernel mode.

For example, consider the following version of the familiarhello program, written using thewrite
system-level function:

1 int main()
2 {
3 write(1, "hello, world\n", 13);
4 exit(0);
5 }

The first argument towrite sends the output tostdout. The second argument is the sequence of bytes
to write, and the third argument gives the number of bytes to write.

Figure 8.11 shows an assembly language version ofhello that uses theint instruction to invoke the
write andexit system calls directly. Lines 9–13 invoke thewrite function. First, line 9 stores the
number for thewrite system call in%eax, and lines lines 10-12 set up the argument list. Then line 13
uses theint instruction to invoke the system call. Similarly, lines 14–16 invoke theexit system call.

Aside: A note on terminology.
The terminology for the various classes of exceptions varies from system to system. Processor macroarchitecture
specifications often distinguish between asynchronous “interrupts” and synchronous “exceptions,” yet provide no

676 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/ecf/hello-asm.sa

1 .section .data
2 string:
3 .ascii "hello, world\n"
4 string_end:
5 .equ len, string_end - string

6 .section .text
7 .globl main
8 main:

First, call write(1, "hello, world\n", 13)

9 movl $4, %eax System call number 4

10 movl $1, %ebx stdout has descriptor 1

11 movl $string, %ecx Hello world string

12 movl $len, %edx String length

13 int $0x80 System call code

Next, call exit(0)

14 movl $1, %eax System call number 0

15 movl $0, %ebx Argument is 0

16 int $0x80 System call code

code/ecf/hello-asm.sa

Figure 8.11:Implementing the hello program directly with Linux system calls.

8.2. PROCESSES 677

umbrella term to refer to these very similar concepts. To avoid having to constantly refer to “exceptions and in-
terrupts” and “exceptions or interrupts,” we use the word “exception” as the general term and distinguish between
asynchronous exceptions (interrupts) and synchronous exceptions (traps, faults, and aborts) only when it is appro-
priate. As we have noted, the basic ideas are the same for every system, but you should be aware that some manu-
facturers’ manuals use the word “exception” to refer only tothose changes in control flow caused by synchronous
events.End Aside.

8.2 Processes

Exceptions are the basic building blocks that allow the operating system to provide the notion of aprocess,
one of the most profound and successful ideas in computer science.

When we run a program on a modern system, we are presented withthe illusion that our program is the only
one currently running in the system. Our program appears to have exclusive use of both the processor and
the memory. The processor appears to execute the instructions in our program, one after the other, without
interruption. Finally, the code and data of our program appear to be the only objects in the system’s memory.
These illusions are provided to us by the notion of a process.

The classic definition of a process isan instance of a program in execution. Each program in the system runs
in thecontextof some process. The context consists of the state that the program needs to run correctly. This
state includes the program’s code and data stored in memory,its stack, the contents of its general-purpose
registers, its program counter, environment variables, and the set of open file descriptors.

Each time a user runs a program by typing the name of an executable object file to the shell, the shell
creates a new process and then runs the executable object filein the context of this new process. Application
programs can also create new processes and run either their own code or other applications in the context of
the new process.

A detailed discussion of how operating systems implement processes is beyond our scope. Instead, we will
focus on the key abstractions that a process provides to the application:

• An independentlogical control flowthat provides the illusion that our program has exclusive use of
the processor.

• A private address space that provides the illusion that our program has exclusive use of the memory
system.

Let’s look more closely at these abstractions.

8.2.1 Logical Control Flow

A process provides each program with the illusion that it hasexclusive use of the processor, even though
many other programs are typically running concurrently on the system. If we were to use a debugger
to single step the execution of our program, we would observea series of program counter (PC) values
that corresponded exclusively to instructions contained in our program’s executable object file or in shared
objects linked into our program dynamically at run time. This sequence of PC values is known as alogical
control flow, or simplylogical flow.

678 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Consider a system that runs three processes, as shown in Figure 8.12. The single physical control flow of the
processor is partitioned into three logical flows, one for each process. Each vertical line represents a portion
of the logical flow for a process. In the example, the execution of the three logical flows is interleaved.
Process A runs for a while, followed by B, which runs to completion. Process C then runs for awhile,
followed by A, which runs to completion. Finally, C is able torun to completion.

Time

Process A Process B Process C

Figure 8.12:Logical control flows. Processes provide each program with the illusion that it has exclusive
use of the processor. Each vertical bar represents a portion of the logical control flow for a process.

The key point in Figure 8.12 is that processes take turns using the processor. Each process executes a
portion of its flow and then ispreempted(temporarily suspended) while other processes take their turns. To
a program running in the context of one of these processes, itappears to have exclusive use of the processor.
The only evidence to the contrary is that if we were to precisely measure the elapsed time of each instruction,
we would notice that the CPU appears to periodically stall between the execution of some of the instructions
in our program. However, each time the processor stalls, it subsequently resumes execution of our program
without any change to the contents of the program’s memory locations or registers.

8.2.2 Concurrent Flows

Logical flows take many different forms in computer systems.Exception handlers, processes, signal han-
dlers, threads, and Java processes are all examples of logical flows.

A logical flow whose execution overlaps in time with another flow is called aconcurrent flow, and the two
flows are said torun concurrently. More precisely, flows X and Y are concurrent with respect to each other
if and only if X begins after Y begins and before Y finishes, or Ybegins after X begins and before X finishes.
For example, in Figure 8.12, processes A and B run concurrently, as do A and C. On the other hand, B and
C do not run concurrently, because the last instruction of B executes before the first instruction of C.

The general phenomenon of multiple flows executing concurrently is known asconcurrency. The notion of
a process taking turns with other processes is also known asmultitasking. Each time period that a process
executes a portion of its flow is called atime slice. Thus, multitasking is also referred to astime slicing. For
example, in Figure 8.12, the flow for process A consists of twotime slices.

Notice that the idea of concurrent flows is independent of thenumber of processor cores or computers that
the flows are running on. If two flows overlap in time, then theyare concurrent, even if they are running on
the same processor. However, we will sometimes find it usefulto identify a proper subset of concurrent flows

8.2. PROCESSES 679

known asparallel flows. If two flows are running concurrently on different processor cores or computers,
then we say that they areparallel flows, that they arerunning in parallel, and haveparallel execution.

Practice Problem 8.1:

Consider three processes with the following starting and ending times:

Process Start time End time

A 0 2
B 1 4
C 3 5

For each pair of processes, indicate whether they run concurrently (y) or not (n):

Process pair Concurrent?

AB
AC
BC

8.2.3 Private Address Space

A process provides each program with the illusion that it hasexclusive use of the system’s address space.
On a machine withn-bit addresses, theaddress spaceis the set of2n possible addresses,0, 1, . . . ,2n

− 1.
A process provides each program with its ownprivate address space. This space is private in the sense that
a byte of memory associated with a particular address in the space cannot in general be read or written by
any other process.

Although the contents of the memory associated with each private address space is different in general,
each such space has the same general organization. For example, Figure 8.13 shows the organization of the
address space for an x86 Linux process. The bottom portion ofthe address space is reserved for the user
program, with the usual text, data, heap, and stack segments. Code segments begin at address0x08048000
for 32-bit processes, and at address0x00400000 for 64-bit processes. The top portion of the address space
is reserved for the kernel. This part of the address space contains the code, data, and stack that the kernel
uses when it executes instructions on behalf of the process (e.g., when the application program executes a
system call).

8.2.4 User and Kernel Modes

In order for the operating system kernel to provide an airtight process abstraction, the processor must provide
a mechanism that restricts the instructions that an application can execute, as well as the portions of the
address space that it can access.

Processors typically provide this capability with amode bitin some control register that characterizes the
privileges that the process currently enjoys. When the modebit is set, the process is running inkernel mode

680 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

0

%esp (stack pointer)

Memory

invisible to

user code

brk

0x08048000 (32)

0x00400000 (64)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

Figure 8.13:Process address space.

(sometimes calledsupervisor mode). A process running in kernel mode can execute any instruction in the
instruction set and access any memory location in the system.

When the mode bit is not set, the process is running inuser mode. A process in user mode is not allowed
to executeprivileged instructionsthat do things such as halt the processor, change the mode bit, or initiate
an I/O operation. Nor is it allowed to directly reference code or data in the kernel area of the address space.
Any such attempt results in a fatal protection fault. User programs must instead access kernel code and data
indirectly via the system call interface.

A process running application code is initially in user mode. The only way for the process to change from
user mode to kernel mode is via an exception such as an interrupt, a fault, or a trapping system call. When
the exception occurs, and control passes to the exception handler, the processor changes the mode from
user mode to kernel mode. The handler runs in kernel mode. When it returns to the application code, the
processor changes the mode from kernel mode back to user mode.

Linux provides a clever mechanism, called the/proc filesystem, that allows user mode processes to access
the contents of kernel data structures. The/proc filesystem exports the contents of many kernel data
structures as a hierarchy of text files that can be read by userprograms. For example, you can use the
/proc filesystem to find out general system attributes such as CPU type (/proc/cpuinfo), or the
memory segments used by a particular process (/proc/<process id>/maps). The 2.6 version of the
Linux kernel introduced a/sys filesystem, which exports additional low-level information about system
buses and devices.

8.2. PROCESSES 681

8.2.5 Context Switches

The operating system kernel implements multitasking usinga higher-level form of exceptional control flow
known as acontext switch. The context switch mechanism is built on top of the lower-level exception
mechanism that we discussed in Section 8.1.

The kernel maintains acontextfor each process. The context is the state that the kernel needs to restart a
preempted process. It consists of the values of objects suchas the general purpose registers, the floating-
point registers, the program counter, user’s stack, statusregisters, kernel’s stack, and various kernel data
structures such as apage tablethat characterizes the address space, aprocess tablethat contains information
about the current process, and afile table that contains information about the files that the process has
opened.

At certain points during the execution of a process, the kernel can decide to preempt the current process
and restart a previously preempted process. This decision is known asscheduling, and is handled by code
in the kernel called thescheduler. When the kernel selects a new process to run, we say that the kernel has
scheduledthat process. After the kernel has scheduled a new process torun, it preempts the current process
and transfers control to the new process using a mechanism called acontext switchthat (1) saves the context
of the current process, (2) restores the saved context of some previously preempted process, and (3) passes
control to this newly restored process.

A context switch can occur while the kernel is executing a system call on behalf of the user. If the system
call blocks because it is waiting for some event to occur, then the kernel can put the current process to sleep
and switch to another process. For example, if aread system call requires a disk access, the kernel can opt
to perform a context switch and run another process instead of waiting for the data to arrive from the disk.
Another example is thesleep system call, which is an explicit request to put the calling process to sleep.
In general, even if a system call does not block, the kernel can decide to perform a context switch rather
than return control to the calling process.

A context switch can also occur as a result of an interrupt. For example, all systems have some mechanism
for generating periodic timer interrupts, typically every1 ms or 10 ms. Each time a timer interrupt occurs,
the kernel can decide that the current process has run long enough and switch to a new process.

Figure 8.14 shows an example of context switching between a pair of processes A and B. In this example,
initially process A is running in user mode until it traps to the kernel by executing aread system call.
The trap handler in the kernel requests a DMA transfer from the disk controller and arranges for the disk to
interrupt the processor after the disk controller has finished transferring the data from disk to memory.

Process A Process B

User code

Kernel code

User code

Kernel code

User code

Time

Context
switch

Context
switch

read

Disk interrupt

Return
from read

Figure 8.14:Anatomy of a process context switch.

