Chapter 5

Optimizing Program Performance

The biggest speedup you'll ever get with a program will be mvieu first get it working.
John K. Ousterhout

The primary objective in writing a program must be to makeatkvcorrectly under all possible conditions.
A program that runs fast but gives incorrect results sereasseful purpose. Programmers must write clear
and concise code, not only so that they can make sense of é@ldauso that others can read and understand
the code during code reviews and when modifications are nexdjiater.

On the other hand, there are many occasions when making eapragn fast is also an important consider-
ation. If a program must process video frames or networkgiadk real time, then a slow-running program
will not provide the needed functionality. When a compuatatiask is so demanding that it requires days or
weeks to execute, then making it run just 20% faster can hgwéfisant impact. In this chapter, we will
explore how to make programs run faster via several difteygres of program optimization.

Writing an efficient program requires several types of dads. First, we must select an appropriate set of
algorithms and data structures. Second, we must write s@mae that the compiler can effectively optimize
to turn into efficient executable code. For this second jiag mportant to understand the capabilities and
limitations of optimizing compilers. Seemingly minor clygs in how a program is written can make large
differences in how well a compiler can optimize it. Some pamgming languages are more easily optimized
than others. Some features of C, such as the ability to perfuinter arithmetic and casting, make it
challenging for a compiler to optimize. Programmers cagrofirrite their programs in ways that make it
easier for compilers to generate efficient code. A third méspine for dealing with especially demanding
computations is to divide a task into portions that can bepmdsd in parallel, on some combination of
multiple cores and multiple processors. We will defer thipext of performance enhancement to Chapter
12. Even when exploiting parallelism, it is important thaiclke parallel thread execute with maximum
performance, and so the material of this chapter remairsgast in any case.

In approaching program development and optimization, wetroonsider how the code will be used and
what critical factors affect it. In general, programmerssinmake a trade-off between how easy a program
is to implement and maintain, and how fast it runs. At an atgoric level, a simple insertion sort can
be programmed in a matter of minutes, whereas a highly eifigert routine may take a day or more to
implement and optimize. At the coding level, many low-lepptimizations tend to reduce code readability

449



450 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

and modularity, making the programs more susceptible ts bing more difficult to modify or extend. For
code that will be executed repeatedly in a performancéeatienvironment, extensive optimization may
be appropriate. One challenge is to maintain some degrelegdrece and readability in the code despite
extensive transformations.

We describe a number of techniques for improving code paidioce. ldeally, a compiler would be able
to take whatever code we write and generate the most effip@sgible machine-level program having the
specified behavior. Modern compilers employ sophisticétechs of analysis and optimization, and they
keep getting better. Even the best compilers, however, eahwarted byoptimization blockers-aspects

of the program’s behavior that depend strongly on the ei@t@nvironment. Programmers must assist the
compiler by writing code that can be optimized readily.

The first step in optimizing a program is to eliminate unneaeg work, making the code perform its in-
tended task as efficiently as possible. This includes elitimg unnecessary function calls, conditional tests,
and memory references. These optimizations do not depeadyospecific properties of the target machine.

To maximize the performance of a program, both the prograname the compiler require a model of the
target machine, specifying how instructions are processelithe timing characteristics of the different
operations. For example, the compiler must know timingrimi@tion to be able to decide whether it should
use a multiply instruction or some combination of shifts aaldls. Modern computers use sophisticated
techniques to process a machine-level program, executanyy rimstructions in parallel and possibly in a
different order than they appear in the program. Prograrammeist understand how these processors work
to be able to tune their programs for maximum speed. We preshigh-level model of such a machine
based on recent designs of Intel and AMD processors. We &géseala graphicatlata-flownotation to
visualize the execution of instructions by the processih which we can predict program performance.

With this understanding of processor operation, we can gkecond step in program optimization, ex-
ploiting the capability of processors to provigistruction-level parallelismexecuting multiple instructions
simultaneously. We cover several program transformatibasreduce the data dependencies between dif-
ferent parts of a computation, increasing the degree oflpligen with which they can be executed.

We conclude the chapter by discussing issues related tmiapig large programs. We describe the use
of codeprofilers—tools that measure the performance of different parts afogram. This analysis can
help find inefficiencies in the code and identify the partshaf program on which we should focus our
optimization efforts. Finally, we present an important@isation, known asimdahl’s law which quantifies
the overall effect of optimizing some portion of a system.

In this presentation, we make code optimization look likénapde linear process of applying a series of
transformations to the code in a particular order. In fdog task is not nearly so straightforward. A
fair amount of trial-and-error experimentation is reqdird his is especially true as we approach the later
optimization stages, where seemingly small changes caeaaajor changes in performance, while some
very promising techniques prove ineffective. As we will ge¢he examples that follow, it can be difficult
to explain exactly why a particular code sequence has aphkatiexecution time. Performance can depend
on many detailed features of the processor design for whiethawe relatively little documentation or
understanding. This is another reason to try a number daréifit variations and combinations of techniques.

Studying the assembly-code representation of a programeisobthe most effective means for gaining an
understanding of the compiler and how the generated codeumil A good strategy is to start by look-



5.1. CAPABILITIES AND LIMITATIONS OF OPTIMIZING COMPILERS 451

ing carefully at the code for the inner loops, identifyingfpemance-reducing attributes such as excessive
memory references and poor use of registers. Starting Wirassembly code, we can also predict what
operations will be performed in parallel and how well theyl wée the processor resources. As we will see,
we can often determine the time (or at least a lower bound etirtie) required to execute a loop by iden-
tifying critical paths chains of data dependencies that form during repeatedigses of a loop. We can
then go back and modify the source code to try to steer the ib@mg@ward more efficient implementations.

Most major compilers, includingcc, are continually being updated and improved, especiallieims
of their optimization abilities. One useful strategy is t dnly as much rewriting of a program as is
required to get it to the point where the compiler can thenegate efficient code. By this means, we
avoid compromising the readability, modularity, and ploitty of the code as much as if we had to work
with a compiler of only minimal capabilities. Again, it halpo iteratively modify the code and analyze its
performance both through measurements and by examininggetierated assembly code.

To novice programmers, it might seem strange to keep maujfirie source code in an attempt to coax the
compiler into generating efficient code, but this is indee@ Imany high-performance programs are written.

Compared to the alternative of writing code in assembly Uaigg, this indirect approach has the advantage
that the resulting code will still run on other machineshailtgh perhaps not with peak performance.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to dheiiee what values are computed in a program and
how they are used. They can then exploit opportunities tpldiyrexpressions, to use a single computation
in several different places, and to reduce the number ofstimgiven computation must be performed.
Most compilers, includingscc, provide users with some control over which optimizatidmsytapply. As
discussed in Chapter 3, the simplest control is to speciyofttimization level For example, invoking
Gcc with the command-line flag-‘OL’ will cause it to apply a basic set of optimizations. As dissed

in Web AsideAasm:0PT, invoking gcc with flag - O2’ or ‘- O3’ will cause it to apply more extensive
optimizations. These can further improve program perforeabut they may expand the program size and
they may make the program more difficult to debug using stahdi@bugging tools. For our presentation, we
will mostly consider code compiled with optimization leieleven though optimization level 2 has become
the accepted standard for mastc users. We purposely limit the level of optimization to derstoate how
different ways of writing a function in C can affect the eféiocy of the code generated by a compiler. We
will find that we can write C code that, when compiled just watitimization level 1, vastly outperforms a
more naive version compiled with the highest possiblenoigaition levels.

Compilers must be careful to apply ordgifeoptimizations to a program, meaning that the resulting aog
will have the exact same behavior as would an unoptimizediaerfor all possible cases the program
may encounter, up to the limits of the guarantees provideth®\C language standards. Constraining the
compiler to perform only safe optimizations eliminates gible sources of undesired run-time behavior,
but it also means that the programmer must make more of art &fevrite programs in a way that the
compiler can then transform into efficient machine-levalleco To appreciate the challenges of deciding
which program transformations are safe or not, considefall@mving two procedures:

1 void twiddlel(int *=xp, int xyp)



452 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

2 {

3 *Xp += *yp,

4 *Xp = *yp;

5}

6

7 void twi ddl e2(int *xp, int *xyp)
8 {

9 *Xp += 2% *yp;

10 }

At first glance, both procedures seem to have identical behavhey both add twice the value stored at the
location designated by pointgp to that designated by pointgp. On the other hand, functidnwi ddl e2

is more efficient. It requires only three memory referengesd* xp, read+*yp, write *xp), whereas

t wi ddl el requires six (two reads afxp, two reads of yp, and two writes of xp). Hence, if a compiler

is given proceduré wi ddl el to compile, one might think it could generate more efficierde based on
the computations performed by ddl e2.

Consider, however, the case in whikp andyp are equal. Then functionwi ddl el will perform the
following computations:

3 *Xp += *xp; [+ Double value at xp =*/
4 *Xp += *xp; [+ Double value at xp =*/

The result will be that the value atp will be increased by a factor of 4. On the other hand, function
t wi ddl e2 will perform the following computation:

9 *Xp += 2* xxp; [* Triple value at xp */

The result will be that the value &p will be increased by a factor of 3. The compiler knows notrabgut
howt w ddl el will be called, and so it must assume that argumepieindy p can be equal. It therefore
cannot generate code in the styletofi ddl e2 as an optimized version ofwi ddl el.

The case where two pointers may designate the same memaitjoloécs known agnemory aliasing In

performing only safe optimizations, the compiler must assuhat different pointers may be aliased. As
another example, for a program with pointer varialgesndq, consider the following code sequence:

x = 1000; y = 3000;

*xq = Y; [+ 3000 =/
*p = X; [+ 1000 =/
tl ==*q; [/* 1000 or 3000 =/

The value computed fdrl depends on whether or not pointgraandq are aliased—if not, it will equal
3000, but if so it will equal 1000. This leads to one of the majotimization blockersaspects of programs
that can severely limit the opportunities for a compiler emgrate optimized code. If a compiler cannot
determine whether or not two pointers may be aliased, it rsstime that either case is possible, limiting
the set of possible optimizations.



5.1. CAPABILITIES AND LIMITATIONS OF OPTIMIZING COMPILERS 453

Practice Problem 5.1

The following problem illustrates the way memory aliasirapncause unexpected program behavior.
Consider the following procedure to swap two values:

1/+ Swap value x at xp with value y at yp */
2 void swap(int *xp, int *yp)

3 {

4 *XP = xXp + xyp; [* Xty */

5 XYyp = *xXp - *xyp; [* xty-y = x */

6 *XP = *xXp - xyp; [* X+ty-X =y */

7}

If this procedure is called witkp equal toyp, what effect will it have?

A second optimization blocker is due to function calls. Asexample, consider the following two proce-
dures:

int f();
int funcl() {
return f() + f() + f() + f();

int func2() {
return 4«f();

© 0 N O OB~ WN P
—

It might seem at first that both compute the same result, btlt fainc2 calling f only once, whereas
funcl calls it four times. It is tempting to generate code in thdesbf f unc2 when givenf uncl as the
source.

Consider, however, the following code for

1 int counter = O;

2

3int f() {

4 return counter ++;
5}

This function has aide effect-it modifies some part of the global program state. Chandieghiumber of
times it gets called changes the program behavior. In pgatica call tof unc1 would return0+1+2+3 =
6, whereas a call tbunc2 would return4 - 0 = 0, assuming both started with global varialcleunt er
setto 0.

Most compilers do not try to determine whether a functiomeeg fof side effects and hence is a candidate for
optimizations such as those attempted imc2. Instead, the compiler assumes the worst case and leaves
function calls intact.



454 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Aside: Optimizing function calls by inline substitution

As described in Web AsidesMm:0PT, code involving function calls can be optimized by a prodessvn asinline
substitution(or simply “inlining”), where the function call is replacdxy the code for the body of the function. For
example, we can expand the codeffemc 1 by substituting four instantiations of functidén

1 /+ Result of inlining f in funcl */
2 int funclin() {

3 int t = counter++; [* +0 */

4 t += counter ++; [* +1 =/

5 t += counter ++; [* +2 %/

6 t += counter ++; [+ +3 x/

7 return t;

8 }

This transformation both reduces the overhead of the fanatlls and allows further optimization of the expanded
code. For example, the compiler can consolidate the updétgsbal variablecount er in f uncli n to generate
an optimized version of the function:

1 /+ Optimzation of inlined code =/
2 int funclopt() {

3 int t =4 * counter + 6;

4 counter =t + 4;

5 return t;

6}

This code faithfully reproduces the behaviorfafnc 1 for this particular definition of functiofi.

Recent versions abcc attempt this form of optimization, either when directed tibhwthe command-line option
‘- finline’ orfor optimization levels 2 or higher. Since we are consiug optimization level 1 in our presenta-
tion, we will assume that the compiler does not perform mBunbstitutionEnd Aside.

Among compilersgccis considered adequate, but not exceptional, in terms optimization capabilities.

It performs basic optimizations, but it does not performmdical transformations on programs that more
“aggressive” compilers do. As a consequence, programmnsing GCC must put more effort into writing
programs in a way that simplifies the compiler’s task of gatieg efficient code.

5.2 Expressing Program Performance

We introduce the metricycles per elemenabbreviated “CPE,” as a way to express program performance
in a way that can guide us in improving the code. CPE measursnielp us understand the loop perfor-
mance of an iterative program at a detailed level. It is appate for programs that perform a repetitive
computation, such as processing the pixels in an image opgating the elements in a matrix product.

The sequencing of activities by a processor is controlledhlmjock providing a regular signal of some
frequency, usually expresseddigahertz(GHz), billions of cycles per second. For example, when pobd
literature characterizes a system as a “4 GHz” processoedns that the processor clock rund.atx 10°
cycles per second. The time required for each clock cyclezengoy the reciprocal of the clock frequency.
These typically are expressedianosecondgl nanosecond is0~? seconds), opicosecond$l picosecond



5.2. EXPRESSING PROGRAM PERFORMANCE 455

1 /+ Conpute prefix sumof vector a x/

2 void psuml(float a[], float p[], long int n)
3 {

4 long int i;

5 p[0] = a[0];

6 for (i =1; i < n; i++)

7 pli] = p[i-1] + ali];

8}

9

10 void psun(float a[], float p[], long int n)
11 {

12 long int i;

13 p[0] = a[0];

14 for (i =1; i <n-1; i+=2) {

15 float md_val = p[i-1] + a[i];

16 pli] = md_val;

17 p[i+1] = md_val + a[i+1];

18 }

19 /+* For odd n, finish remaining elenment x/
20 if (i <n

21 pli] = p[i-1] + ali];

22 }

Figure 5.1:Prefix-sum functions. These provide examples for how we express program performance.

is 10~'2 seconds). For example, the period of a 4 GHz clock can be esgueas either 0.25 nanoseconds or
250 picoseconds. From a programmer’s perspective, it ig ingtructive to express measurements in clock
cycles rather than nanoseconds or picoseconds. That veapighsurements express how many instructions
are being executed rather than how fast the clock runs.

Many procedures contain a loop that iterates over a set oiegles. For example, functioqsuml and
psun® in Figure 5.1 both compute theefix sunof a vector of lengtm. For a vectoti = (ag, a1, ..., an-1),
the prefix sunp’' = (po, p1,...,pn—1) is defined as

Po = Qo
pi = pi—1ta, 1<i<n (5.1)

Functionpsuml computes one element of the result vector per iteration. sHmend uses a technique
known asloop unrolling to compute two elements per iteration. We will explore thedfis of loop un-
rolling later in this chapter. See Problems 5.11, 5.12, a@d tor more about analyzing and optimizing the
prefix-sum computation.

The time required by such a procedure can be characterizac¢@sstant plus a factor proportional to the
number of elements processed. For example, Figure 5.2 shpies of the number of clock cycles required
by the two functions for a range of valuesof Using aleast squares fitwe find that the run times (in
clock cycles) fopsumil andpsun® can be approximated by the equatia®$ + 10.0n and500 + 6.5n,
respectively. These equations indicate an overhead of d%®@ cycles due to the timing code and to
initiate the procedure, set up the loop, and complete thegpire, plus a linear factor of 6.5 or 10.0 cycles



456 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

3000

2500 /

2000

psuml
4 Slope = 10.0
© 1500
>
[5) psum2
Slope = 6.5
1000 /
500
0 T T
0 50 100 150 200
Elements
Figure 5.2:Performance of prefix-sum functions. The slope of the lines indicates the number of clock

cycles per element (CPE).

per element. For large values of(say, greater than 200), the run times will be dominated lpylitiear
factors. We refer to the coefficients in these terms as tlee®fe number o€ycles per elemenabbreviated
“CPE.” We prefer measuring the number of cycles@ementather than the number of cycles firation,
because techniques such as loop unrolling allow us to userfigsvations to complete the computation, but
our ultimate concern is how fast the procedure will run forseg vector length. We focus our efforts on
minimizing the CPE for our computations. By this measysun?, with a CPE of 6.50, is superior to
psuni, with a CPE of 10.0.

Aside: What is a least squares fit?

For a set of data point§c1,y1),. .. (zn,yn), We often try to draw a line that best approximates the X-Yidre
represented by this data. With a least squares fit, we look fore of the formy = max + b that minimizes the
following error measure:

E(m,b) = Z(mxi—i—b—yi)z

i=1,n
An algorithm for computingn andb can be derived by finding the derivativesB{m, b) with respect tan andb
and setting them to End Aside.

Practice Problem 5.2

Later in this chapter we will start with a single function aggherate many different variants that preserve
the function’s behavior, but with different performancerddcteristics. For three of these variants, we
found that the run times (in clock cycles) can be approxichatethe following functions:

Version 1: 60 + 35n
Version 2: 136 + 4n
Version 3: 157 + 1.25n

For what values of. would each version be the fastest of the three? Remember thidltalways be an
integer.



5.3. PROGRAM EXAMPLE 457

len len 0 1 2 len—1

data @ > XX

Figure 5.3:Vector abstract data type. A vector is represented by header information plus array of desig-
nated length.

5.3 Program Example

To demonstrate how an abstract program can be systematicatisformed into more efficient code, we
will use a running example based on the vector data strustwen in Figure 5.3. A vector is represented
with two blocks of memory: the header and the data array. Baelér is a structure declared as follows:

code/opt/vec.h

/+* Create abstract data type for vector =/
typedef struct {

long int len;

data t =data;
} vec_rec, xvec_ptr;

a b~ W NP

code/opt/vec.h

The declaration uses data tygat a_t to designate the data type of the underlying elements. Ireeair
uation, we measure the performance of our code for integerniC), single-precision floating-point (C
f 1 oat ), and double-precision floating-point @ubl e) data. We do this by compiling and running the
program separately for different type declarations, suctina following for data typéent :

typedef int data_t;

We allocate the data array block to store the vector elenzenés array of en objects of typadat a_t .

Figure 5.4 shows some basic procedures for generatingrgeettcessing vector elements, and determining
the length of a vector. An important feature to note is thett _vec_el enent , the vector access routine,
performs bounds checking for every vector reference. Taueds similar to the array representations used
in many other languages, including Java. Bounds checkitigces the chances of program error, but it can
also slow down program execution.

As an optimization example, consider the code shown in Eigub, which combines all of the elements
in a vector into a single value according to some operatiog. uging different definitions of compile-
time constant$ DENT and OP, the code can be recompiled to perform different operatmmthe data. In
particular, using the declarations

#define | DENT O
#define OP +

it sums the elements of the vector. Using the declarations



458 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/vec.c

1 /+ Create vector of specified length =/

2 vec_ptr new vec(long int |en)

3 {

4 [+ Allocate header structure =*/

5 vec_ptr result = (vec_ptr) malloc(sizeof (vec_rec));

6 if (!result)

7 return NULL; /=* Couldn’t allocate storage */

8 result->len = len;

9 /* Allocate array =*/

10 if (len >0) {

11 data_t r*data = (data_t =*)calloc(len, sizeof(data_ t));

12 if (!data) {

13 free((void *) result);

14 return NULL; /* Couldn’t allocate storage =/

15 }

16 result->data = dat a;

17 }

18 el se

19 result->data = NULL;

20 return result;

21}

22

23 [ *

24 =+ Retrieve vector elenment and store at dest.

25 * Return 0 (out of bounds) or 1 (successful)

26 */

27 int get_vec_elenment(vec_ptr v, long int index, data_t =*dest)

28 {

29 if (index < 0 || index >= v->len)

30 return O;

31 xdest = v->data[index];

32 return 1,

33 }

34

35 /* Return length of vector =*/

36 long int vec_length(vec_ptr v)

37 {

38 return v->len;

39 }
code/opt/vec.c

Figure 5.4:Implementation of vector abstract data type. In the actual program, data type dat a_t is

declaredto bei nt, fl oat, or doubl e



5.3. PROGRAM EXAMPLE 459

1 /+ Inplenentation with nmaxi numuse of data abstraction */
2 void conbinel(vec ptr v, data t =*dest)
3 {
4 long int i;
5
6 »dest = | DENT;
7 for (i =0; i <vec_length(v); i++) {
8 data_ t val;
9 get _vec_elenment(v, i, &val);
10 *dest = xdest OP val;
11 }
12 }
Figure 5.5:Initial implementation of combining operation. Using different declarations of identity ele-

ment | DENT and combining operation OP, we can measure the routine for different operations.

#define | DENT 1
#define OP ~»

it computes the product of the vector elements.

In our presentation, we will proceed through a series ofsfiaamations of the code, writing different ver-
sions of the combining function. To gauge progress, we waasure the CPE performance of the functions
on a machine with an Intel Core i7 processor, which we wilergb as oureference machine Some
characteristics of this processor were given in Section Blilese measurements characterize performance
in terms of how the programs run on just one particular maghand so there is no guarantee of comparable
performance on other combinations of machine and compilewever, we have compared the results with
those for a number of different compiler/processor contimna, and found them quite comparable.

As we proceed through a set of transformations, we will firat thany lead to only minimal performance
gains, while others have more dramatic effects. Determinihich combinations of transformations to ap-
ply is indeed part of the “black art” of writing fast code. Sewombinations that do not provide measurable
benefits are indeed ineffective, while others are imporéanivays to enable further optimizations by the
compiler. In our experience, the best approach involvesnabamation of experimentation and analysis:
repeatedly attempting different approaches, performiegsuarements, and examining the assembly-code
representations to identify underlying performance bogktks.

As a starting point, the following are CPE measurements éarbi nel running on our reference machine,
trying all combinations of data type and combining operati¢-or single-precision and double-precision
floating-point data, our experiments on this machine gagatidal performance for addition, but differing
performance for multiplication. We therefore report fiveEo¥alues: integer addition and multiplication,
floating-point addition, single-precision multiplicatiglabeled “F+ "), and double-precision multiplication
(labeled “D*").



460 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

1 /+ Mwve call to vec_length out of |oop */
2 void combi ne2(vec_ptr v, data_t =*dest)
3 {
4 long int i;
5 long int length = vec_length(v);
6
7 *dest = | DENT;
8 for (i =0; i <length; i++) {
9 data_t val;
10 get _vec_elenment(v, i, &val);
11 »dest = *xdest OP val;
12 }
13 }
Figure 5.6:Improving the efficiency of the loop test. By moving the call to vec_| engt h out of the loop

test, we eliminate the need to execute it on every iteration.

Function Page| Method Integer Floating point

+ * + F=* D *
conmbi nel | 459 | Abstract unoptimized 29.02 29.21| 27.40 27.90 27.36
combi nel | 459 | Abstract- Ol 12.00 12.00, 12.00 12.01 13.0C

We can see that our measurements are somewhat imprecisenorbdikely CPE number for integer sum
and product is 29.00, rather than 29.02 or 29.21. Rather‘findging” our numbers to make them look
good, we will present the measurements we actually obtaifibdre are many factors that complicate the
task of reliably measuring the precise number of clock y/ctmuired by some code sequence. It helps
when examining these numbers to mentally round the respltsr Wlown by a few hundredths of a clock
cycle.

The unoptimized code provides a direct translation of theo@ednto machine code, often with obvious
inefficiencies. By simply giving the command-line optionCL’, we enable a basic set of optimizations.
As can be seen, this significantly improves the program padaoce—more than a factor of two—with no
effort on behalf of the programmer. In general, it is gooddbigto the habit of enabling at least this level of
optimization. For the remainder of our measurements, wepseization levels 1 and higher in generating
and measuring our programs.

5.4 Eliminating Loop Inefficiencies

Observe that proceduonbi nel, as shown in Figure 5.5, calls functierec_| engt h as the test con-
dition of thef or loop. Recall from our discussion of how to translate coddaiaimg loops into machine-
level programs (Section 3.6.5) that the test condition rbestvaluated on every iteration of the loop. On
the other hand, the length of the vector does not change dsdheroceeds. We could therefore compute
the vector length only once and use this value in our testitond

Figure 5.6 shows a modified version callednbi ne2, which callsvec_ engt h at the beginning and



5.4. ELIMINATING LOOP INEFFICIENCIES 461

assigns the result to a local variablengt h. This transformation has noticeable effect on the overall
performance for some data types and operations, and mimimaten none for others. In any case, this
transformation is required to eliminate inefficienciesttvauld become bottlenecks as we attempt further
optimizations.

Function Page| Method Integer Floating point

+ * + (= D *
combi nel | 459 | Abstract- OL 12.00 12.00| 12.00 12.01 13.0(
conbi ne2 | 460 | Moveveclength | 8.03 8.09| 10.09 11.09 12.09

This optimization is an instance of a general class of og@tions known agode motion They involve
identifying a computation that is performed multiple timésg., within a loop), but such that the result of
the computation will not change. We can therefore move tmepctation to an earlier section of the code
that does not get evaluated as often. In this case, we moesththtovec_| engt h from within the loop

to just before the loop.

Optimizing compilers attempt to perform code motion. Utfoately, as discussed previously, they are
typically very cautious about making transformations ttizinge where or how many times a procedure
is called. They cannot reliably detect whether or not a fienctvill have side effects, and so they assume
that it might. For example, ¥ec_l engt h had some side effect, themnmbi nel andconbi ne2 could
have different behaviors. To improve the code, the progranmust often help the compiler by explicitly
performing code motion.

As an extreme example of the loop inefficiency seenanmbi nel, consider the proceduteower 1 shown

in Figure 5.7. This procedure is styled after routines stiimahiby several students as part of a network
programming project. Its purpose is to convert all of thearppse letters in a string to lower case. The
procedure steps through the string, converting each ugpercharacter to lowercase. The case conversion
involves shifting characters in the rang® to ‘' Z' to the rangea’to ‘z.'

The library functionst r | en is called as part of the loop test bbwer 1. Althoughst r | en is typically
implemented with special x86 string-processing instangj its overall execution is similar to the simple
version that is also shown in Figure 5.7. Since strings indatl-terminated character sequenes; | en

can only determine the length of a string by stepping thrahglsequence until it hits a null character. For a
string of lengthn, st r | en takes time proportional ta. Sincest r | en is called in each of the iterations

of | ower 1, the overall run time of ower 1 is quadratic in the string length, proportional:t®.

This analysis is confirmed by actual measurements of thei@ngcfor different length strings, as shown in
Figure 5.8 (and using the library versiongifr | en). The graph of the run time fdrower 1 rises steeply
as the string length increases (Figure 5.8(a)). FigurerEi§uB(b) shows the run times for seven different
lengths (not the same as shown in the graph), each of whichawar of 2. Observe that férower 1 each
doubling of the string length causes a quadrupling of thetime. This is a clear indicator of a quadratic
run time. For a string of length 1,048,516pwer 1 requires over 13 minutes of CPU time.

Functionl ower 2 shown in Figure 5.7 is identical to that bbwer 1, except that we have moved the call
to strl en out of the loop. The performance improves dramatically. &atring length of 1,048,576,
the function requires just 1.5 milliseconds—over 500,06t faster thah ower 1. Each doubling of the
string length causes a doubling of the run time—a clear atdicof linear run time. For longer strings, the
run-time improvement will be even greater.



462 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

1 /+ Convert string to | owercase: slow x/
2 void | ower1(char xs)

3 {

4 int i;

5

6 for (i =0; i < strlen(s); i++)

7 if (s[i] >="A && s[i] <="'2)
8 s[i] -= (A - "a);

9}

10

11 /* Convert string to |l owercase: faster =/
12 void | ower2(char *s)

13 {

14 int i;

15 int len = strlen(s);

16

17 for (i = 0; i <len; i++)

18 if (s[i] >="A && s[i] <="'2)
19 s[i] -= (A - "a);

20 }

21

22 [+ Sanple inplementation of library function strlen =/
23 /* Conpute length of string =/

24 size_t strlen(const char *s)

25 {

26 int length = 0;

27 while (*s '="\0") {

28 S++;

29 | engt h++;

30 }

31 return | ength;

32 }

Figure 5.7:Lowercase conversion routines.  The two procedures have radically different performance.



5.4. ELIMINATING LOOP INEFFICIENCIES 463
200
180
160
» 140 /
2 120
o lowerl /
@ 100 /
2 80
© &0 /
40 -
o Eﬁ.—l—.—l—l—l—l—l—l—l—l—l—l—l
lower?2
0
0 100000 200000 300000 400000 500000
String length
(a)
Function String length
16,384 32,768 65,536 131,072 262,144 524,288 1,048,576
| oner 1 0.19 0.77 3.08 12.34 49.39 198.42 791)22
| ower 2 | 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0p15

(b)

Figure 5.8:Comparative performance of lowercase conversion routines
has a quadratic run time due to an inefficient loop structure. The modified code | ower 2 has a linear run

time.

. The original code | ower 1



