
Chapter 5

Optimizing Program Performance

The biggest speedup you’ll ever get with a program will be when you first get it working.
John K. Ousterhout

The primary objective in writing a program must be to make it work correctly under all possible conditions.
A program that runs fast but gives incorrect results serves no useful purpose. Programmers must write clear
and concise code, not only so that they can make sense of it, but also so that others can read and understand
the code during code reviews and when modifications are required later.

On the other hand, there are many occasions when making a program run fast is also an important consider-
ation. If a program must process video frames or network packets in real time, then a slow-running program
will not provide the needed functionality. When a computation task is so demanding that it requires days or
weeks to execute, then making it run just 20% faster can have significant impact. In this chapter, we will
explore how to make programs run faster via several different types of program optimization.

Writing an efficient program requires several types of activities. First, we must select an appropriate set of
algorithms and data structures. Second, we must write source code that the compiler can effectively optimize
to turn into efficient executable code. For this second part,it is important to understand the capabilities and
limitations of optimizing compilers. Seemingly minor changes in how a program is written can make large
differences in how well a compiler can optimize it. Some programming languages are more easily optimized
than others. Some features of C, such as the ability to perform pointer arithmetic and casting, make it
challenging for a compiler to optimize. Programmers can often write their programs in ways that make it
easier for compilers to generate efficient code. A third technique for dealing with especially demanding
computations is to divide a task into portions that can be computed in parallel, on some combination of
multiple cores and multiple processors. We will defer this aspect of performance enhancement to Chapter
12. Even when exploiting parallelism, it is important that each parallel thread execute with maximum
performance, and so the material of this chapter remains relevant in any case.

In approaching program development and optimization, we must consider how the code will be used and
what critical factors affect it. In general, programmers must make a trade-off between how easy a program
is to implement and maintain, and how fast it runs. At an algorithmic level, a simple insertion sort can
be programmed in a matter of minutes, whereas a highly efficient sort routine may take a day or more to
implement and optimize. At the coding level, many low-leveloptimizations tend to reduce code readability

449

450 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

and modularity, making the programs more susceptible to bugs and more difficult to modify or extend. For
code that will be executed repeatedly in a performance-critical environment, extensive optimization may
be appropriate. One challenge is to maintain some degree of elegance and readability in the code despite
extensive transformations.

We describe a number of techniques for improving code performance. Ideally, a compiler would be able
to take whatever code we write and generate the most efficientpossible machine-level program having the
specified behavior. Modern compilers employ sophisticatedforms of analysis and optimization, and they
keep getting better. Even the best compilers, however, can be thwarted byoptimization blockers—aspects
of the program’s behavior that depend strongly on the execution environment. Programmers must assist the
compiler by writing code that can be optimized readily.

The first step in optimizing a program is to eliminate unnecessary work, making the code perform its in-
tended task as efficiently as possible. This includes eliminating unnecessary function calls, conditional tests,
and memory references. These optimizations do not depend onany specific properties of the target machine.

To maximize the performance of a program, both the programmer and the compiler require a model of the
target machine, specifying how instructions are processedand the timing characteristics of the different
operations. For example, the compiler must know timing information to be able to decide whether it should
use a multiply instruction or some combination of shifts andadds. Modern computers use sophisticated
techniques to process a machine-level program, executing many instructions in parallel and possibly in a
different order than they appear in the program. Programmers must understand how these processors work
to be able to tune their programs for maximum speed. We present a high-level model of such a machine
based on recent designs of Intel and AMD processors. We also devise a graphicaldata-flownotation to
visualize the execution of instructions by the processor, with which we can predict program performance.

With this understanding of processor operation, we can takea second step in program optimization, ex-
ploiting the capability of processors to provideinstruction-level parallelism, executing multiple instructions
simultaneously. We cover several program transformationsthat reduce the data dependencies between dif-
ferent parts of a computation, increasing the degree of parallelism with which they can be executed.

We conclude the chapter by discussing issues related to optimizing large programs. We describe the use
of codeprofilers—tools that measure the performance of different parts of a program. This analysis can
help find inefficiencies in the code and identify the parts of the program on which we should focus our
optimization efforts. Finally, we present an important observation, known asAmdahl’s law, which quantifies
the overall effect of optimizing some portion of a system.

In this presentation, we make code optimization look like a simple linear process of applying a series of
transformations to the code in a particular order. In fact, the task is not nearly so straightforward. A
fair amount of trial-and-error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes in performance, while some
very promising techniques prove ineffective. As we will seein the examples that follow, it can be difficult
to explain exactly why a particular code sequence has a particular execution time. Performance can depend
on many detailed features of the processor design for which we have relatively little documentation or
understanding. This is another reason to try a number of different variations and combinations of techniques.

Studying the assembly-code representation of a program is one of the most effective means for gaining an
understanding of the compiler and how the generated code will run. A good strategy is to start by look-

5.1. CAPABILITIES AND LIMITATIONS OF OPTIMIZING COMPILERS 451

ing carefully at the code for the inner loops, identifying performance-reducing attributes such as excessive
memory references and poor use of registers. Starting with the assembly code, we can also predict what
operations will be performed in parallel and how well they will use the processor resources. As we will see,
we can often determine the time (or at least a lower bound on the time) required to execute a loop by iden-
tifying critical paths, chains of data dependencies that form during repeated executions of a loop. We can
then go back and modify the source code to try to steer the compiler toward more efficient implementations.

Most major compilers, includingGCC, are continually being updated and improved, especially interms
of their optimization abilities. One useful strategy is to do only as much rewriting of a program as is
required to get it to the point where the compiler can then generate efficient code. By this means, we
avoid compromising the readability, modularity, and portability of the code as much as if we had to work
with a compiler of only minimal capabilities. Again, it helps to iteratively modify the code and analyze its
performance both through measurements and by examining thegenerated assembly code.

To novice programmers, it might seem strange to keep modifying the source code in an attempt to coax the
compiler into generating efficient code, but this is indeed how many high-performance programs are written.
Compared to the alternative of writing code in assembly language, this indirect approach has the advantage
that the resulting code will still run on other machines, although perhaps not with peak performance.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to determine what values are computed in a program and
how they are used. They can then exploit opportunities to simplify expressions, to use a single computation
in several different places, and to reduce the number of times a given computation must be performed.
Most compilers, includingGCC, provide users with some control over which optimizations they apply. As
discussed in Chapter 3, the simplest control is to specify the optimization level. For example, invoking
GCC with the command-line flag ‘-O1’ will cause it to apply a basic set of optimizations. As discussed
in Web AsideASM:OPT, invoking GCC with flag ‘-O2’ or ‘-O3’ will cause it to apply more extensive
optimizations. These can further improve program performance, but they may expand the program size and
they may make the program more difficult to debug using standard debugging tools. For our presentation, we
will mostly consider code compiled with optimization level1, even though optimization level 2 has become
the accepted standard for mostGCC users. We purposely limit the level of optimization to demonstrate how
different ways of writing a function in C can affect the efficiency of the code generated by a compiler. We
will find that we can write C code that, when compiled just withoptimization level 1, vastly outperforms a
more naı̈ve version compiled with the highest possible optimization levels.

Compilers must be careful to apply onlysafeoptimizations to a program, meaning that the resulting program
will have the exact same behavior as would an unoptimized version for all possible cases the program
may encounter, up to the limits of the guarantees provided bythe C language standards. Constraining the
compiler to perform only safe optimizations eliminates possible sources of undesired run-time behavior,
but it also means that the programmer must make more of an effort to write programs in a way that the
compiler can then transform into efficient machine-level code. To appreciate the challenges of deciding
which program transformations are safe or not, consider thefollowing two procedures:

1 void twiddle1(int *xp, int *yp)

452 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

2 {
3 *xp += *yp;
4 *xp += *yp;
5 }
6

7 void twiddle2(int *xp, int *yp)
8 {
9 *xp += 2* *yp;

10 }

At first glance, both procedures seem to have identical behavior. They both add twice the value stored at the
location designated by pointeryp to that designated by pointerxp. On the other hand, functiontwiddle2
is more efficient. It requires only three memory references (read*xp, read*yp, write *xp), whereas
twiddle1 requires six (two reads of*xp, two reads of*yp, and two writes of*xp). Hence, if a compiler
is given proceduretwiddle1 to compile, one might think it could generate more efficient code based on
the computations performed bytwiddle2.

Consider, however, the case in whichxp andyp are equal. Then functiontwiddle1 will perform the
following computations:

3 *xp += *xp; /* Double value at xp */
4 *xp += *xp; /* Double value at xp */

The result will be that the value atxp will be increased by a factor of 4. On the other hand, function
twiddle2will perform the following computation:

9 *xp += 2* *xp; /* Triple value at xp */

The result will be that the value atxp will be increased by a factor of 3. The compiler knows nothingabout
howtwiddle1will be called, and so it must assume that argumentsxp andyp can be equal. It therefore
cannot generate code in the style oftwiddle2 as an optimized version oftwiddle1.

The case where two pointers may designate the same memory location is known asmemory aliasing. In
performing only safe optimizations, the compiler must assume that different pointers may be aliased. As
another example, for a program with pointer variablesp andq, consider the following code sequence:

x = 1000; y = 3000;

q = y; / 3000 */

p = x; / 1000 */
t1 = *q; /* 1000 or 3000 */

The value computed fort1 depends on whether or not pointersp andq are aliased—if not, it will equal
3000, but if so it will equal 1000. This leads to one of the major optimization blockers, aspects of programs
that can severely limit the opportunities for a compiler to generate optimized code. If a compiler cannot
determine whether or not two pointers may be aliased, it mustassume that either case is possible, limiting
the set of possible optimizations.

5.1. CAPABILITIES AND LIMITATIONS OF OPTIMIZING COMPILERS 453

Practice Problem 5.1:

The following problem illustrates the way memory aliasing can cause unexpected program behavior.
Consider the following procedure to swap two values:

1 /* Swap value x at xp with value y at yp */
2 void swap(int *xp, int *yp)
3 {
4 *xp = *xp + *yp; /* x+y */
5 *yp = *xp - *yp; /* x+y-y = x */
6 *xp = *xp - *yp; /* x+y-x = y */
7 }

If this procedure is called withxp equal toyp, what effect will it have?

A second optimization blocker is due to function calls. As anexample, consider the following two proce-
dures:

1 int f();
2

3 int func1() {
4 return f() + f() + f() + f();
5 }
6

7 int func2() {
8 return 4*f();
9 }

It might seem at first that both compute the same result, but with func2 calling f only once, whereas
func1 calls it four times. It is tempting to generate code in the style of func2 when givenfunc1 as the
source.

Consider, however, the following code forf:

1 int counter = 0;
2

3 int f() {
4 return counter++;
5 }

This function has aside effect—it modifies some part of the global program state. Changing the number of
times it gets called changes the program behavior. In particular, a call tofunc1would return0+1+2+3 =

6, whereas a call tofunc2 would return4 · 0 = 0, assuming both started with global variablecounter
set to 0.

Most compilers do not try to determine whether a function is free of side effects and hence is a candidate for
optimizations such as those attempted infunc2. Instead, the compiler assumes the worst case and leaves
function calls intact.

454 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Aside: Optimizing function calls by inline substitution
As described in Web AsideASM:OPT, code involving function calls can be optimized by a processknown asinline
substitution(or simply “inlining”), where the function call is replacedby the code for the body of the function. For
example, we can expand the code forfunc1 by substituting four instantiations of functionf:

1 /* Result of inlining f in func1 */
2 int func1in() {
3 int t = counter++; /* +0 */
4 t += counter++; /* +1 */
5 t += counter++; /* +2 */
6 t += counter++; /* +3 */
7 return t;
8 }

This transformation both reduces the overhead of the function calls and allows further optimization of the expanded
code. For example, the compiler can consolidate the updatesof global variablecounter in func1in to generate
an optimized version of the function:

1 /* Optimization of inlined code */
2 int func1opt() {
3 int t = 4 * counter + 6;
4 counter = t + 4;
5 return t;
6 }

This code faithfully reproduces the behavior offunc1 for this particular definition of functionf.

Recent versions ofGCC attempt this form of optimization, either when directed to with the command-line option
‘-finline’ or for optimization levels 2 or higher. Since we are considering optimization level 1 in our presenta-
tion, we will assume that the compiler does not perform inline substitution.End Aside.

Among compilers,GCC is considered adequate, but not exceptional, in terms of itsoptimization capabilities.
It performs basic optimizations, but it does not perform theradical transformations on programs that more
“aggressive” compilers do. As a consequence, programmers using GCC must put more effort into writing
programs in a way that simplifies the compiler’s task of generating efficient code.

5.2 Expressing Program Performance

We introduce the metriccycles per element, abbreviated “CPE,” as a way to express program performance
in a way that can guide us in improving the code. CPE measurements help us understand the loop perfor-
mance of an iterative program at a detailed level. It is appropriate for programs that perform a repetitive
computation, such as processing the pixels in an image or computing the elements in a matrix product.

The sequencing of activities by a processor is controlled bya clock providing a regular signal of some
frequency, usually expressed ingigahertz(GHz), billions of cycles per second. For example, when product
literature characterizes a system as a “4 GHz” processor, itmeans that the processor clock runs at4.0× 109

cycles per second. The time required for each clock cycle is given by the reciprocal of the clock frequency.
These typically are expressed innanoseconds(1 nanosecond is10−9 seconds), orpicoseconds(1 picosecond

5.2. EXPRESSING PROGRAM PERFORMANCE 455

1 /* Compute prefix sum of vector a */
2 void psum1(float a[], float p[], long int n)
3 {
4 long int i;
5 p[0] = a[0];
6 for (i = 1; i < n; i++)
7 p[i] = p[i-1] + a[i];
8 }
9

10 void psum2(float a[], float p[], long int n)
11 {
12 long int i;
13 p[0] = a[0];
14 for (i = 1; i < n-1; i+=2) {
15 float mid_val = p[i-1] + a[i];
16 p[i] = mid_val;
17 p[i+1] = mid_val + a[i+1];
18 }
19 /* For odd n, finish remaining element */
20 if (i < n)
21 p[i] = p[i-1] + a[i];
22 }

Figure 5.1:Prefix-sum functions. These provide examples for how we express program performance.

is 10−12 seconds). For example, the period of a 4 GHz clock can be expressed as either 0.25 nanoseconds or
250 picoseconds. From a programmer’s perspective, it is more instructive to express measurements in clock
cycles rather than nanoseconds or picoseconds. That way, the measurements express how many instructions
are being executed rather than how fast the clock runs.

Many procedures contain a loop that iterates over a set of elements. For example, functionspsum1 and
psum2 in Figure 5.1 both compute theprefix sumof a vector of lengthn. For a vector~a = 〈a0, a1, . . . , an−1〉,
the prefix sum~p = 〈p0, p1, . . . , pn−1〉 is defined as

p0 = a0

pi = pi−1 + ai, 1 ≤ i < n
(5.1)

Functionpsum1 computes one element of the result vector per iteration. Thesecond uses a technique
known asloop unrolling to compute two elements per iteration. We will explore the benefits of loop un-
rolling later in this chapter. See Problems 5.11, 5.12, and 5.21 for more about analyzing and optimizing the
prefix-sum computation.

The time required by such a procedure can be characterized asa constant plus a factor proportional to the
number of elements processed. For example, Figure 5.2 showsa plot of the number of clock cycles required
by the two functions for a range of values ofn. Using aleast squares fit, we find that the run times (in
clock cycles) forpsum1 andpsum2 can be approximated by the equations496 + 10.0n and500 + 6.5n,
respectively. These equations indicate an overhead of 496 to 500 cycles due to the timing code and to
initiate the procedure, set up the loop, and complete the procedure, plus a linear factor of 6.5 or 10.0 cycles

456 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

050010001500200025003000

0 50 100 150 200
C ycl es

Elements
psum1Slope = 10.0 psum2Slope = 6.5

Figure 5.2:Performance of prefix-sum functions. The slope of the lines indicates the number of clock
cycles per element (CPE).

per element. For large values ofn (say, greater than 200), the run times will be dominated by the linear
factors. We refer to the coefficients in these terms as the effective number ofcycles per element, abbreviated
“CPE.” We prefer measuring the number of cycles perelementrather than the number of cycles periteration,
because techniques such as loop unrolling allow us to use fewer iterations to complete the computation, but
our ultimate concern is how fast the procedure will run for a given vector length. We focus our efforts on
minimizing the CPE for our computations. By this measure,psum2, with a CPE of 6.50, is superior to
psum1, with a CPE of 10.0.

Aside: What is a least squares fit?
For a set of data points(x1, y1), . . . (xn, yn), we often try to draw a line that best approximates the X-Y trend
represented by this data. With a least squares fit, we look fora line of the formy = mx + b that minimizes the
following error measure:

E(m, b) =
X

i=1,n

(mxi + b − yi)
2

An algorithm for computingm andb can be derived by finding the derivatives ofE(m, b) with respect tom andb

and setting them to 0.End Aside.

Practice Problem 5.2:

Later in this chapter we will start with a single function andgenerate many different variants that preserve
the function’s behavior, but with different performance characteristics. For three of these variants, we
found that the run times (in clock cycles) can be approximated by the following functions:

Version 1: 60 + 35n

Version 2: 136 + 4n

Version 3: 157 + 1.25n

For what values ofn would each version be the fastest of the three? Remember thatn will always be an
integer.

5.3. PROGRAM EXAMPLE 457len len

lendata
Figure 5.3:Vector abstract data type. A vector is represented by header information plus array of desig-
nated length.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into more efficient code, we
will use a running example based on the vector data structureshown in Figure 5.3. A vector is represented
with two blocks of memory: the header and the data array. The header is a structure declared as follows:

code/opt/vec.h

1 /* Create abstract data type for vector */
2 typedef struct {
3 long int len;
4 data_t *data;
5 } vec_rec, *vec_ptr;

code/opt/vec.h

The declaration uses data typedata t to designate the data type of the underlying elements. In oureval-
uation, we measure the performance of our code for integer (Cint), single-precision floating-point (C
float), and double-precision floating-point (Cdouble) data. We do this by compiling and running the
program separately for different type declarations, such as the following for data typeint:

typedef int data_t;

We allocate the data array block to store the vector elementsas an array oflen objects of typedata t.

Figure 5.4 shows some basic procedures for generating vectors, accessing vector elements, and determining
the length of a vector. An important feature to note is thatget_vec_element, the vector access routine,
performs bounds checking for every vector reference. This code is similar to the array representations used
in many other languages, including Java. Bounds checking reduces the chances of program error, but it can
also slow down program execution.

As an optimization example, consider the code shown in Figure 5.5, which combines all of the elements
in a vector into a single value according to some operation. By using different definitions of compile-
time constantsIDENT andOP, the code can be recompiled to perform different operationson the data. In
particular, using the declarations

#define IDENT 0
#define OP +

it sums the elements of the vector. Using the declarations

458 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/vec.c

1 /* Create vector of specified length */
2 vec_ptr new_vec(long int len)
3 {
4 /* Allocate header structure */
5 vec_ptr result = (vec_ptr) malloc(sizeof(vec_rec));
6 if (!result)
7 return NULL; /* Couldn’t allocate storage */
8 result->len = len;
9 /* Allocate array */

10 if (len > 0) {
11 data_t *data = (data_t *)calloc(len, sizeof(data_t));
12 if (!data) {
13 free((void *) result);
14 return NULL; /* Couldn’t allocate storage */
15 }
16 result->data = data;
17 }
18 else
19 result->data = NULL;
20 return result;
21 }
22

23 /*
24 * Retrieve vector element and store at dest.
25 * Return 0 (out of bounds) or 1 (successful)
26 */
27 int get_vec_element(vec_ptr v, long int index, data_t *dest)
28 {
29 if (index < 0 || index >= v->len)
30 return 0;
31 *dest = v->data[index];
32 return 1;
33 }
34

35 /* Return length of vector */
36 long int vec_length(vec_ptr v)
37 {
38 return v->len;
39 }

code/opt/vec.c

Figure 5.4: Implementation of vector abstract data type. In the actual program, data type data t is
declared to be int, float, or double
.

5.3. PROGRAM EXAMPLE 459

1 /* Implementation with maximum use of data abstraction */
2 void combine1(vec_ptr v, data_t *dest)
3 {
4 long int i;
5

6 *dest = IDENT;
7 for (i = 0; i < vec_length(v); i++) {
8 data_t val;
9 get_vec_element(v, i, &val);

10 *dest = *dest OP val;
11 }
12 }

Figure 5.5:Initial implementation of combining operation. Using different declarations of identity ele-
ment IDENT and combining operation OP, we can measure the routine for different operations.

#define IDENT 1
#define OP *

it computes the product of the vector elements.

In our presentation, we will proceed through a series of transformations of the code, writing different ver-
sions of the combining function. To gauge progress, we will measure the CPE performance of the functions
on a machine with an Intel Core i7 processor, which we will refer to as ourreference machine. Some
characteristics of this processor were given in Section 3.1. These measurements characterize performance
in terms of how the programs run on just one particular machine, and so there is no guarantee of comparable
performance on other combinations of machine and compiler.However, we have compared the results with
those for a number of different compiler/processor combinations, and found them quite comparable.

As we proceed through a set of transformations, we will find that many lead to only minimal performance
gains, while others have more dramatic effects. Determining which combinations of transformations to ap-
ply is indeed part of the “black art” of writing fast code. Some combinations that do not provide measurable
benefits are indeed ineffective, while others are importantas ways to enable further optimizations by the
compiler. In our experience, the best approach involves a combination of experimentation and analysis:
repeatedly attempting different approaches, performing measurements, and examining the assembly-code
representations to identify underlying performance bottlenecks.

As a starting point, the following are CPE measurements forcombine1 running on our reference machine,
trying all combinations of data type and combining operation. For single-precision and double-precision
floating-point data, our experiments on this machine gave identical performance for addition, but differing
performance for multiplication. We therefore report five CPE values: integer addition and multiplication,
floating-point addition, single-precision multiplication (labeled “F*”), and double-precision multiplication
(labeled “D*”).

460 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

1 /* Move call to vec_length out of loop */
2 void combine2(vec_ptr v, data_t *dest)
3 {
4 long int i;
5 long int length = vec_length(v);
6

7 *dest = IDENT;
8 for (i = 0; i < length; i++) {
9 data_t val;

10 get_vec_element(v, i, &val);
11 *dest = *dest OP val;
12 }
13 }

Figure 5.6:Improving the efficiency of the loop test. By moving the call to vec length out of the loop
test, we eliminate the need to execute it on every iteration.

Function Page Method Integer Floating point
+ * + F * D *

combine1 459 Abstract unoptimized 29.02 29.21 27.40 27.90 27.36
combine1 459 Abstract-O1 12.00 12.00 12.00 12.01 13.00

We can see that our measurements are somewhat imprecise. Themore likely CPE number for integer sum
and product is 29.00, rather than 29.02 or 29.21. Rather than“fudging” our numbers to make them look
good, we will present the measurements we actually obtained. There are many factors that complicate the
task of reliably measuring the precise number of clock cycles required by some code sequence. It helps
when examining these numbers to mentally round the results up or down by a few hundredths of a clock
cycle.

The unoptimized code provides a direct translation of the C code into machine code, often with obvious
inefficiencies. By simply giving the command-line option ‘-O1’, we enable a basic set of optimizations.
As can be seen, this significantly improves the program performance—more than a factor of two—with no
effort on behalf of the programmer. In general, it is good to get into the habit of enabling at least this level of
optimization. For the remainder of our measurements, we useoptimization levels 1 and higher in generating
and measuring our programs.

5.4 Eliminating Loop Inefficiencies

Observe that procedurecombine1, as shown in Figure 5.5, calls functionvec_length as the test con-
dition of thefor loop. Recall from our discussion of how to translate code containing loops into machine-
level programs (Section 3.6.5) that the test condition mustbe evaluated on every iteration of the loop. On
the other hand, the length of the vector does not change as theloop proceeds. We could therefore compute
the vector length only once and use this value in our test condition.

Figure 5.6 shows a modified version calledcombine2, which callsvec length at the beginning and

5.4. ELIMINATING LOOP INEFFICIENCIES 461

assigns the result to a local variablelength. This transformation has noticeable effect on the overall
performance for some data types and operations, and minimalor even none for others. In any case, this
transformation is required to eliminate inefficiencies that would become bottlenecks as we attempt further
optimizations.

Function Page Method Integer Floating point
+ * + F * D *

combine1 459 Abstract-O1 12.00 12.00 12.00 12.01 13.00
combine2 460 Movevec length 8.03 8.09 10.09 11.09 12.08

This optimization is an instance of a general class of optimizations known ascode motion. They involve
identifying a computation that is performed multiple times, (e.g., within a loop), but such that the result of
the computation will not change. We can therefore move the computation to an earlier section of the code
that does not get evaluated as often. In this case, we moved the call tovec length from within the loop
to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as discussed previously, they are
typically very cautious about making transformations thatchange where or how many times a procedure
is called. They cannot reliably detect whether or not a function will have side effects, and so they assume
that it might. For example, ifvec length had some side effect, thencombine1 andcombine2 could
have different behaviors. To improve the code, the programmer must often help the compiler by explicitly
performing code motion.

As an extreme example of the loop inefficiency seen incombine1, consider the procedurelower1 shown
in Figure 5.7. This procedure is styled after routines submitted by several students as part of a network
programming project. Its purpose is to convert all of the uppercase letters in a string to lower case. The
procedure steps through the string, converting each uppercase character to lowercase. The case conversion
involves shifting characters in the range ‘A’ to ‘Z’ to the range ‘a’ to ‘z.’

The library functionstrlen is called as part of the loop test oflower1. Althoughstrlen is typically
implemented with special x86 string-processing instructions, its overall execution is similar to the simple
version that is also shown in Figure 5.7. Since strings in C are null-terminated character sequences,strlen
can only determine the length of a string by stepping throughthe sequence until it hits a null character. For a
string of lengthn, strlen takes time proportional ton. Sincestrlen is called in each of then iterations
of lower1, the overall run time oflower1 is quadratic in the string length, proportional ton2.

This analysis is confirmed by actual measurements of the functions for different length strings, as shown in
Figure 5.8 (and using the library version ofstrlen). The graph of the run time forlower1 rises steeply
as the string length increases (Figure 5.8(a)). Figure Figure 5.8(b) shows the run times for seven different
lengths (not the same as shown in the graph), each of which is apower of 2. Observe that forlower1 each
doubling of the string length causes a quadrupling of the runtime. This is a clear indicator of a quadratic
run time. For a string of length 1,048,576,lower1 requires over 13 minutes of CPU time.

Functionlower2 shown in Figure 5.7 is identical to that oflower1, except that we have moved the call
to strlen out of the loop. The performance improves dramatically. Fora string length of 1,048,576,
the function requires just 1.5 milliseconds—over 500,000 times faster thanlower1. Each doubling of the
string length causes a doubling of the run time—a clear indicator of linear run time. For longer strings, the
run-time improvement will be even greater.

462 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

1 /* Convert string to lowercase: slow */
2 void lower1(char *s)
3 {
4 int i;
5

6 for (i = 0; i < strlen(s); i++)
7 if (s[i] >= ’A’ && s[i] <= ’Z’)
8 s[i] -= (’A’ - ’a’);
9 }

10

11 /* Convert string to lowercase: faster */
12 void lower2(char *s)
13 {
14 int i;
15 int len = strlen(s);
16

17 for (i = 0; i < len; i++)
18 if (s[i] >= ’A’ && s[i] <= ’Z’)
19 s[i] -= (’A’ - ’a’);
20 }
21

22 /* Sample implementation of library function strlen */
23 /* Compute length of string */
24 size_t strlen(const char *s)
25 {
26 int length = 0;
27 while (*s != ’\0’) {
28 s++;
29 length++;
30 }
31 return length;
32 }

Figure 5.7:Lowercase conversion routines. The two procedures have radically different performance.

5.4. ELIMINATING LOOP INEFFICIENCIES 463

0204060
80100120140160180200

0 100000 200000 300000 400000 500000String length
lower1

lower2
(a)

Function String length
16,384 32,768 65,536 131,072 262,144 524,288 1,048,576

lower1 0.19 0.77 3.08 12.34 49.39 198.42 791.22
lower2 0.0000 0.0000 0.0001 0.0002 0.0004 0.0008 0.0015

(b)

Figure 5.8:Comparative performance of lowercase conversion routines . The original code lower1
has a quadratic run time due to an inefficient loop structure. The modified code lower2 has a linear run
time.

