
Chapter 4

Processor Architecture

Modern microprocessors are among the most complex systems ever created by humans. A single silicon
chip, roughly the size of a fingernail, can contain a completehigh-performance processor, large cache
memories, and the logic required to interface it to externaldevices. In terms of performance, the processors
implemented on a single chip today dwarf the room-sized supercomputers that cost over $10 million just
20 years ago. Even the embedded processors found in everydayappliances such as cell phones, personal
digital assistants, and handheld game systems are far more powerful than the early developers of computers
ever envisioned.

Thus far, we have only viewed computer systems down to the level of machine-language programs. We
have seen that a processor must execute a sequence of instructions, where each instruction performs some
primitive operation, such as adding two numbers. An instruction is encoded in binary form as a sequence
of 1 or more bytes. The instructions supported by a particular processor and their byte-level encodings
are known as itsinstruction-set architecture(ISA). Different “families” of processors, such as Intel IA32,
IBM/Freescale PowerPC, and the ARM processor family have different ISAs. A program compiled for one
type of machine will not run on another. On the other hand, there are many different models of processors
within a single family. Each manufacturer produces processors of ever-growing performance and com-
plexity, but the different models remain compatible at the ISA level. Popular families, such as IA32, have
processors supplied by multiple manufacturers. Thus, the ISA provides a conceptual layer of abstraction
between compiler writers, who need only know what instructions are permitted and how they are encoded,
and processor designers, who must build machines that execute those instructions.

In this chapter, we take a brief look at the design of processor hardware. We study the way a hardware system
can execute the instructions of a particular ISA. This view will give you a better understanding of how
computers work and the technological challenges faced by computer manufacturers. One important concept
is that the actual way a modern processor operates can be quite different from the model of computation
implied by the ISA. The ISA model would seem to implysequentialinstruction execution, where each
instruction is fetched and executed to completion before the next one begins. By executing different parts
of multiple instructions simultaneously, the processor can achieve higher performance than if it executed
just one instruction at a time. Special mechanisms are used to make sure the processor computes the same
results as it would with sequential execution. This idea of using clever tricks to improve performance while
maintaining the functionality of a simpler and more abstract model is well known in computer science.

317

318 CHAPTER 4. PROCESSOR ARCHITECTURE

Examples include the use of caching in Web browsers and information retrieval data structures such as
balanced binary trees and hash tables.

Chances are you will never design your own processor. This isa task for experts working at fewer than 100
companies worldwide. Why, then, should you learn about processor design?

• It is intellectually interesting and important.There is an intrinsic value in learning how things work.
It is especially interesting to learn the inner workings of asystem that is such a part of the daily lives
of computer scientists and engineers and yet remains a mystery to many. Processor design embodies
many of the principles of good engineering practice. It requires creating a simple and regular structure
to perform a complex task.

• Understanding how the processor works aids in understanding how the overall computer system
works.In Chapter 6, we will look at the memory system and the techniques used to create an image of
a very large memory with a very fast access time. Seeing the processor side of the processor-memory
interface will make this presentation more complete.

• Although few people design processors, many design hardware systems that contain processors.This
has become commonplace as processors are embedded into real-world systems such as automobiles
and appliances. Embedded-system designers must understand how processors work, because these
systems are generally designed and programmed at a lower level of abstraction than is the case for
desktop systems.

• You just might work on a processor design.Although the number of companies producing micropro-
cessors is small, the design teams working on those processors are already large and growing. There
can be over 1000 people involved in the different aspects of amajor processor design.

In this chapter, we start by defining a simple instruction setthat we use as a running example for our
processor implementations. We call this the “Y86” instruction set, because it was inspired by the IA32
instruction set, which is colloquially referred to as “x86.” Compared with IA32, the Y86 instruction set has
fewer data types, instructions, and addressing modes. It also has a simpler byte-level encoding. Still, it is
sufficiently complete to allow us to write simple programs manipulating integer data. Designing a processor
to implement Y86 requires us to face many of the challenges faced by processor designers.

We then provide some background on digital hardware design.We describe the basic building blocks used
in a processor and how they are connected together and operated. This presentation builds on our discussion
of Boolean algebra and bit-level operations from Chapter 2.We also introduce a simple language, HCL (for
“Hardware Control Language”), to describe the control portions of hardware systems. We will later use this
language to describe our processor designs. Even if you already have some background in logic design, read
this section to understand our particular notation.

As a first step in designing a processor, we present a functionally correct, but somewhat impractical, Y86
processor based onsequentialoperation. This processor executes a complete Y86 instruction on every clock
cycle. The clock must run slowly enough to allow an entire series of actions to complete within one cycle.
Such a processor could be implemented, but its performance would be well below what could be achieved
for this much hardware.

With the sequential design as a basis, we then apply a series of transformations to create apipelinedpro-
cessor. This processor breaks the execution of each instruction into five steps, each of which is handled

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 319%eax%ecx%edx%ebx %esi%edi%esp%ebp ZF SF OF
Figure 4.1:Y86 programmer-visible state. As with IA32, programs for Y86 access and modify the pro-
gram registers, the condition code, the program counter (PC), and the memory. The status code indicates
whether the program is running normally, or some special event has occurred.

by a separate section orstageof the hardware. Instructions progress through the stages of the pipeline,
with one instruction entering the pipeline on each clock cycle. As a result, the processor can be executing
the different steps of up to five instructions simultaneously. Making this processor preserve the sequential
behavior of the Y86 ISA requires handling a variety ofhazardconditions, where the location or operands
of one instruction depend on those of other instructions that are still in the pipeline.

We have devised a variety of tools for studying and experimenting with our processor designs. These
include an assembler for Y86, a simulator for running Y86 programs on your machine, and simulators for
two sequential and one pipelined processor design. The control logic for these designs is described by files in
HCL notation. By editing these files and recompiling the simulator, you can alter and extend the simulator’s
behavior. A number of exercises are provided that involve implementing new instructions and modifying
how the machine processes instructions. Testing code is provided to help you evaluate the correctness of
your modifications. These exercises will greatly aid your understanding of the material and will give you an
appreciation for the many different design alternatives faced by processor designers.

Web AsideARCH:VLOG presents a representation of our pipelined Y86 processor inthe Verilog hardware
description language. This involves creating modules for the basic hardware building blocks and for the
overall processor structure. We automatically translate the HCL description of the control logic into Ver-
ilog. By first debugging the HCL description with our simulators, we eliminate many of the tricky bugs that
would otherwise show up in the hardware design. Given a Verilog description, there are commercial and
open-source tools to support simulation andlogic synthesis, generating actual circuit designs for the micro-
processors. So, although much of the effort we expend here isto create pictorial and textual descriptions
of a system, much as one would when writing software, the factthat these designs can be automatically
synthesized demonstrates that we are indeed creating a system that can be realized as hardware.

4.1 The Y86 Instruction Set Architecture

Defining an instruction set architecture, such as Y86, includes defining the different state elements, the set of
instructions and their encodings, a set of programming conventions, and the handling of exceptional events.

320 CHAPTER 4. PROCESSOR ARCHITECTURE

4.1.1 Programmer-Visible State

As Figure 4.1 illustrates, each instruction in a Y86 programcan read and modify some part of the processor
state. This is referred to as theprogrammer-visiblestate, where the “programmer” in this case is either
someone writing programs in assembly code or a compiler generating machine-level code. We will see in
our processor implementations that we do not need to represent and organize this state in exactly the manner
implied by the ISA, as long as we can make sure that machine-level programs appear to have access to the
programmer-visible state. The state for Y86 is similar to that for IA32. There are eightprogram registers:
%eax, %ecx, %edx, %ebx, %esi, %edi, %esp, and%ebp. Each of these stores a word. Register%esp
is used as a stack pointer by the push, pop, call, and return instructions. Otherwise, the registers have no
fixed meanings or values. There are three single-bitcondition codes, ZF, SF, andOF, storing information
about the effect of the most recent arithmetic or logical instruction. The program counter (PC) holds the
address of the instruction currently being executed.

Thememoryis conceptually a large array of bytes, holding both programand data. Y86 programs reference
memory locations usingvirtual addresses. A combination of hardware and operating system software trans-
lates these into the actual, orphysical, addresses indicating where the values are actually storedin memory.
We will study virtual memory in more detail in Chapter 9. For now, we can think of the virtual memory
system as providing Y86 programs with an image of a monolithic byte array.

A final part of the program state is a status codeStat, indicating the overall state of program execution.
It will indicate either normal operation, or that some sort of exceptionhas occurred, such as when an in-
struction attempts to read from an invalid memory address. The possible status codes and the handling of
exceptions is described in Section 4.1.4.

4.1.2 Y86 Instructions

Figure 4.2 gives a concise description of the individual instructions in the Y86 ISA. We use this instruction
set as a target for our processor implementations. The set ofY86 instructions is largely a subset of the
IA32 instruction set. It includes only 4-byte integer operations, has fewer addressing modes, and includes
a smaller set of operations. Since we only use 4-byte data, wecan refer to these as “words” without any
ambiguity. In this figure, we show the assembly-code representation of the instructions on the left and the
byte encodings on the right. The assembly-code format is similar to the ATT format for IA32.

Here are some further details about the different Y86 instructions.

• The IA32movl instruction is split into four different instructions:irmovl,rrmovl,mrmovl, and
rmmovl, explicitly indicating the form of the source and destination. The source is either immediate
(i), register (r), or memory (m). It is designated by the first character in the instruction name. The
destination is either register (r) or memory (m). It is designated by the second character in the instruc-
tion name. Explicitly identifying the four types of data transfer will prove helpful when we decide
how to implement them.

The memory references for the two memory movement instructions have a simple base and displace-
ment format. We do not support the second index register or any scaling of a register’s value in the
address computation.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 321Byte 0 1 2 3 4 5

pushl rA A 0 rA F
jXX Dest 7 fn Dest
popl rA B 0 rA F
call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rBirmovl V, rB 3 0 F rB Vrmmovl rA, D (rB) 4 0 rA rB Dmrmovl D (rB), rA 5 0 rA rB DOPl rA, rB 6 fn rA rB
ret 9 0

halt 0 0nop 1 0

cmovXX rA, rB 2 fn rA rB
Figure 4.2: Y86 instruction set. Instruction encodings range between 1 and 6 bytes. An instruction
consists of a 1-byte instruction specifier, possibly a 1-byte register specifier, and possibly a 4-byte constant
word. Field fn specifies a particular integer operation (OPl), data movement condition (cmovXX), or branch
condition (jXX). All numeric values are shown in hexadecimal.

addl 6 0subl 6 1andl 6 2xorl 6 3
jmp 7 0jle 7 1jl 7 2je 7 3

jne 7 4jge 7 5jg 7 6
Operations Branches rrmovl 2 0cmovle 2 1cmovl 2 2cmove 2 3

cmovne 2 4cmovge 2 5cmovg 2 6
Moves

Figure 4.3:Function codes for Y86 instruction set. The code specifies a particular integer operation,
branch condition, or data transfer condition. These instructions are shown as OPl, jXX, and cmovXX in
Figure 4.2.

322 CHAPTER 4. PROCESSOR ARCHITECTURE

As with IA32, we do not allow direct transfers from one memorylocation to another. In addition, we
do not allow a transfer of immediate data to memory.

• There are four integer operation instructions, shown in Figure 4.2 asOPl. These areaddl, subl,
andl, andxorl. They operate only on register data, whereas IA32 also allows operations on mem-
ory data. These instructions set the three condition codesZF, SF, andOF (zero, sign, and overflow).

• The seven jump instructions (shown in Figure 4.2 asjXX) arejmp, jle, jl, je, jne, jge, and
jg. Branches are taken according to the type of branch and the settings of the condition codes. The
branch conditions are the same as with IA32 (Figure 3.12).

• There are six conditional move instructions (shown in Figure 4.2 ascmovXX): cmovle, cmovl,
cmove, cmovne, cmovge, andcmovg. These have the same format as the register-register move
instructionrrmovl, but the destination register is updated only if the condition codes satisfy the
required constraints.

• Thecall instruction pushes the return address on the stack and jumpsto the destination address.
Theret instruction returns from such a call.

• Thepushl andpopl instructions implement push and pop, just as they do in IA32.

• Thehalt instruction stops instruction execution. IA32 has a comparable instruction, calledhlt.
IA32 application programs are not permitted to use this instruction, since it causes the entire system
to suspend operation. For Y86, executing thehalt instruction causes the processor to stop, with the
status code set toHLT. (See Section 4.1.4.)

4.1.3 Instruction Encoding

Figure 4.2 also shows the byte-level encoding of the instructions. Each instruction requires between 1 and 6
bytes, depending on which fields are required. Every instruction has an initial byte identifying the instruction
type. This byte is split into two 4-bit parts: the high-order, or code, part, and the low-order, orfunction, part.
As you can see in Figure 4.2, code values range from0 to 0xB. The function values are significant only
for the cases where a group of related instructions share a common code. These are given in Figure 4.3,
showing the specific encodings of the integer operation, conditional move, and branch instructions. Observe
thatrrmovl has the same instruction code as the conditional moves. It can be viewed as an “unconditional
move” just as thejmp instruction is an unconditional jump, both having functioncode0.

As shown in Figure 4.4, each of the eight program registers has an associatedregister identifier(ID) ranging
from 0 to 7. The numbering of registers in Y86 matches what is used in IA32. The program registers are
stored within the CPU in aregister file, a small random-access memory where the register IDs serve as
addresses. ID value0xF is used in the instruction encodings and within our hardwaredesigns when we
need to indicate that no register should be accessed.

Some instructions are just 1 byte long, but those that require operands have longer encodings. First, there
can be an additionalregister specifier byte, specifying either one or two registers. These register fields are
calledrA andrB in Figure 4.2. As the assembly-code versions of the instructions show, they can specify the
registers used for data sources and destinations, as well asthe base register used in an address computation,

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 323

Number Register name
0 %eax
1 %ecx
2 %edx
3 %ebx
4 %esp
5 %ebp
6 %esi
7 %edi
F No register

Figure 4.4: Y86 program register identifiers. Each of the eight program registers has an associated
identifier (ID) ranging from 0 to 7. ID 0xF in a register field of an instruction indicates the absence of a
register operand.

depending on the instruction type. Instructions that have no register operands, such as branches andcall,
do not have a register specifier byte. Those that require justone register operand (irmovl, pushl, and
popl) have the other register specifier set to value0xF. This convention will prove useful in our processor
implementation.

Some instructions require an additional 4-byteconstant word. This word can serve as the immediate data
for irmovl, the displacement forrmmovl andmrmovl address specifiers, and the destination of branches
and calls. Note that branch and call destinations are given as absolute addresses, rather than using the PC-
relative addressing seen in IA32. Processors use PC-relative addressing to give more compact encodings of
branch instructions and to allow code to be copied from one part of memory to another without the need to
update all of the branch target addresses. Since we are more concerned with simplicity in our presentation,
we use absolute addressing. As with IA32, all integers have alittle-endian encoding. When the instruction
is written in disassembled form, these bytes appear in reverse order.

As an example, let us generate the byte encoding of the instructionrmmovl %esp,0x12345(%edx) in
hexadecimal. From Figure 4.2, we can see thatrmmovl has initial byte40. We can also see that source
register%esp should be encoded in therA field, and base register%edx should be encoded in therB field.
Using the register numbers in Figure 4.4, we get a register specifier byte of42. Finally, the displacement is
encoded in the 4-byte constant word. We first pad0x12345 with leading zeros to fill out 4 bytes, giving a
byte sequence of00 01 23 45. We write this in byte-reversed order as45 23 01 00. Combining these,
we get an instruction encoding of404245230100.

One important property of any instruction set is that the byte encodings must have a unique interpretation.
An arbitrary sequence of bytes either encodes a unique instruction sequence or is not a legal byte sequence.
This property holds for Y86, because every instruction has aunique combination of code and function
in its initial byte, and given this byte, we can determine thelength and meaning of any additional bytes.
This property ensures that a processor can execute an object-code program without any ambiguity about
the meaning of the code. Even if the code is embedded within other bytes in the program, we can readily
determine the instruction sequence as long as we start from the first byte in the sequence. On the other hand,
if we do not know the starting position of a code sequence, we cannot reliably determine how to split the

324 CHAPTER 4. PROCESSOR ARCHITECTURE

sequence into individual instructions. This causes problems for disassemblers and other tools that attempt
to extract machine-level programs directly from object-code byte sequences.

Practice Problem 4.1:

Determine the byte encoding of the Y86 instruction sequencethat follows. The line “.pos 0x100”
indicates that the starting address of the object code should be0x100.

.pos 0x100 # Start code at address 0x100
irmovl $15,%ebx # Load 15 into %ebx
rrmovl %ebx,%ecx # Copy 15 to %ecx

loop: # loop:
rmmovl %ecx,-3(%ebx) # Save %ecx at address 15-3 = 12
addl %ebx,%ecx # Increment %ecx by 15
jmp loop # Goto loop

Practice Problem 4.2:

For each byte sequence listed, determine the Y86 instruction sequence it encodes. If there is some invalid
byte in the sequence, show the instruction sequence up to that point and indicate where the invalid value
occurs. For each sequence, we show the starting address, then a colon, and then the byte sequence.

A. 0x100:30f3fcffffff40630008000000

B. 0x200:a06f80080200000030f30a00000090

C. 0x300:50540700000010f0b01f

D. 0x400:6113730004000000

E. 0x500:6362a0f0

Aside: Comparing IA32 to Y86 instruction encodings
Compared with the instruction encodings used in IA32, the encoding of Y86 is much simpler but also less com-
pact. The register fields occur only in fixed positions in all Y86 instructions, whereas they are packed into various
positions in the different IA32 instructions. We use a 4-bitencoding of registers, even though there are only eight
possible registers. IA32 uses just 3 bits. Thus, IA32 can pack a push or pop instruction into just 1 byte, with a 5-bit
field indicating the instruction type and the remaining 3 bits for the register specifier. IA32 can encode constant
values in 1, 2, or 4 bytes, whereas Y86 always requires 4 bytes. End Aside.

Aside: RISC and CISC instruction sets
IA32 is sometimes labeled as a “complex instruction set computer” (CISC—pronounced “sisk”), and is deemed
to be the opposite of ISAs that are classified as “reduced instruction set computers” (RISC—pronounced “risk”).
Historically, CISC machines came first, having evolved fromthe earliest computers. By the early 1980s, instruction
sets for mainframe and minicomputers had grown quite large,as machine designers incorporated new instructions
to support high-level tasks, such as manipulating circularbuffers, performing decimal arithmetic, and evaluating
polynomials. The first microprocessors appeared in the early 1970s and had limited instruction sets, because the
integrated-circuit technology then posed severe constraints on what could be implemented on a single chip. Micro-
processors evolved quickly and, by the early 1980s, were following the path of increasing instruction-set complexity
set by mainframes and minicomputers. The x86 family took this path, evolving into IA32, and more recently into
x86-64. Even the x86 line continues to evolve as new classes of instructions are added based on the needs of
emerging applications.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 325

The RISC design philosophy developed in the early 1980s as analternative to these trends. A group of hardware
and compiler experts at IBM, strongly influenced by the ideasof IBM researcher John Cocke, recognized that they
could generate efficient code for a much simpler form of instruction set. In fact, many of the high-level instructions
that were being added to instruction sets were very difficultto generate with a compiler and were seldom used.
A simpler instruction set could be implemented with much less hardware and could be organized in an efficient
pipeline structure, similar to those described later in this chapter. IBM did not commercialize this idea until many
years later, when it developed the Power and PowerPC ISAs.

The RISC concept was further developed by Professors David Patterson, of the University of California at Berkeley,
and John Hennessy, of Stanford University. Patterson gave the name RISC to this new class of machines, and CISC
to the existing class, since there had previously been no need to have a special designation for a nearly universal
form of instruction set.

Comparing CISC with the original RISC instruction sets, we find the following general characteristics:

CISC Early RISC
A large number of instructions. The Intel docu-
ment describing the complete set of instructions
[28, 29] is over 1200 pages long.

Many fewer instructions. Typically less than 100.

Some instructions with long execution times.
These include instructions that copy an entire
block from one part of memory to another and oth-
ers that copy multiple registers to and from mem-
ory.

No instruction with a long execution time. Some
early RISC machines did not even have an integer
multiply instruction, requiring compilers to imple-
ment multiplication as a sequence of additions.

Variable-length encodings. IA32 instructions can
range from 1 to 15 bytes.

Fixed-length encodings. Typically all instructions
are encoded as 4 bytes.

Multiple formats for specifying operands. In IA32,
a memory operand specifier can have many differ-
ent combinations of displacement, base and index
registers, and scale factors.

Simple addressing formats. Typically just base and
displacement addressing.

Arithmetic and logical operations can be applied
to both memory and register operands.

Arithmetic and logical operations only use regis-
ter operands. Memory referencing is only allowed
by load instructions, reading from memory into a
register, andstoreinstructions, writing from a reg-
ister to memory. This convention is referred to as
a load/store architecture.

Implementation artifacts hidden from machine-
level programs. The ISA provides a clean abstrac-
tion between programs and how they get executed.

Implementation artifacts exposed to machine-level
programs. Some RISC machines prohibit particu-
lar instruction sequences and have jumps that do
not take effect until the following instruction is ex-
ecuted. The compiler is given the task of optimiz-
ing performance within these constraints.

Condition codes. Special flags are set as a side
effect of instructions and then used for conditional
branch testing.

No condition codes. Instead, explicit test instruc-
tions store the test results in normal registers for
use in conditional evaluation.

Stack-intensive procedure linkage. The stack
is used for procedure arguments and return ad-
dresses.

Register-intensive procedure linkage. Registers
are used for procedure arguments and return ad-
dresses. Some procedures can thereby avoid any
memory references. Typically, the processor has
many more (up to 32) registers.

The Y86 instruction set includes attributes of both CISC andRISC instruction sets. On the CISC side, it has
condition codes, variable-length instructions, and stack-intensive procedure linkages. On the RISC side, it uses
a load-store architecture and a regular encoding. It can be viewed as taking a CISC instruction set (IA32) and
simplifying it by applying some of the principles of RISC.End Aside.

326 CHAPTER 4. PROCESSOR ARCHITECTURE

Value Name Meaning
1 AOK Normal operation
2 HLT halt instruction encountered
3 ADR Invalid address encountered
4 INS Invalid instruction encountered

Figure 4.5:Y86 status codes. In our design, the processor halts for any code other than AOK.

Aside: The RISC versus CISC controversy
Through the 1980s, battles raged in the computer architecture community regarding the merits of RISC versus CISC
instruction sets. Proponents of RISC claimed they could getmore computing power for a given amount of hardware
through a combination of streamlined instruction set design, advanced compiler technology, and pipelined processor
implementation. CISC proponents countered that fewer CISCinstructions were required to perform a given task,
and so their machines could achieve higher overall performance.

Major companies introduced RISC processor lines, including Sun Microsystems (SPARC), IBM and Motorola
(PowerPC), and Digital Equipment Corporation (Alpha). A British company, Acorn Computers Ltd., developed
its own architecture, ARM (originally an acronym for “AcornRISC Machine”), which is widely used in embedded
applications, such as cellphones.

In the early 1990s, the debate diminished as it became clear that neither RISC nor CISC in their purest forms
were better than designs that incorporated the best ideas ofboth. RISC machines evolved and introduced more
instructions, many of which take multiple cycles to execute. RISC machines today have hundreds of instructions
in their repertoire, hardly fitting the name “reduced instruction set machine.” The idea of exposing implementation
artifacts to machine-level programs proved to be short-sighted. As new processor models were developed using
more advanced hardware structures, many of these artifactsbecame irrelevant, but they still remained part of the
instruction set. Still, the core of RISC design is an instruction set that is well-suited to execution on a pipelined
machine.

More recent CISC machines also take advantage of high-performance pipeline structures. As we will discuss in
Section 5.7, they fetch the CISC instructions and dynamically translate them into a sequence of simpler, RISC-like
operations. For example, an instruction that adds a register to memory is translated into three operations: one to
read the original memory value, one to perform the addition,and a third to write the sum to memory. Since the
dynamic translation can generally be performed well in advance of the actual instruction execution, the processor
can sustain a very high execution rate.

Marketing issues, apart from technological ones, have alsoplayed a major role in determining the success of different
instruction sets. By maintaining compatibility with its existing processors, Intel with x86 made it easy to keep
moving from one generation of processor to the next. As integrated-circuit technology improved, Intel and other
x86 processor manufacturers could overcome the inefficiencies created by the original 8086 instruction set design,
using RISC techniques to produce performance comparable tothe best RISC machines. As we saw in Section 3.13,
the evolution of IA32 into x86-64 provided an opportunity toincorporate several features of RISC into x86. In
the areas of desktop and laptop computing, x86 has achieved total domination, and it is increasingly popular for
high-end server machines.

RISC processors have done very well in the market forembedded processors, controlling such systems as cellular
telephones, automobile brakes, and Internet appliances. In these applications, saving on cost and power is more
important than maintaining backward compatibility. In terms of the number of processors sold, this is a very large
and growing market.End Aside.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 327

IA32 code

int Sum(int *Start, int Count)

1 Sum:
2 pushl %ebp
3 movl %esp,%ebp
4 movl 8(%ebp),%ecx ecx = Start

5 movl 12(%ebp),%edx edx = Count

6 xorl %eax,%eax sum = 0

7 testl %edx,%edx
8 je .L34
9 .L35:

10 addl (%ecx),%eax add *Start to sum

11 addl $4,%ecx Start++

12 decl %edx Count--

13 jnz .L35 Stop when 0

14 .L34:
15 movl %ebp,%esp
16 popl %ebp
17 ret

Y86 code

int Sum(int *Start, int Count)

1 Sum:
2 pushl %ebp
3 rrmovl %esp,%ebp
4 mrmovl 8(%ebp),%ecx ecx = Start

5 mrmovl 12(%ebp),%edx edx = Count

6 xorl %eax,%eax sum = 0

7 andl %edx,%edx Set condition codes

8 je End
9 Loop:

10 mrmovl (%ecx),%esi get *Start

11 addl %esi,%eax add to sum

12 irmovl $4,%ebx
13 addl %ebx,%ecx Start++

14 irmovl $-1,%ebx
15 addl %ebx,%edx Count--

16 jne Loop Stop when 0

17 End:
18 rrmovl %ebp,%esp
19 popl %ebp
20 ret

Figure 4.6:Comparison of Y86 and IA32 assembly programs. The Sum function computes the sum of
an integer array. The Y86 code differs from the IA32 mainly in that it may require multiple instructions to
perform what can be done with a single IA32 instruction.

4.1.4 Y86 Exceptions

The programmer-visible state for Y86 (Figure 4.1) includesa status codeStat describing the overall state of
the executing program. The possible values for this code areshown in Figure 4.5. Code value 1, namedAOK,
indicates that the program is executing normally, while theother codes indicate that some type ofexception
has occurred. Code 2, namedHLT, indicates that the processor has executed ahalt instruction. Code
3, namedADR, indicates that the processor attempted to read from or write to an invalid memory address,
either while fetching an instruction or while reading or writing data. We limit the maximum address (the
exact limit varies by implementation), and any access to an address beyond this limit will trigger anADR
exception. Code 4, namedINS, indicates that an invalid instruction code has been encountered.

For Y86, we will simply have the processor stop executing instructions when it encounters any of the
exceptions listed. In a more complete design, the processorwould typically invoke anexception handler,
a procedure designated to handle the specific type of exception encountered. As described in Chapter 8,
exception handlers can be configured to have different effects, such as aborting the program or invoking a
user-definedsignal handler.

328 CHAPTER 4. PROCESSOR ARCHITECTURE

4.1.5 Y86 Programs

Figure 4.6 shows IA32 and Y86 assembly code for the followingC function:

int Sum(int *Start, int Count)
{

int sum = 0;
while (Count) {

sum += *Start;
Start++;
Count--;

}
return sum;

}

The IA32 code was generated by theGCC compiler. The Y86 code is essentially the same, except that Y86
sometimes requires two instructions to accomplish what canbe done with a single IA32 instruction. If we
had written the program using array indexing, however, the conversion to Y86 code would be more difficult,
since Y86 does not have scaled addressing modes. This code follows many of the programming conventions
we have seen for IA32, including the use of the stack and framepointers. For simplicity, it does not follow
the IA32 convention of having some registers designated as callee-save registers. This is just a programming
convention that we can either adopt or ignore as we please.

Figure 4.7 shows an example of a complete program file writtenin Y86 assembly code. The program
contains both data and instructions. Directives indicate where to place code or data and how to align it. The
program specifies issues such as stack placement, data initialization, program initialization, and program
termination.

In this program, words beginning with “.” are assembler directivestelling the assembler to adjust the
address at which it is generating code or to insert some wordsof data. The directive.pos 0 (line 2)
indicates that the assembler should begin generating code starting at address0. This is the starting address
for all Y86 programs. The next two instructions (lines 3 and 4) initialize the stack and frame pointers. We
can see that the labelStack is declared at the end of the program (line 47), to indicate address0x100 using
a.pos directive (line 46). Our stack will therefore start at this address and grow toward lower addresses.
We must ensure that the stack does not grow so large that it overwrites the code or other program data.

Lines 9 to 13 of the program declare an array of four words, having values0xd, 0xc0, 0xb00, and
0xa000. The labelarray denotes the start of this array, and is aligned on a 4-byte boundary (using the
.align directive). Lines 15 to 24 show a “main” procedure that callsthe functionSum on the 4-word
array and then halts.

As this example shows, since our only tool for creating Y86 code is an assembler, the programmer must
perform tasks we ordinarily delegate to the compiler, linker, and run-time system. Fortunately, we only do
this for small programs, for which simple mechanisms suffice.

Figure 4.8 shows the result of assembling the code shown in Figure 4.7 by an assembler we callYAS. The
assembler output is in ASCII format to make it more readable.On lines of the assembly file that contain
instructions or data, the object code contains an address, followed by the values of between 1 and 6 bytes.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 329

1 # Execution begins at address 0
2 .pos 0
3 init: irmovl Stack, %esp # Set up stack pointer
4 irmovl Stack, %ebp # Set up base pointer
5 call Main # Execute main program
6 halt # Terminate program
7

8 # Array of 4 elements
9 .align 4

10 array: .long 0xd
11 .long 0xc0
12 .long 0xb00
13 .long 0xa000
14

15 Main: pushl %ebp
16 rrmovl %esp,%ebp
17 irmovl $4,%eax
18 pushl %eax # Push 4
19 irmovl array,%edx
20 pushl %edx # Push array
21 call Sum # Sum(array, 4)
22 rrmovl %ebp,%esp
23 popl %ebp
24 ret
25

26 # int Sum(int *Start, int Count)
27 Sum: pushl %ebp
28 rrmovl %esp,%ebp
29 mrmovl 8(%ebp),%ecx # ecx = Start
30 mrmovl 12(%ebp),%edx # edx = Count
31 xorl %eax,%eax # sum = 0
32 andl %edx,%edx # Set condition codes
33 je End
34 Loop: mrmovl (%ecx),%esi # get *Start
35 addl %esi,%eax # add to sum
36 irmovl $4,%ebx #
37 addl %ebx,%ecx # Start++
38 irmovl $-1,%ebx #
39 addl %ebx,%edx # Count--
40 jne Loop # Stop when 0
41 End: rrmovl %ebp,%esp
42 popl %ebp
43 ret
44

45 # The stack starts here and grows to lower addresses
46 .pos 0x100
47 Stack:

Figure 4.7:Sample program written in Y86 assembly code. The Sum function is called to compute the
sum of a four-element array.

330 CHAPTER 4. PROCESSOR ARCHITECTURE

| # Execution begins at address 0
0x000: | .pos 0
0x000: 30f400010000 | init: irmovl Stack, %esp # Set up stack pointer
0x006: 30f500010000 | irmovl Stack, %ebp # Set up base pointer
0x00c: 8024000000 | call Main # Execute main program
0x011: 00 | halt # Terminate program

|
| # Array of 4 elements

0x014: | .align 4
0x014: 0d000000 | array: .long 0xd
0x018: c0000000 | .long 0xc0
0x01c: 000b0000 | .long 0xb00
0x020: 00a00000 | .long 0xa000

|
0x024: a05f | Main: pushl %ebp
0x026: 2045 | rrmovl %esp,%ebp
0x028: 30f004000000 | irmovl $4,%eax
0x02e: a00f | pushl %eax # Push 4
0x030: 30f214000000 | irmovl array,%edx
0x036: a02f | pushl %edx # Push array
0x038: 8042000000 | call Sum # Sum(array, 4)
0x03d: 2054 | rrmovl %ebp,%esp
0x03f: b05f | popl %ebp
0x041: 90 | ret

|
| # int Sum(int *Start, int Count)

0x042: a05f | Sum: pushl %ebp
0x044: 2045 | rrmovl %esp,%ebp
0x046: 501508000000 | mrmovl 8(%ebp),%ecx # ecx = Start
0x04c: 50250c000000 | mrmovl 12(%ebp),%edx # edx = Count
0x052: 6300 | xorl %eax,%eax # sum = 0
0x054: 6222 | andl %edx,%edx # Set condition codes
0x056: 7378000000 | je End
0x05b: 506100000000 | Loop: mrmovl (%ecx),%esi # get *Start
0x061: 6060 | addl %esi,%eax # add to sum
0x063: 30f304000000 | irmovl $4,%ebx #
0x069: 6031 | addl %ebx,%ecx # Start++
0x06b: 30f3ffffffff | irmovl $-1,%ebx #
0x071: 6032 | addl %ebx,%edx # Count--
0x073: 745b000000 | jne Loop # Stop when 0
0x078: 2054 | End: rrmovl %ebp,%esp
0x07a: b05f | popl %ebp
0x07c: 90 | ret

|
| # The stack starts here and grows to lower addresses

0x100: | .pos 0x100
0x100: | Stack:

Figure 4.8:Output of YAS assembler. Each line includes a hexadecimal address and between 1 and 6
bytes of object code.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 331

We have implemented aninstruction set simulatorwe call YIS, the purpose of which is to model the exe-
cution of a Y86 machine-code program, without attempting tomodel the behavior of any specific processor
implementation. This form of simulation is useful for debugging programs before actual hardware is avail-
able, and for checking the result of either simulating the hardware or running the program on the hardware
itself. Running on our sample object code,YIS generates the following output:

Stopped in 52 steps at PC = 0x11. Status ’HLT’, CC Z=1 S=0 O=0
Changes to registers:
%eax: 0x00000000 0x0000abcd
%ecx: 0x00000000 0x00000024
%ebx: 0x00000000 0xffffffff
%esp: 0x00000000 0x00000100
%ebp: 0x00000000 0x00000100
%esi: 0x00000000 0x0000a000

Changes to memory:
0x00e8: 0x00000000 0x000000f8
0x00ec: 0x00000000 0x0000003d
0x00f0: 0x00000000 0x00000014
0x00f4: 0x00000000 0x00000004
0x00f8: 0x00000000 0x00000100
0x00fc: 0x00000000 0x00000011

The first line of the simulation output summarizes the execution and the resulting values of the PC and pro-
gram status. In printing register and memory values, it onlyprints out words that change during simulation,
either in registers or in memory. The original values (here they are all zero) are shown on the left, and the
final values are shown on the right. We can see in this output that register%eax contains0xabcd, the
sum of the 4-element array passed to subroutineSum. In addition, we can see that the stack, which starts
at address0x100 and grows toward lower addresses, has been used, causing changes to words of memory
at addresses0xe8 through0xfc. This is well away from0x7c, the maximum address of the executable
code.

Practice Problem 4.3:

Write Y86 code to implement a recursive sum functionrSum, based on the following C code:

int rSum(int *Start, int Count)
{

if (Count <= 0)
return 0;

return *Start + rSum(Start+1, Count-1);
}

You might find it helpful to compile the C code on an IA32 machine and then translate the instructions
to Y86.

