Chapter 4

Processor Architecture

Modern microprocessors are among the most complex systeen<reated by humans. A single silicon
chip, roughly the size of a fingernail, can contain a complétg-performance processor, large cache
memories, and the logic required to interface it to extedegices. In terms of performance, the processors
implemented on a single chip today dwarf the room-sized regpeputers that cost over $10 million just
20 years ago. Even the embedded processors found in eveapgéignces such as cell phones, personal
digital assistants, and handheld game systems are far romexfol than the early developers of computers
ever envisioned.

Thus far, we have only viewed computer systems down to the l@vmachine-language programs. We
have seen that a processor must execute a sequence oftinesuwhere each instruction performs some
primitive operation, such as adding two numbers. An ingioacis encoded in binary form as a sequence
of 1 or more bytes. The instructions supported by a partiqotacessor and their byte-level encodings
are known as itenstruction-set architectur@l SA). Different “families” of processors, such as Intel32,
IBM/Freescale PowerPC, and the ARM processor family hafferdnt ISAs. A program compiled for one
type of machine will not run on another. On the other handetlage many different models of processors
within a single family. Each manufacturer produces promessf ever-growing performance and com-
plexity, but the different models remain compatible at t8& level. Popular families, such as I1A32, have
processors supplied by multiple manufacturers. Thus, $i#efdrovides a conceptual layer of abstraction
between compiler writers, who need only know what instangiare permitted and how they are encoded,
and processor designers, who must build machines that exémse instructions.

In this chapter, we take a brief look at the design of proadsamware. We study the way a hardware system
can execute the instructions of a particular ISA. This vieill give you a better understanding of how
computers work and the technological challenges faced impater manufacturers. One important concept
is that the actual way a modern processor operates can leediffidgrent from the model of computation
implied by the ISA. The ISA model would seem to imm@gquentialinstruction execution, where each
instruction is fetched and executed to completion befoeentxt one begins. By executing different parts
of multiple instructions simultaneously, the processar aehieve higher performance than if it executed
just one instruction at a time. Special mechanisms are wsetike sure the processor computes the same
results as it would with sequential execution. This ideasifig clever tricks to improve performance while
maintaining the functionality of a simpler and more abgtraodel is well known in computer science.

317

318 CHAPTER 4. PROCESSOR ARCHITECTURE

Examples include the use of caching in Web browsers andnv#ton retrieval data structures such as
balanced binary trees and hash tables.

Chances are you will never design your own processor. Thigdsk for experts working at fewer than 100
companies worldwide. Why, then, should you learn aboutgssar design?

e ltis intellectually interesting and importanihere is an intrinsic value in learning how things work.
It is especially interesting to learn the inner workings alyatem that is such a part of the daily lives
of computer scientists and engineers and yet remains a mysteany. Processor design embodies
many of the principles of good engineering practice. It isggucreating a simple and regular structure
to perform a complex task.

e Understanding how the processor works aids in understandiow the overall computer system
works.In Chapter 6, we will look at the memory system and the tealesquised to create an image of
a very large memory with a very fast access time. Seeing theepsor side of the processor-memory
interface will make this presentation more complete.

e Although few people design processors, many design haedsystems that contain processorsis
has become commonplace as processors are embedded intriebsystems such as automobiles
and appliances. Embedded-system designers must understanprocessors work, because these
systems are generally designed and programmed at a lowadroesbstraction than is the case for
desktop systems.

e You just might work on a processor desidiithough the number of companies producing micropro-
cessors is small, the design teams working on those prasessoalready large and growing. There
can be over 1000 people involved in the different aspectsnodjar processor design.

In this chapter, we start by defining a simple instruction teat we use as a running example for our
processor implementations. We call this the “Y86” instimttset, because it was inspired by the 1A32
instruction set, which is colloquially referred to as “X86ompared with IA32, the Y86 instruction set has
fewer data types, instructions, and addressing modessdttas a simpler byte-level encoding. Still, it is
sufficiently complete to allow us to write simple programsnipalating integer data. Designing a processor
to implement Y86 requires us to face many of the challengesdféy processor designers.

We then provide some background on digital hardware desimdescribe the basic building blocks used

in a processor and how they are connected together and epeldtis presentation builds on our discussion
of Boolean algebra and bit-level operations from Chapt&W@ also introduce a simple language, HCL (for

“Hardware Control Language”), to describe the control ipog of hardware systems. We will later use this

language to describe our processor designs. Even if yoadylteave some background in logic design, read
this section to understand our particular notation.

As a first step in designing a processor, we present a furalyocorrect, but somewhat impractical, Y86
processor based @equentiabperation. This processor executes a complete Y86 ingiruch every clock
cycle. The clock must run slowly enough to allow an entiréeseof actions to complete within one cycle.
Such a processor could be implemented, but its performancddvibe well below what could be achieved
for this much hardware.

With the sequential design as a basis, we then apply a sdriemngformations to create@pelinedpro-
cessor. This processor breaks the execution of each itistiuato five steps, each of which is handled

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 319

RF: P_rogram CC.:. Stat: Program Status
registers Condition
%eax %esi codes E
Secx sedi [zE[sE|oF] DMEM: Memory
$edx %esp PC
sebx sebp I I

Figure 4.1:Y86 programmer-visible state. As with 1A32, programs for Y86 access and modify the pro-
gram registers, the condition code, the program counter (PC), and the memory. The status code indicates
whether the program is running normally, or some special event has occurred.

by a separate section stageof the hardware. Instructions progress through the staféseipeline,
with one instruction entering the pipeline on each clockeyés a result, the processor can be executing
the different steps of up to five instructions simultanepusaking this processor preserve the sequential
behavior of the Y86 ISA requires handling a varietyhaizardconditions, where the location or operands
of one instruction depend on those of other instructionsdtastill in the pipeline.

We have devised a variety of tools for studying and expertmgnwith our processor designs. These
include an assembler for Y86, a simulator for running Y86gpams on your machine, and simulators for
two sequential and one pipelined processor design. Theatdodgic for these designs is described by files in
HCL notation. By editing these files and recompiling the datwr, you can alter and extend the simulator’s
behavior. A number of exercises are provided that involvplémenting new instructions and modifying
how the machine processes instructions. Testing code gda to help you evaluate the correctness of
your modifications. These exercises will greatly aid yowlenstanding of the material and will give you an
appreciation for the many different design alternativegébby processor designers.

Web AsideARCH:VLOG presents a representation of our pipelined Y86 processtheiverilog hardware
description language. This involves creating modules tierliasic hardware building blocks and for the
overall processor structure. We automatically translageHCL description of the control logic into Ver-
ilog. By first debugging the HCL description with our simwleg, we eliminate many of the tricky bugs that
would otherwise show up in the hardware design. Given a &giilescription, there are commercial and
open-source tools to support simulation dmgic synthesisgenerating actual circuit designs for the micro-
processors. So, although much of the effort we expend hdredseate pictorial and textual descriptions
of a system, much as one would when writing software, thetfzat these designs can be automatically
synthesized demonstrates that we are indeed creatingearsiisat can be realized as hardware.

4.1 TheY86 Instruction Set Architecture

Defining an instruction set architecture, such as Y86, shetudefining the different state elements, the set of
instructions and their encodings, a set of programming eotiens, and the handling of exceptional events.

320 CHAPTER 4. PROCESSOR ARCHITECTURE

4.1.1 Programmer-Visible State

As Figure 4.1 illustrates, each instruction in a Y86 progan read and modify some part of the processor
state. This is referred to as tipeogrammer-visiblestate, where the “programmer” in this case is either
someone writing programs in assembly code or a compilerrgéng machine-level code. We will see in
our processor implementations that we do not need to raeptrasd organize this state in exactly the manner
implied by the ISA, as long as we can make sure that machird{Eograms appear to have access to the
programmer-visible state. The state for Y86 is similar @t fior IA32. There are eightrogram registers
Yeax, ¥ecx, Yedx, Y%ebx, ¥esi , Yedi , Yesp, and¥ebp. Each of these stores a word. Registesp

is used as a stack pointer by the push, pop, call, and retatruations. Otherwise, the registers have no
fixed meanings or values. There are three singlednitdition codesZF, SF, andOF, storing information
about the effect of the most recent arithmetic or logicatringion. The program counteP(C) holds the
address of the instruction currently being executed.

Thememoryis conceptually a large array of bytes, holding both progeaith data. Y86 programs reference
memory locations usingirtual addressesA combination of hardware and operating system softwairestr
lates these into the actual, pihysical addresses indicating where the values are actually stormaeémory.
We will study virtual memory in more detail in Chapter 9. Faw, we can think of the virtual memory
system as providing Y86 programs with an image of a mondalitlyite array.

A final part of the program state is a status c@tat, indicating the overall state of program execution.

It will indicate either normal operation, or that some sdriemceptionhas occurred, such as when an in-

struction attempts to read from an invalid memory addres$g gossible status codes and the handling of
exceptions is described in Section 4.1.4.

4.1.2 Y86 Instructions

Figure 4.2 gives a concise description of the individualririons in the Y86 ISA. We use this instruction
set as a target for our processor implementations. The sé8@finstructions is largely a subset of the
IA32 instruction set. It includes only 4-byte integer opimas, has fewer addressing modes, and includes
a smaller set of operations. Since we only use 4-byte dataanweefer to these as “words” without any
ambiguity. In this figure, we show the assembly-code reptasien of the instructions on the left and the
byte encodings on the right. The assembly-code format idasito the ATT format for 1A32.

Here are some further details about the different Y86 icsivns.

e The IA32novI instruction is split into four different instructions:r novl ,rr novl , nr novl , and
r nmov| , explicitly indicating the form of the source and destinati The source is either immediate
(i), register (), or memory (. It is designated by the first character in the instructiama. The
destination is either register Y or memory (0. It is designated by the second character in the instruc-
tion name. Explicitly identifying the four types of datarisder will prove helpful when we decide
how to implement them.

The memory references for the two memory movement insomsthave a simple base and displace-
ment format. We do not support the second index register ysealing of a register’s value in the
address computation.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 321

Byte 0 1 2 3 4 5
halt

nop 1] 0]

rrnovl A, B

irmovi V, B8 [3]o]r][] v |
rmmovl A, D(B) [4| o [ma]m] D |
mrmovl D(B), A [5 [o[m]rm] D |
NN I

5xx Dest [7]m] Dest |
cmovxx 1A, 1B

call Dest []o] Dest |

pusrl A o]

popt 1A BRnE
Figure 4.2: Y86 instruction set. Instruction encodings range between 1 and 6 bytes. An instruction
consists of a 1-byte instruction specifier, possibly a 1-byte register specifier, and possibly a 4-byte constant

word. Field f n specifies a particular integer operation (OPl), data movement condition (cnovXX), or branch
condition (j XX). All numeric values are shown in hexadecimal.

Operations Branches Moves

jmp jne rrmovl cmovne
jle jge cmovle cmovge
2ot . o s

addl

subl

Figure 4.3:Function codes for Y86 instruction set. The code specifies a particular integer operation,
branch condition, or data transfer condition. These instructions are shown as OPI , j XX, and cnov XX in
Figure 4.2.

xorl

322 CHAPTER 4. PROCESSOR ARCHITECTURE

As with IA32, we do not allow direct transfers from one memlmyation to another. In addition, we
do not allow a transfer of immediate data to memory.

e There are four integer operation instructions, shown inufégt.2 a<OPl . These areaddl , subl ,
andl , andxor | . They operate only on register data, whereas IA32 also allmperations on mem-
ory data. These instructions set the three condition cga&eSF, andOF (zero, sign, and overflow).

e The seven jump instructions (shown in Figure 4.3 &X) arej np,jle,jl,je,jne,jge, and
j g. Branches are taken according to the type of branch and ttiegseof the condition codes. The
branch conditions are the same as with IA32 (Figure 3.12).

e There are six conditional move instructions (shown in Fegdr2 ascnov XX): cnovl e, cnovl ,
cnove, chovne, cnovge, andcnovg. These have the same format as the register-register move
instructionr r novl , but the destination register is updated only if the condittodes satisfy the
required constraints.

e Thecal | instruction pushes the return address on the stack and jtoripe destination address.
Ther et instruction returns from such a call.

e Thepushl andpopl instructions implement push and pop, just as they do in IA32.

e Thehal t instruction stops instruction execution. 1A32 has a coraplar instruction, calledhl t .
IA32 application programs are not permitted to use thiguasion, since it causes the entire system
to suspend operation. For Y86, executing filae t instruction causes the processor to stop, with the
status code set tdL T. (See Section 4.1.4.)

4.1.3 Instruction Encoding

Figure 4.2 also shows the byte-level encoding of the inStms. Each instruction requires between 1 and 6
bytes, depending on which fields are required. Every insomtas an initial byte identifying the instruction
type. This byte is split into two 4-bit parts: the high-ordercode part, and the low-order, dunction part.

As you can see in Figure 4.2, code values range f@otm OxB. The function values are significant only
for the cases where a group of related instructions sharenanom code. These are given in Figure 4.3,
showing the specific encodings of the integer operationditional move, and branch instructions. Observe
thatr r rovl has the same instruction code as the conditional movesn beaiewed as an “unconditional
move” just as thg np instruction is an unconditional jump, both having functmodeO.

As shown in Figure 4.4, each of the eight program registesahassociateggister identifie(ID) ranging
from O to 7. The numbering of registers in Y86 matches whasedun IA32. The program registers are
stored within the CPU in aegister file a small random-access memory where the register IDs serve a
addresses. ID valuexF is used in the instruction encodings and within our hardveEgigns when we
need to indicate that no register should be accessed.

Some instructions are just 1 byte long, but those that requerands have longer encodings. First, there
can be an additionakgister specifier bytespecifying either one or two registers. These registetdiare
calledrA andrB in Figure 4.2. As the assembly-code versions of the instmstshow, they can specify the
registers used for data sources and destinations, as whk a&sise register used in an address computation,

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 323

Number| Register name
Yeax
%ecx
Y%edx
%ebx
%esp
%ebp
%esi
Yedi

No register

o

M~NOO O~ WN -

Figure 4.4:Y86 program register identifiers. Each of the eight program registers has an associated
identifier (ID) ranging from 0 to 7. ID OxF in a register field of an instruction indicates the absence of a
register operand.

depending on the instruction type. Instructions that haveesgister operands, such as branchescaid ,

do not have a register specifier byte. Those that requireojustregister operand { movl , pushl , and
popl) have the other register specifier set to vadué-. This convention will prove useful in our processor
implementation.

Some instructions require an additional 4-bgtnstant word This word can serve as the immediate data
fori r novl , the displacement formmov| andnr novl address specifiers, and the destination of branches
and calls. Note that branch and call destinations are gigeabaolute addresses, rather than using the PC-
relative addressing seen in IA32. Processors use PCveekdidressing to give more compact encodings of
branch instructions and to allow code to be copied from omegfanemory to another without the need to
update all of the branch target addresses. Since we are miaceraed with simplicity in our presentation,
we use absolute addressing. As with IA32, all integers hditdeaendian encoding. When the instruction

is written in disassembled form, these bytes appear insevader.

As an example, let us generate the byte encoding of the atstnur nmovl %esp, 0x12345(%&dx) in
hexadecimal. From Figure 4.2, we can see thatov!| has initial byte40. We can also see that source
register¥esp should be encoded in thé field, and base registéfedx should be encoded in th& field.
Using the register numbers in Figure 4.4, we get a regisexier byte of42. Finally, the displacement is
encoded in the 4-byte constant word. We first pad 2345 with leading zeros to fill out 4 bytes, giving a
byte sequence d@i0 01 23 45. We write this in byte-reversed order 45 23 01 00. Combining these,
we get an instruction encoding 404245230100.

One important property of any instruction set is that theel®ricodings must have a unigue interpretation.
An arbitrary sequence of bytes either encodes a uniquelgigtn sequence or is not a legal byte sequence.
This property holds for Y86, because every instruction hamigue combination of code and function
in its initial byte, and given this byte, we can determine légregth and meaning of any additional bytes.
This property ensures that a processor can execute an-gbgetprogram without any ambiguity about
the meaning of the code. Even if the code is embedded withier diytes in the program, we can readily
determine the instruction sequence as long as we start frefirst byte in the sequence. On the other hand,
if we do not know the starting position of a code sequence, ammat reliably determine how to split the

324 CHAPTER 4. PROCESSOR ARCHITECTURE

sequence into individual instructions. This causes probléor disassemblers and other tools that attempt
to extract machine-level programs directly from objeatietyte sequences.

Practice Problem 4.1;

Determine the byte encoding of the Y86 instruction sequénaefollows. The line pos 0x100”
indicates that the starting address of the object code ghm{x100.

. pos 0x100 # Start code at address 0x100
i rmovl $15, %ebx # Load 15 into %sbx
rrnovl %ebx, %ecx # Copy 15 to %ecx
| oop: # | oop:
romovl %ecx, - 3(%ebx) # Save %ecx at address 15-3 = 12
addl %ebx, ¥%ecx # I ncrement % ecx by 15
jmp | oop # CGoto | oop

Practice Problem 4.2;

For each byte sequence listed, determine the Y86 instruséiquence it encodes. If there is some invalid
byte in the sequence, show the instruction sequence upttpdhd and indicate where the invalid value
occurs. For each sequence, we show the starting address todon, and then the byte sequence.
A. 0x100: 30f 3f cffffff40630008000000
0x200: a06f 80080200000030f 30a00000090
0x300: 50540700000010f ObO1f
0x400: 6113730004000000
0x500: 6362a0f 0

moUOw

Aside: Comparing I1A32to Y86 instruction encodings

Compared with the instruction encodings used in IA32, theodimg of Y86 is much simpler but also less com-
pact. The register fields occur only in fixed positions in a@6Yinstructions, whereas they are packed into various
positions in the different IA32 instructions. We use a 4dsitoding of registers, even though there are only eight
possible registers. 1A32 uses just 3 bits. Thus, IA32 calk pgaush or pop instruction into just 1 byte, with a 5-bit
field indicating the instruction type and the remaining 3 liar the register specifier. 1A32 can encode constant
values in 1, 2, or 4 bytes, whereas Y86 always requires 4 biges Aside.

Aside: RISC and CISC instruction sets

IA32 is sometimes labeled as a “complex instruction set ager (CISC—pronounced “sisk”), and is deemed
to be the opposite of ISAs that are classified as “reduceduictsdtn set computers” (RISC—pronounced “risk”).
Historically, CISC machines came first, having evolved fitbia earliest computers. By the early 1980s, instruction
sets for mainframe and minicomputers had grown quite laagenachine designers incorporated new instructions
to support high-level tasks, such as manipulating circhidfers, performing decimal arithmetic, and evaluating
polynomials. The first microprocessors appeared in the/ d&T0s and had limited instruction sets, because the
integrated-circuit technology then posed severe comsgran what could be implemented on a single chip. Micro-
processors evolved quickly and, by the early 1980s, welafolg the path of increasing instruction-set complexity
set by mainframes and minicomputers. The x86 family too& faith, evolving into 1A32, and more recently into
x86-64. Even the x86 line continues to evolve as new claskéssouctions are added based on the needs of
emerging applications.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 325

The RISC design philosophy developed in the early 1980s adtamative to these trends. A group of hardware
and compiler experts at IBM, strongly influenced by the idefd8M researcher John Cocke, recognized that they
could generate efficient code for a much simpler form of udton set. In fact, many of the high-level instructions

that were being added to instruction sets were very diffituljenerate with a compiler and were seldom used.
A simpler instruction set could be implemented with muctslbardware and could be organized in an efficient
pipeline structure, similar to those described later is tiapter. IBM did not commercialize this idea until many

years later, when it developed the Power and PowerPC ISAs.

The RISC concept was further developed by Professors DattdiBon, of the University of California at Berkeley,
and John Hennessy, of Stanford University. Patterson devedme RISC to this new class of machines, and CISC
to the existing class, since there had previously been nd teekave a special designation for a nearly universal
form of instruction set.

Comparing CISC with the original RISC instruction sets, welfihe following general characteristics:

CIsC
A large number of instructions. The Intel doc
ment describing the complete set of instructiq
[28, 29] is over 1200 pages long.

Early RISC
u-Many fewer instructions. Typically less than 10Q.
ns

Some instructions with long execution time
These include instructions that copy an ent
block from one part of memory to another and ot
ers that copy multiple registers to and from me
ory.

s.No instruction with a long execution time. Som
rearly RISC machines did not even have an inte
hmultiply instruction, requiring compilers to imple
mment multiplication as a sequence of additions.

ger

Variable-length encodings. 1A32 instructions ¢
range from 1 to 15 bytes.

arFixed-length encodings. Typically all instructior]
are encoded as 4 bytes.

Multiple formats for specifying operands. In 1A3%
a memory operand specifier can have many diff
ent combinations of displacement, base and in
registers, and scale factors.

?, Simple addressing formats. Typically just base g
edisplacement addressing.
ex

Arithmetic and logical operations can be appli
to both memory and register operands.

edArithmetic and logical operations only use regi
ter operands. Memory referencing is only allow
by load instructions, reading from memory into
register, angtoreinstructions, writing from a reg-
ister to memory. This convention is referred to
aload/store architecture

S_
ed
a

as

Implementation artifacts hidden from machin
level programs. The ISA provides a clean abstr
tion between programs and how they get execu

e{mplementation artifacts exposed to machine-le|

agprograms. Some RISC machines prohibit parti

etlir instruction sequences and have jumps that
not take effect until the following instruction is ex
ecuted. The compiler is given the task of optim
ing performance within these constraints.

vel
tU-
do

Z-

Condition codes. Special flags are set as a 1
effect of instructions and then used for conditior]
branch testing.

id¢o condition codes. Instead, explicit test instry
ations store the test results in normal registers
use in conditional evaluation.

C_
for

Stack-intensive procedure linkage. The stg
is used for procedure arguments and return
dresses.

\ICRegister-intensive procedure linkage. Regist
adre used for procedure arguments and return

ers
ad-

dresses. Some procedures can thereby avoid
memory references. Typically, the processor

many more (up to 32) registers.

any

Tas

The Y86 instruction set includes attributes of both CISC &I8C instruction sets. On the CISC side, it has
condition codes, variable-length instructions, and siaténsive procedure linkages. On the RISC side, it uses
a load-store architecture and a regular encoding. It canidwed as taking a CISC instruction set (IA32) and
simplifying it by applying some of the principles of RISEnd Aside.

326 CHAPTER 4. PROCESSOR ARCHITECTURE

Value | Name| Meaning
1 ACK | Normal operation
HLT | hal t instruction encountered
ADR | Invalid address encountered
I NS | Invalid instruction encountered

A WDN

Figure 4.5:Y86 status codes. In our design, the processor halts for any code other than ACK.

Aside: The RISC versus CISC controver sy

Through the 1980s, battles raged in the computer archieecammunity regarding the merits of RISC versus CISC
instruction sets. Proponents of RISC claimed they couldrgee computing power for a given amount of hardware
through a combination of streamlined instruction set desagvanced compiler technology, and pipelined processor
implementation. CISC proponents countered that fewer GiS@uctions were required to perform a given task,
and so their machines could achieve higher overall perfocaa

Major companies introduced RISC processor lines, incigiddun Microsystems (SPARC), IBM and Motorola
(PowerPC), and Digital Equipment Corporation (Alpha). AtBh company, Acorn Computers Ltd., developed
its own architecture, ARM (originally an acronym for “AcoRISC Machine”), which is widely used in embedded
applications, such as cellphones.

In the early 1990s, the debate diminished as it became di@ameither RISC nor CISC in their purest forms
were better than designs that incorporated the best idebetbf RISC machines evolved and introduced more
instructions, many of which take multiple cycles to execl®SC machines today have hundreds of instructions
in their repertoire, hardly fitting the name “reduced instion set machine.” The idea of exposing implementation
artifacts to machine-level programs proved to be shotitsidy As new processor models were developed using
more advanced hardware structures, many of these artlfeceme irrelevant, but they still remained part of the
instruction set. Still, the core of RISC design is an indiarcset that is well-suited to execution on a pipelined
machine.

More recent CISC machines also take advantage of high#peafice pipeline structures. As we will discuss in

Section 5.7, they fetch the CISC instructions and dynaryitednslate them into a sequence of simpler, RISC-like
operations. For example, an instruction that adds a registememory is translated into three operations: one to
read the original memory value, one to perform the additaorg a third to write the sum to memory. Since the

dynamic translation can generally be performed well in adeaof the actual instruction execution, the processor
can sustain a very high execution rate.

Marketing issues, apart from technological ones, haveptsed a major role in determining the success of different
instruction sets. By maintaining compatibility with itsisting processors, Intel with x86 made it easy to keep
moving from one generation of processor to the next. As nategl-circuit technology improved, Intel and other
x86 processor manufacturers could overcome the ineffiderareated by the original 8086 instruction set design,
using RISC techniques to produce performance comparalie toest RISC machines. As we saw in Section 3.13,
the evolution of 1A32 into x86-64 provided an opportunityiteorporate several features of RISC into x86. In
the areas of desktop and laptop computing, x86 has achievelddomination, and it is increasingly popular for
high-end server machines.

RISC processors have done very well in the markeefobedded processorsontrolling such systems as cellular
telephones, automobile brakes, and Internet appliancetheke applications, saving on cost and power is more
important than maintaining backward compatibility. Innterof the number of processors sold, this is a very large
and growing marketEnd Aside.

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE

ecx = Start
edx = Count
sum = 0

add *Start to sum

Start ++

IA32 code
int Sunm(int *Start, int Count)

1 Sum
2 pushl %bp
3 movl %esp, Yebp
4 nmovl 8(%ebp), ¥%ecx
5 nmovl 12(%bp), %edx
6 xorl %eax, Yeax
7 testl % edx, %edx
8 je .L34
9 .L35:
10 addl (%ecx), Yeax
11 addl $4, %ecx

12 decl % edx

13 jnz .L35

14 . L34:

15 movl %ebp, Yesp
16 popl %ebp

17 ret

Count - -

Stop when 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

327

Y86 code
int Sun{int *Start, int Count)
Sum
pushl %ebp
rrnovl %esp, %ebp
nr novl 8(%ebp), %ecx ecx = Start
nrnovl 12(%bp), Yedx edx = Count
xorl| % ax, ¥eax sum= 0
andl| Y%edx, Yedx Set condition codes
je End
Loop:
nrnovl (%ecx), Yesi get *Start
addl %esi, %eax add to sum
i rmovl $4, %ebx
addl % ebx, %ecx Start ++
i rmovl $- 1, %ebx
addl %ebx, %edx Count - -
j ne Loop St op when 0
End:
rrnovl %bp, %esp
popl %ebp
ret

Figure 4.6:Comparison of Y86 and IA32 assembly programs.
an integer array. The Y86 code differs from the 1A32 mainly in that it may require multiple instructions to
perform what can be done with a single 1A32 instruction.

4.1.4 Y86 Exceptions

The Sumfunction computes the sum of

The programmer-visible state for Y86 (Figure 4.1) includestatus cod8tat describing the overall state of
the executing program. The possible values for this codstaen in Figure 4.5. Code value 1, nanfoK,
indicates that the program is executing normally, whiledtier codes indicate that some typeegteption
has occurred. Code 2, namefiT, indicates that the processor has executédhlat instruction. Code
3, namedADR, indicates that the processor attempted to read from oewgiin invalid memory address,
either while fetching an instruction or while reading or tmgy data. We limit the maximum address (the
exact limit varies by implementation), and any access todaltess beyond this limit will trigger aADR
exception. Code 4, named\S, indicates that an invalid instruction code has been erteoeih.

For Y86, we will simply have the processor stop executingrutsions when it encounters any of the
exceptions listed. In a more complete design, the processold typically invoke arexception handler

a procedure designated to handle the specific type of excepticountered. As described in Chapter 8,
exception handlers can be configured to have different tsffsach as aborting the program or invoking a

user-definegignal handler

328 CHAPTER 4. PROCESSOR ARCHITECTURE

4.15 Y86 Programs

Figure 4.6 shows IA32 and Y86 assembly code for the followdniginction:

int Sum(int *Start, int Count)

{
int sum = O;
whil e (Count) {
sum += *Start;
Start ++;
Count - -;
}
return sum
}

The 1A32 code was generated by thec compiler. The Y86 code is essentially the same, except tBét Y
sometimes requires two instructions to accomplish whatbeadone with a single 1A32 instruction. If we
had written the program using array indexing, however, treversion to Y86 code would be more difficult,
since Y86 does not have scaled addressing modes. This dmesfonany of the programming conventions
we have seen for IA32, including the use of the stack and fraongers. For simplicity, it does not follow
the IA32 convention of having some registers designatedléeecsave registers. This is just a programming
convention that we can either adopt or ignore as we please.

Figure 4.7 shows an example of a complete program file writte¥i86 assembly code. The program
contains both data and instructions. Directives indicaten to place code or data and how to align it. The
program specifies issues such as stack placement, dagdization, program initialization, and program
termination.

In this program, words beginning with * are assembler directivetelling the assembler to adjust the
address at which it is generating code or to insert some woirdata. The directive pos 0 (line 2)
indicates that the assembler should begin generating ¢adang at addres8. This is the starting address
for all Y86 programs. The next two instructions (lines 3 afdhitialize the stack and frame pointers. We
can see that the labgt ack is declared at the end of the program (line 47), to indicatEes0x 100 using

a. pos directive (line 46). Our stack will therefore start at thideess and grow toward lower addresses.
We must ensure that the stack does not grow so large thatrivates the code or other program data.

Lines 9 to 13 of the program declare an array of four words,jngavaluesOxd, 0xc0, Oxb00, and
0xa000. The labelar r ay denotes the start of this array, and is aligned on a 4-bytedsry (using the
. al i gn directive). Lines 15 to 24 show a “main” procedure that ctils functionSumon the 4-word
array and then halts.

As this example shows, since our only tool for creating Y8@8ecs an assembler, the programmer must
perform tasks we ordinarily delegate to the compiler, Imkad run-time system. Fortunately, we only do
this for small programs, for which simple mechanisms suffice

Figure 4.8 shows the result of assembling the code showrgur&i4.7 by an assembler we calls. The
assembler output is in ASCII format to make it more readalla.lines of the assembly file that contain
instructions or data, the object code contains an addreésywéed by the values of between 1 and 6 bytes.

A
=

© 00 N O O B~ WN P

A D B D DDA DD OOWWWWWWWWWNDNDNDNDNDMDNDNDMNDMNNONMNRERRPRRPRRERERRPRPPR
~N O O WNPEFEP O O 0N OO WNEREPOOOWOWNOOOOMAWNPREPOOOWONOOOGMAWNDNLPRELO

Figure 4.7:Sample program written in Y86 assembly code.

Execution begins at address O

init:

Array

array:

Sum

Loop:

End:

.pos O

i rnmovl Stack, %esp
i rnmovl Stack, %bp
call Min

hal t

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.1 ong 0xb0O0
.1 ong 0xa000

pushl %bp

rrnovl %esp, Y%ebp
i rmovl $4, Y%eax
pushl % sax

i rnovl array, Yedx
pushl % edx

call Sum

rrnovl %bp, Y%esp
popl %ebp

ret

int Sum(int *Start,
pushl %bp

rrnovl %esp, Y%ebp

nr novl 8(%bp), %ecx
nrnovl 12(%bp), Yedx
xorl % sax, Yeax

and| %edx, Yedx

je End

nrnovl (%ecx), Yesi
addl %esi, %eax

i rmovl $4, Y%ebx

addl %ebx, %ecx
irmovl $-1, %ebx

addl %ebx, %edx

j ne Loop
rrnovl %bp, %esp
popl %ebp

ret

* KR

i nt

* oW

HoHHHHHH

The stack starts here and grows

St ack:

. pos 0x100

sum of a four-element array.

. THE Y86 INSTRUCTION SET ARCHITECTURE

Set up stack pointer
Set up base pointer
Execute main program
Term nate program

Push 4

Push array
Sun{array, 4)

Count)

ecx = Start

edx = Count

sum= 0

Set condition codes

get *Start
add to sum

Start ++

Count - -
St op when 0O

to | ower addresses

329

The Sumfunction is called to compute the

330

0x000:
0x000:
0x006:
0x00c:
0x011:

30f 400010000
30f 500010000
8024000000
00

0x014:
0x014:
0x018:
Ox0lc:
0x020:

0d000000
c0000000
000b0000
00a00000

0x024:
0x026:
0x028:
0x02e:
0x030:
0x036:
0x038:
0x03d:
0x03f:
0x041:

a05f

2045

30f 004000000
a0of

30f 214000000
a02f
8042000000
2054

bO5f

90

0x042:
0x044:
0x046:
0x04c:
0x052:
0x054:
0x056:
0x05b:
0x061:
0x063:
0x069:
0x06b:
0x071:
0x073:
0x078:
Ox07a:
0x07c:

a05f

2045
501508000000
50250c000000
6300

6222
7378000000
506100000000
6060

30f 304000000
6031
30f3ffffffff
6032
745b000000
2054

b0O5f

90

0x100:
0x100:

Figure 4.8:Output of YAS assembler.

bytes of object code.

CHAPTER 4. PROCESSOR ARCHITECTURE

Execution begins at address O

init:

Array

array:

Sum

Loop:

End:

.pos O

i rmovl St ack,
i rmovl St ack,
call Main
hal t

%esp
%ebp

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.1 ong 0xb0O0
.1 ong 0xa000

pushl
rrmovl
i rnovl
pushl
i rmovl
pushl %edx

call Sum

rronovl %bp, Y%esp
popl %ebp

ret

%ebp

Y%esp, Yebp
$4, Y%eax
Yeax

array, %edx

#int Sum(int *Start,

pushl %bp

rronovl %esp, Y%ebp

nr novl 8(%bp), %ecx
nrnovl 12(%bp), Yedx
xorl % ax, Yeax

and| %edx, Yedx

je End

nrnovl (%ecx), %es
addl %esi, %eax

i rmovl $4, Y%ebx

addl %ebx, %ecx
irmovl $-1, %ebx
addl %ebx, ¥%edx

j ne Loop

rrnovl %bp, Y%esp
popl %ebp

ret

H*H o H R

i nt

H H HH

H O OH R HH

The stack starts here and grows

St ack:

. pos 0x100

Set up stack pointer
Set up base pointer
Execute nmai n program
Term nat e program

Push 4

Push array

Sun{array, 4)

Count)

Start

Count

0

condi ti on codes

ecx
edx
sum
Set

get *Start
add to sum

Start ++

Count - -
St op when 0O

to | ower addresses

Each line includes a hexadecimal address and between 1 and 6

4.1. THE Y86 INSTRUCTION SET ARCHITECTURE 331

We have implemented anstruction set simulatowe call Yis, the purpose of which is to model the exe-
cution of a Y86 machine-code program, without attemptinghamlel the behavior of any specific processor
implementation. This form of simulation is useful for deuyy programs before actual hardware is avail-
able, and for checking the result of either simulating theelivare or running the program on the hardware
itself. Running on our sample object codes generates the following output:

Stopped in 52 steps at PC = 0Ox11.
Changes to registers:

Status 'HLT, CC Z=1 S=0 O=0

Yeax: 0x00000000 0x0000abcd
%€eCcX: 0x00000000 0x00000024
%ebx: 0x00000000 Oxffffffff
Yesp: 0x00000000 0x00000100
%ebp: 0x00000000 0x00000100
%esi : 0x00000000 0x0000a000
Changes to nenory:

0x00e8: 0x00000000 0x000000f 8
0x00ec: 0x00000000 0x0000003d
0x00f 0: 0x00000000 0x00000014
0x00f 4: 0x00000000 0x00000004
0x00f 8: 0x00000000 0x00000100
0x00f c: 0x00000000 0x00000011

The first line of the simulation output summarizes the exeautnd the resulting values of the PC and pro-
gram status. In printing register and memory values, it @niyts out words that change during simulation,
either in registers or in memory. The original values (héeytare all zero) are shown on the left, and the
final values are shown on the right. We can see in this out@itrédgister¥eax containsOxabcd, the
sum of the 4-element array passed to subrouBam In addition, we can see that the stack, which starts
at addres9x100 and grows toward lower addresses, has been used, causimgeshta words of memory
at addresseB8xe8 throughOxf c. This is well away fron0x7c, the maximum address of the executable
code.

Practice Problem 4.3;
Write Y86 code to implement a recursive sum functicdum based on the following C code:

int rSum(int =Start, int Count)

{
if (Count <= 0)
return O;
return *Start + rSun(Start+1, Count-1);
}

You might find it helpful to compile the C code on an IA32 maehand then translate the instructions
to Y86.

