
Chapter 3

Machine-Level Representation of Programs

Computers executemachine code, sequences of bytes encoding the low-level operations thatmanipulate
data, manage memory, read and write data on storage devices,and communicate over networks. A compiler
generates machine code through a series of stages, based on the rules of the programming language, the
instruction set of the target machine, and the conventions followed by the operating system. TheGCC C
compiler generates its output in the form ofassembly code, a textual representation of the machine code
giving the individual instructions in the program. GCC then invokes both anassemblerand alinker to
generate the executable machine code from the assembly code. In this chapter, we will take a close look at
machine code and its human-readable representation as assembly code.

When programming in a high-level language such as C, and evenmore so in Java, we are shielded from the
detailed, machine-level implementation of our program. Incontrast, when writing programs in assembly
code (as was done in the early days of computing) a programmermust specify the low-level instructions
the program uses to carry out a computation. Most of the time,it is much more productive and reliable to
work at the higher level of abstraction provided by a high-level language. The type checking provided by a
compiler helps detect many program errors and makes sure we reference and manipulate data in consistent
ways. With modern, optimizing compilers, the generated code is usually at least as efficient as what a
skilled, assembly-language programmer would write by hand. Best of all, a program written in a high-level
language can be compiled and executed on a number of different machines, whereas assembly code is highly
machine specific.

So why should we spend our time learning machine code? Even though compilers do most of the work in
generating assembly code, being able to read and understandit is an important skill for serious program-
mers. By invoking the compiler with appropriate command-line parameters, the compiler will generate a
file showing its output in assembly-code form. By reading this code, we can understand the optimization
capabilities of the compiler and analyze the underlying inefficiencies in the code. As we will experience in
Chapter 5, programmers seeking to maximize the performanceof a critical section of code often try differ-
ent variations of the source code, each time compiling and examining the generated assembly code to get
a sense of how efficiently the program will run. Furthermore,there are times when the layer of abstraction
provided by a high-level language hides information about the run-time behavior of a program that we need
to understand. For example, when writing concurrent programs using a thread package, as covered in Chap-
ter 12, it is important to know what region of memory is used tohold the different program variables. This

145

146 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

information is visible at the assembly-code level. As another example, many of the ways programs can be
attacked, allowing worms and viruses to infest a system, involve nuances of the way programs store their
run-time control information. Many attacks involve exploiting weaknesses in system programs to overwrite
information and thereby take control of the system. Understanding how these vulnerabilities arise and how
to guard against them requires a knowledge of the machine-level representation of programs. The need for
programmers to learn assembly code has shifted over the years from one of being able to write programs
directly in assembly to one of being able to read and understand the code generated by compilers.

In this chapter, we will learn the details of two particular assembly languages and see how C programs
get compiled into these forms of machine code. Reading the assembly code generated by a compiler in-
volves a different set of skills than writing assembly code by hand. We must understand the transformations
typical compilers make in converting the constructs of C into machine code. Relative to the computations
expressed in the C code, optimizing compilers can rearrangeexecution order, eliminate unneeded computa-
tions, replace slow operations with faster ones, and even change recursive computations into iterative ones.
Understanding the relation between source code and the generated assembly can often be a challenge—it’s
much like putting together a puzzle having a slightly different design than the picture on the box. It is a
form of reverse engineering—trying to understand the process by which a system was created by studying
the system and working backward. In this case, the system is amachine-generated, assembly-language pro-
gram, rather than something designed by a human. This simplifies the task of reverse engineering, because
the generated code follows fairly regular patterns, and we can run experiments, having the compiler generate
code for many different programs. In our presentation, we give many examples and provide a number of
exercises illustrating different aspects of assembly language and compilers. This is a subject where master-
ing the details is a prerequisite to understanding the deeper and more fundamental concepts. Those who say
“I understand the general principles, I don’t want to botherlearning the details” are deluding themselves. It
is critical for you to spend time studying the examples, working through the exercises, and checking your
solutions with those provided.

Our presentation is based on two related machine languages:Intel IA32, the dominant language of most
computers today, and x86-64, its extension to run on 64-bit machines. Our focus starts with IA32. Intel
processors have grown from primitive 16-bit processors in 1978 to the mainstream machines for today’s
desktop, laptop, and server computers. The architecture has grown correspondingly with new features
added and with the 16-bit architecture transformed to become IA32, supporting 32-bit data and addresses.
The result is a rather peculiar design with features that make sense only when viewed from a historical
perspective. It is also laden with features providing backward compatibility that are not used by modern
compilers and operating systems. We will focus on the subsetof the features used byGCC and Linux. This
allows us to avoid much of the complexity and arcane featuresof IA32.

Our technical presentation starts with a quick tour to show the relation between C, assembly code, and
machine code. We then proceed to the details of IA32, starting with the representation and manipulation
of data and the implementation of control. We see how controlconstructs in C, such asif, while, and
switch statements, are implemented. We then cover the implementation of procedures, including how
the program maintains a run-time stack to support the passing of data and control between procedures, as
well as storage for local variables. Next, we consider how data structures such as arrays, structures, and
unions are implemented at the machine level. With this background in machine-level programming, we
can examine the problems of out of bounds memory references and the vulnerability of systems to buffer
overflow attacks. We finish this part of the presentation withsome tips on using theGDB debugger for

3.1. A HISTORICAL PERSPECTIVE 147

examining the run-time behavior of a machine-level program.

As we will discuss, the extension of IA32 to 64 bits, termed x86-64, was originally developed by Advanced
Micro Devices (AMD), Intel’s biggest competitor. Whereas a32-bit machine can only make use of around
4 gigabytes (232 bytes) of random-access memory, current 64-bit machines can use up to 256 terabytes (248

bytes). The computer industry is currently in the midst of a transition from 32-bit to 64-bit machines. Most
of the microprocessors in recent server and desktop machines, as well as in many laptops, support either
32-bit or 64-bit operation. However, most of the operating systems running on these machines support
only 32-bit applications, and so the capabilities of the hardware are not fully utilized. As memory prices
drop, and the desire to perform computations involving verylarge data sets increases, 64-bit machines and
applications will become commonplace. It is therefore appropriate to take a close look at x86-64. We will
see that in making the transition from 32 to 64 bits, the engineers at AMD also incorporated features that
make the machines better targets for optimizing compilers and that improve system performance.

We provide web asides to cover material intended for dedicated machine-language enthusiasts. In one, we
examine the code generated when code is compiled using higher degrees of optimization. Each successive
version of theGCCcompiler implements more sophisticated optimization algorithms, and these can radically
transform a program to the point where it is difficult to understand the relation between the original source
code and the generated machine-level program. Another web aside gives a brief presentation of ways to
incorporate assembly code into C programs. For some applications, the programmer must drop down to
assembly code to access low-level features of the machine. One approach is to write entire functions in
assembly code and combine them with C functions during the linking stage. A second is to useGCC’s
support for embedding assembly code directly within C programs. We provide separate web asides for
two different machine languages for floating-point code. The “x87” floating-point instructions have been
available since the early days of Intel processors. This implementation of floating point is particularly
arcane, and so we advise that only people determined to work with floating-point code on older machines
attempt to study this section. The more recent “SSE” instructions were developed to supportmultimedia
applications, but in their more recent versions (version 2 and later), andwith more recent versions ofGCC,
SSE has become the preferred method for mapping floating point onto both IA32 and x86-64 machines.

3.1 A Historical Perspective

The Intel processor line, colloquially referred to asx86, has followed a long, evolutionary development. It
started with one of the first single-chip, 16-bit microprocessors, where many compromises had to be made
due to the limited capabilities of integrated circuit technology at the time. Since then it has grown to take
advantage of technology improvements as well as to satisfy the demands for higher performance and for
supporting more advanced operating systems.

The list that follows shows some models of Intel processors and some of their key features, especially those
affecting machine-level programming. We use the number of transistors required to implement the proces-
sors as an indication of how they have evolved in complexity (K denotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a variant
of the 8086 with an 8-bit external bus, formed the heart of theoriginal IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The original

148 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use. In 1980, Intel
introduced the 8087 floating-point coprocessor (45 K transistors) to operate alongside an 8086 or 8088
processor, executing the floating-point instructions. The8087 established the floating-point model for
the x86 line, often referred to as “x87.”

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT personal computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.2 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not significantly change the instructionset.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 5.5 M transistors). Introduced a radically new processor design, internally known as
theP6microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium II: (1997, 7 M transistors). Continuation of the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced SSE, a class of instructions for manipulating vectors
of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128 bits.
Later versions of this chip went up to 24 M transistors, due tothe incorporation of the level-2 cache
on chip.

Pentium 4: (2000, 42 M transistors). Extended SSE to SSE2, adding new data types (including double-
precision floating point), along with 144 new instructions for these formats. With these extensions,
compilers can use SSE instructions, rather than x87 instructions, to compile floating-point code. In-
troduced theNetBurstmicroarchitecture, which could operate at very high clock speeds, but at the
cost of high power consumption.

Pentium 4E: (2004, 125 M transistors). Addedhyperthreading, a method to run two programs simultane-
ously on a single processor, as well as EM64T, Intel’s implementation of a 64-bit extension to IA32
developed by Advanced Micro Devices (AMD), which we refer toas x86-64.

Core 2: (2006, 291 M transistors). Returned back to a microarchitecture similar to P6. Firstmult-core
Intel microprocessor, where multiple processors are implemented on a single chip. Did not support
hyperthreading.

Core i7: (2008, 781 M transistors). Incorporated both hyperthreading and mult-core, with the initial version
supporting two executing programs on each core and up to fourcores on each chip.

3.1. A HISTORICAL PERSPECTIVE 149

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. As we will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel has had several names for their processor line, includingIA32, for “Intel Architecture 32-bit,”
and most recentlyIntel64, the 64-bit extension to IA32, which we will refer to asx86-64. We will refer to
the overall line by the commonly used colloquial name “x86,”reflecting the processor naming conventions
up through the i486.

Aside: Moore’s Law.

8086

80286

i386

i486
Pentium

PentiumPro

Pentium II

Pentium III

Pentium 4

Pentium 4e

Core 2 Duo

Core i7

If we plot the number of transistors in the different Intel processors versus the year of introduction, and use a
logarithmic scale for they-axis, we can see that the growth has been phenomenal. Fitting a line through the data,
we see that the number of transistors increases at an annual rate of approximately 38%, meaning that the number of
transistors doubles about every 26 months. This growth has been sustained over the multiple-decade history of x86
microprocessors.

In 1965, Gordon Moore, a founder of Intel Corporation extrapolated from the chip technology of the day, in which
they could fabricate circuits with around 64 transistors ona single chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This predication became known asMoore’s law. As it turns out,
his prediction was just a little bit optimistic, but also tooshort-sighted. Over more than 45 years, the semiconductor
industry has been able to double transistor counts on average every 18 months.

Similar exponential growth rates have occurred for other aspects of computer technology—disk capacities, memory-
chip capacities, and processor performance. These remarkable growth rates have been the major driving forces of
the computer revolution.End Aside.

Over the years, several companies have produced processorsthat are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is Advanced Micro Devices
(AMD). For years, AMD lagged just behind Intel in technology, forcing a marketing strategy where they
produced processors that were less expensive although somewhat lower in performance. They became more
competitive around 2002, being the first to break the 1-gigahertz clock-speed barrier for a commercially

150 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

available microprocessor, and introducing x86-64, the widely adopted 64-bit extension to IA32. Although
we will talk about Intel processors, our presentation holdsjust as well for the compatible processors pro-
duced by Intel’s rivals.

Much of the complexity of x86 is not of concern to those interested in programs for the Linux operating
system as generated by theGCC compiler. The memory model provided in the original 8086 andits exten-
sions in the 80286 are obsolete. Instead, Linux uses what is referred to asflat addressing, where the entire
memory space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions have been added to x86
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Inits default invocation for 32-bit execution,GCC

assumes it is generating code for an i386, even though there are very few of these 1985-era microprocessors
running any longer. Only by giving specific command-line options, or by compiling for 64-bit operation,
will the compiler make use of the more recent extensions.

For the next part of our presentation, we will focus only on the IA32 instruction set. We will then look at
the extension to 64 bits via x86-64 toward the end of the chapter.

3.2 Program Encodings

Suppose we write a C program as two filesp1.c andp2.c. We can then compile this code on an IA32
machine using a Unix command line:

unix> gcc -O1 -o p p1.c p2.c

The commandgcc indicates theGCC C compiler. Since this is the default compiler on Linux, we could
also invoke it as simplycc. The command-line option-O1 instructs the compiler to apply level-one opti-
mizations. In general, increasing the level of optimization makes the final program run faster, but at a risk
of increased compilation time and difficulties running debugging tools on the code. As we will also see,
invoking higher levels of optimization can generate code that is so heavily transformed that the relation-
ship between the generated machine code and the original source code is difficult to understand. We will
therefore use level-one optimization as a learning tool andthen see what happens as we increase the level
of optimization. In practice, level-two optimization (specified with the option-O2) is considered a better
choice in terms of the resulting program performance.

Thegcc command actually invokes a sequence of programs to turn the source code into executable code.
First, the Cpreprocessorexpands the source code to include any files specified with#include commands
and to expand any macros, specified with#define declarations. Second, thecompilergenerates assembly-
code versions of the two source files having namesp1.s andp2.s. Next, theassemblerconverts the
assembly code into binaryobject-codefilesp1.o andp2.o. Object code is one form of machine code—it
contains binary representations of all of the instructions, but the addresses of global values are not yet filled
in. Finally, thelinker merges these two object-code files along with code implementing library functions
(e.g., printf) and generates the final executable code filep. Executable code is the second form of
machine code we will consider—it is the exact form of code that is executed by the processor. The relation

3.2. PROGRAM ENCODINGS 151

between these different forms of machine code and the linking process is described in more detail in Chapter
7.

3.2.1 Machine-Level Code

As described in Section 1.9.2, computer systems employ several different forms of abstraction, hiding details
of an implementation through the use of a simpler, abstract model. Two of these are especially important
for machine-level programming. First, the format and behavior of a machine-level program is defined by
the instruction set architecture, or “ISA,” defining the processor state, the format of the instructions, and
the effect each of these instructions will have on the state.Most ISAs, including IA32 and x86-64, describe
the behavior of a program as if each instruction is executed in sequence, with one instruction completing
before the next one begins. The processor hardware is far more elaborate, executing many instructions
concurrently, but it employs safeguards to ensure that the overall behavior matches the sequential operation
dictated by the ISA. Second, the memory addresses used by a machine-level program are virtual addresses,
providing a memory model that appears to be a very large byte array. The actual implementation of the
memory system involves a combination of multiple hardware memories and operating system software, as
described in Chapter 9.

The compiler does most of the work in the overall compilationsequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly-code representation is veryclose to machine code. Its main feature is that
it is in a more readable textual format, as compared to the binary format of machine code. Being able to
understand assembly code and how it relates to the original Ccode is a key step in understanding how
computers execute programs.

IA32 machine code differs greatly from the original C code. Parts of the processor state are visible that
normally are hidden from the C programmer:

• The program counter(commonly referred to as the “PC,” and called%eip in IA32) indicates the
address in memory of the next instruction to be executed.

• The integerregister filecontains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are usedto hold temporary data, such as the local
variables of a procedure, and the value to be returned by a function.

• The condition code registers hold status information aboutthe most recently executed arithmetic or
logical instruction. These are used to implement conditional changes in the control or data flow, such
as is required to implementif andwhile statements.

• A set of floating-point registers store floating-point data.

Whereas C provides a model in which objects of different datatypes can be declared and allocated in
memory, machine code views the memory as simply a large, byte-addressable array. Aggregate data types
in C such as arrays and structures are represented in machinecode as contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctions between signed or unsigned integers, between
different types of pointers, or even between pointers and integers.

152 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The program memory contains the executable machine code forthe program, some information required
by the operating system, a run-time stack for managing procedure calls and returns, and blocks of memory
allocated by the user (for example, by using themalloc library function). As mentioned earlier, the
program memory is addressed using virtual addresses. At anygiven time, only limited subranges of virtual
addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially span a 4-
gigabyte range of address values, a typical program will only have access to a few megabytes. The operating
system manages this virtual address space, translating virtual addresses into the physical addresses of values
in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new
instruction address. The compiler must generate sequencesof such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

Aside: The ever-changing forms of generated code
In our presentation, we will show the code generated by a particular version ofGCC with particular settings of the
command-line options. If you compile code on your own machine, chances are you will be using a different compiler
or a different version ofGCC and hence will generate different code. The open-source community supportingGCC

keeps changing the code generator, attempting to generate more efficient code according to changing code guidelines
provided by the microprocessor manufacturers.

Our goal in studying the examples shown in our presentation is to demonstrate how to examine assembly code and
map it back to the constructs found in high-level programming languages. You will need to adapt these techniques
to the style of code generated by your particular compiler.End Aside.

3.2.2 Code Examples

Suppose we write a C code filecode.c containing the following procedure definition:

1 int accum = 0;
2

3 int sum(int x, int y)
4 {
5 int t = x + y;
6 accum += t;
7 return t;
8 }

To see the assembly code generated by the C compiler, we can use the “-S” option on the command line:

unix> gcc -O1 -S code.c

This will causeGCC to run the compiler, generating an assembly filecode.s, and go no further. (Normally
it would then invoke the assembler to generate an object-code file.)

The assembly-code file contains various declarations including the set of lines:

sum:
pushl %ebp

3.2. PROGRAM ENCODINGS 153

movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
addl %eax, accum
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, thepushl
instruction indicates that the contents of register%ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We still see a reference to the
global variableaccum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the ‘-c’ command-line option,GCC will both compile and assemble the code

unix> gcc -O1 -c code.c

This will generate an object-code filecode.o that is in binary format and hence cannot be viewed directly.
Embedded within the 800 bytes of the filecode.o is a 17-byte sequence having hexadecimal representa-
tion:

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 5d c3

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do I find the byte representation of a program?
To generate these bytes, we used adisassembler(to be described shortly) to determine that the code forsum is 17
bytes long. Then we ran the GNU debugging toolGDB on filecode.o and gave it the command

(gdb) x/17xb sum

telling it to examine (abbreviated ‘x’) 17 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
thatGDB has many useful features for analyzing machine-level programs, as will be discussed in Section 3.11.End
Aside.

To inspect the contents of machine-code files, a class of programs known asdisassemblerscan be invaluable.
These programs generate a format similar to assembly code from the machine code. With Linux systems,
the programOBJDUMP (for “object dump”) can serve this role given the ‘-d’ command-line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left andannotations in italicized text) as follows:

Disassembly of function sum in binary file code.o

1 00000000 <sum>:

154 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

Offset Bytes Equivalent assembly language

2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 0c mov 0xc(%ebp),%eax
5 6: 03 45 08 add 0x8(%ebp),%eax
6 9: 01 05 00 00 00 00 add %eax,0x0
7 f: 5d pop %ebp
8 10: c3 ret

On the left we see the 17 hexadecimal byte values listed in thebyte sequence earlier, partitioned into groups
of 1 to 6 bytes each. Each of these groups is a single instruction, with the assembly-language equivalent
shown on the right.

Several features about machine code and its disassembled representation are worth noting:

• IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and those with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

• The instruction format is designed in such a way that from a given starting position, there is a unique
decoding of the bytes into machine instructions. For example, only the instructionpushl %ebp can
start with byte value55.

• The disassembler determines the assembly code based purelyon the byte sequences in the machine-
code file. It does not require access to the source or assembly-code versions of the program.

• The disassembler uses a slightly different naming convention for the instructions than does the assem-
bly code generated byGCC. In our example, it has omitted the suffix ‘l’ from many of the instructions.
These suffixes are size designators and can be omitted in mostcases.

Generating the actual executable code requires running a linker on the set of object-code files, one of which
must contain a functionmain. Suppose in filemain.c we had the following function:

1 int main()
2 {
3 return sum(1, 3);
4 }

Then, we could generate an executable programprog as follows:

unix> gcc -O1 -o prog code.o main.c

The fileprog has grown to 9,123 bytes, since it contains not just the code for our two procedures but also
information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the fileprog:

unix> objdump -d prog

3.2. PROGRAM ENCODINGS 155

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 08048394 <sum>:
Offset Bytes Equivalent assembly language

2 8048394: 55 push %ebp
3 8048395: 89 e5 mov %esp,%ebp
4 8048397: 8b 45 0c mov 0xc(%ebp),%eax
5 804839a: 03 45 08 add 0x8(%ebp),%eax
6 804839d: 01 05 18 a0 04 08 add %eax,0x804a018
7 80483a3: 5d pop %ebp
8 80483a4: c3 ret

This code is almost identical to that generated by the disassembly ofcode.c. One important difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has determined the location for storing
global variableaccum. On line 6 of the disassembly forcode.o the address ofaccum was listed as0.
In the disassembly ofprog, the address has been set to0x804a018. This is shown in the assembly-
code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed from
least-significant to most as18 a0 04 08.

3.2.3 Notes on Formatting

The assembly code generated byGCC is difficult for a human to read. On one hand, it contains information
with which we need not be concerned, while on the other hand, it does not provide any description of the
program or how it works. For example, suppose the filesimple.c contains the following code:

1 int simple(int *xp, int y)
2 {
3 int t = *xp + y;
4 *xp = t;
5 return t;
6 }

WhenGCC is run with flags ‘-S’ and ‘-O1’, it generates the following file forsimple.s:

.file "simple.c"

.text
.globl simple

.type simple, @function
simple:

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %edx
movl 12(%ebp), %eax
addl (%edx), %eax

156 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

movl %eax, (%edx)
popl %ebp
ret
.size simple, .-simple
.ident "GCC: (Ubuntu 4.3.2-1ubuntu11) 4.3.2"
.section .note.GNU-stack,"",@progbits

All of the lines beginning with ‘.’ are directives to guide the assembler and linker. We can generally ignore
these. On the other hand, there are no explanatory remarks about what the instructions do or how they relate
to the source code.

To provide a clearer presentation of assembly code, we will show it in a form that omits most of the di-
rectives, while including line numbers and explanatory annotations. For our example, an annotated version
would appear as follows:

1 simple:
2 pushl %ebp Save frame pointer

3 movl %esp, %ebp Create new frame pointer

4 movl 8(%ebp), %edx Retrieve xp

5 movl 12(%ebp), %eax Retrieve y

6 addl (%edx), %eax Add *xp to get t

7 movl %eax, (%edx) Store t at xp

8 popl %ebp Restore frame pointer

9 ret Return

We typically show only the lines of code relevant to the pointbeing discussed. Each line is numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

Aside: ATT versus Intel assembly-code formats
In our presentation, we show assembly code in ATT (named after “AT&T,” the company that operated Bell Labo-
ratories for many years) format, the default format forGCC, OBJDUMPand the other tools we will consider. Other
programming tools, including those from Microsoft as well as the documentation from Intel, show assembly code
in Intel format. The two formats differ in a number of ways. As an example, GCC can generate code in Intel format
for thesum function using the following command line:

unix> gcc -O1 -S -masm=intel code.c

This gives the following assembly code:

Assembly code for simple in Intel format

1 simple:
2 push ebp
3 mov ebp, esp
4 mov edx, DWORD PTR [ebp+8]
5 mov eax, DWORD PTR [ebp+12]
6 add eax, DWORD PTR [edx]

3.3. DATA FORMATS 157

C declaration Intel data type Assembly-code suffix Size (bytes)
char Byte b 1
short Word w 2
int Double word l 4
long int Double word l 4
long long int — — 4
char * Double word l 4
float Single precision s 4
double Double precision l 8
long double Extended precision t 10/12

Figure 3.1: Sizes of C data types in IA32. IA32 does not provide hardware support for 64-bit integer
arithmetic. Compiling code with long long data requires generating sequences of operations to perform
the arithmetic in 32-bit chunks.

7 mov DWORD PTR [edx], eax
8 pop ebp
9 ret

We see that the Intel and ATT formats differ in the following ways:

• The Intel code omits the size designation suffixes. We see instructionmov instead ofmovl.

• The Intel code omits the ‘%’ character in front of register names, usingesp instead of%esp.

• The Intel code has a different way of describing locations inmemory, for example ‘DWORD PTR [ebp+8]’
rather than ‘8(%ebp)’.

• Instructions with multiple operands list them in the reverse order. This can be very confusing when switching
between the two formats.

Although we will not be using Intel format in our presentation, you will encounter it in IA32 documentation from
Intel and Windows documentation from Microsoft.End Aside.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
quantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the IA32 representations used for the primitive data types of C. Most of the common
data types are stored as double words. This includes both regular and longint’s, whether or not they are
signed. In addition, all pointers (shown here aschar *) are stored as 4-byte double words. Bytes are
commonly used when manipulating string data. As we saw in Section 2.1, more recent extensions of the C
language include the data typelong long, which is represented using eight bytes. IA32 does not support
this data type in hardware. Instead, the compiler must generate sequences of instructions that operate on
these data 32 bits at a time. Floating-point numbers come in three different forms: single-precision (4-
byte) values, corresponding to C data typefloat; double-precision (8-byte) values, corresponding to C

158 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

31 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

Stack pointer%esp %sp

Frame pointer%ebp %bp

Figure 3.2:IA32 integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits
(double word). The two low-order bytes of the first four registers can be accessed independently.

data typedouble; and extended-precision (10-byte) values. GCC uses the data typelong double
to refer to extended-precision floating-point values. It also stores them as 12-byte quantities to improve
memory system performance, as will be discussed later. Using thelong double data type (introduced
in ISO C99) gives us access to the extended-precision capability of x86. For most other machines, this data
type will be represented using the same 8-byte format of the ordinarydouble data type.

As the table indicates, most assembly-code instructions generated byGCC have a single-character suffix
denoting the size of the operand. For example, the data movement instruction has three variants:movb
(move byte),movw (move word), andmovl (move double word). The suffix ‘l’ is used for double words,
since 32-bit quantities are considered to be “long words,” aholdover from an era when 16-bit word sizes
were standard. Note that the assembly code uses the suffix ‘l’ to denote both a 4-byte integer as well as an
8-byte double-precision floating-point number. This causes no ambiguity, since floating point involves an
entirely different set of instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eightregistersstoring 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2diagrams the eight registers. Their names all
begin with%e, but otherwise, they have peculiar names. With the original8086, the registers were 16
bits and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registers is greatly reduced. For the most part, the first six registers can

3.4. ACCESSING INFORMATION 159

Type Form Operand value Name
Immediate $Imm Imm Immediate
Register Ea R[Ea] Register
Memory Imm M[Imm] Absolute
Memory (Ea) M[R[Ea]] Indirect
Memory Imm(Eb) M[Imm + R[Eb]] Base + displacement
Memory (Eb,Ei) M[R[Eb] + R[Ei]] Indexed
Memory Imm(Eb,Ei) M[Imm + R[Eb] + R[Ei]] Indexed
Memory (,Ei,s) M[R[Ei] · s] Scaled indexed
Memory Imm(,Ei,s) M[Imm + R[Ei] · s] Scaled indexed
Memory (Eb,Ei,s) M[R[Eb] + R[Ei] · s] Scaled indexed
Memory Imm(Eb,Ei,s) M[Imm + R[Eb] + R[Ei] · s] Scaled indexed

Figure 3.3:Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor s must be either 1, 2, 4, or 8.

be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (%eax, %ecx, and%edx),
than for the next three (%ebx, %edi, and%esi). This will be discussed in Section 3.7. The final two
registers (%ebp and%esp) contain pointers to important places in the program stack.They should only be
altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be reador written by word operation instructions. This
feature stems from IA32’s evolutionary heritage as a 16-bitmicroprocessor and is also used when operating
on integers with size designatorshort.

3.4.1 Operand Specifiers

Most instructions have one or moreoperands, specifying the source values to reference in performing an
operation and the destination location into which to place the result. IA32 supports a number of operand
forms (see Figure 3.3). Source values can be given as constants or read from registers or memory. Results
can be stored in either registers or memory. Thus, the different operand possibilities can be classified into
three types. The first type,immediate, is for constant values. In ATT-format assembly code, theseare
written with a ‘$’ followed by an integer using standard C notation, for example, $-577 or $0x1F. Any
value that fits into a 32-bit word can be used, although the assembler will use one or two-byte encodings
when possible. The second type,register, denotes the contents of one of the registers, either one of the eight
32-bit registers (e.g.,%eax) for a double-word operation, one of the eight 16-bit registers (e.g.,%ax) for a
word operation, or one of the eight single-byte register elements (e.g.,%al) for a byte operation. In Figure

160 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.3, we use the notationEa to denote an arbitrary registera, and indicate its value with the referenceR[Ea],
viewing the set of registers as an arrayR indexed by register identifiers.

The third type of operand is amemoryreference, in which we access some memory location according to a
computed address, often called theeffective address. Since we view the memory as a large array of bytes,
we use the notationMb[Addr] to denote a reference to theb-byte value stored in memory starting at address
Addr . To simplify things, we will generally drop the subscriptb.

As Figure 3.3 shows, there are many differentaddressing modesallowing different forms of memory ref-
erences. The most general form is shown at the bottom of the table with syntaxImm(Eb,Ei,s). Such a
reference has four components: an immediate offsetImm, a base registerEb, an index registerEi, and a scale
factors, wheres must be 1, 2, 4, or 8. The effective address is then computed asImm + R[Eb] + R[Ei] · s.
This general form is often seen when referencing elements ofarrays. The other forms are simply special
cases of this general form where some of the components are omitted. As we will see, the more complex
addressing modes are useful when referencing array and structure elements.

Practice Problem 3.1:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands:

Operand Value
%eax
0x104
$0x108
(%eax)
4(%eax)
9(%eax,%edx)
260(%ecx,%edx)
0xFC(,%ecx,4)
(%eax,%edx,4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that copydata from one location to another. The
generality of the operand notation allows a simple data movement instruction to perform what in many
machines would require a number of instructions. Figure 3.4lists the important data movement instructions.
As can be seen, we group the many different instructions intoinstruction classes, where the instructions in

3.4. ACCESSING INFORMATION 161

Instruction Effect Description
MOV S, D D ← S Move
movb Move byte
movw Move word
movl Move double word
MOVS S, D D ← SignExtend(S) Move with sign extension
movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
MOVZ S, D D ← ZeroExtend(S) Move with zero extension
movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
pushl S R[%esp] ← R[%esp]− 4; Push double word

M[R[%esp]] ← S

popl D D ← M[R[%esp]]; Pop double word
R[%esp] ← R[%esp] + 4

Figure 3.4:Data movement instructions.

a class perform the same operation, but with different operand sizes. For example theMOV class consists
of three instructions:movb, movw, andmovl. All three of these instructions perform the same operation;
they differ only in that they operate on data of size 1, 2, and 4bytes, respectively.

The instructions in theMOV class copy their source values to their destinations. The source operand desig-
nates a value that is immediate, stored in a register, or stored in memory. The destination operand designates
a location that is either a register or a memory address. IA32imposes the restriction that a move instruc-
tion cannot have both operands refer to memory locations. Copying a value from one memory location to
another requires two instructions—the first to load the source value into a register, and the second to write
this register value to the destination. Referring to Figure3.2, the register operands for these instructions
can be any of the 8 32-bit registers (%eax–%ebp) for movl, any of the 8 16-bit registers (%ax–%bp) for
movw, and any of the single-byte register elements (%ah–%bh, %al–%bl) for movb. The followingMOV
instruction examples show the five possible combinations ofsource and destination types. Recall that the
source operand comes first and the destination second:

1 movl $0x4050,%eax Immediate--Register, 4 bytes

2 movw %bp,%sp Register--Register, 2 bytes

3 movb (%edi,%ecx),%ah Memory--Register, 1 byte

4 movb $-17,(%esp) Immediate--Memory, 1 byte

5 movl %eax,-12(%ebp) Register--Memory, 4 bytes

Both theMOVS and theMOVZ instruction classes serve to copy a smaller amount of sourcedata to a larger
data location, filling in the upper bits by either sign expansion (MOVS) or by zero expansion (MOVZ). With
sign expansion, the upper bits of the destination are filled in with copies of the most significant bit of the
source value. With zero expansion, the upper bits are filled with zeros. As can be seen, there are three

