Chapter 3

Machine-Level Representation of Programs

Computers executmachine codesequences of bytes encoding the low-level operationsntiaaipulate
data, manage memory, read and write data on storage deaimbspmmunicate over networks. A compiler
generates machine code through a series of stages, baskd nnes of the programming language, the
instruction set of the target machine, and the conventiotiewied by the operating system. Tleec C
compiler generates its output in the formadsembly codea textual representation of the machine code
giving the individual instructions in the program. cG then invokes both aassemblerand alinker to
generate the executable machine code from the assembly lcoithes chapter, we will take a close look at
machine code and its human-readable representation asldgsmde.

When programming in a high-level language such as C, andraeea so in Java, we are shielded from the
detailed, machine-level implementation of our program.caéntrast, when writing programs in assembly
code (as was done in the early days of computing) a programmst specify the low-level instructions
the program uses to carry out a computation. Most of the tinie much more productive and reliable to
work at the higher level of abstraction provided by a higleldanguage. The type checking provided by a
compiler helps detect many program errors and makes sureference and manipulate data in consistent
ways. With modern, optimizing compilers, the generatedecizdusually at least as efficient as what a
skilled, assembly-language programmer would write by h&w®st of all, a program written in a high-level
language can be compiled and executed on a number of difie@chines, whereas assembly code is highly
machine specific.

So why should we spend our time learning machine code? Ewergthcompilers do most of the work in
generating assembly code, being able to read and undeiistargh important skill for serious program-
mers. By invoking the compiler with appropriate commamalparameters, the compiler will generate a
file showing its output in assembly-code form. By reading ttode, we can understand the optimization
capabilities of the compiler and analyze the underlyindficiencies in the code. As we will experience in
Chapter 5, programmers seeking to maximize the performahaeritical section of code often try differ-
ent variations of the source code, each time compiling amdnining the generated assembly code to get
a sense of how efficiently the program will run. Furthermahere are times when the layer of abstraction
provided by a high-level language hides information abbetrtin-time behavior of a program that we need
to understand. For example, when writing concurrent prograsing a thread package, as covered in Chap-
ter 12, it is important to know what region of memory is usetiodd the different program variables. This

145

146 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

information is visible at the assembly-code level. As aaptxample, many of the ways programs can be
attacked, allowing worms and viruses to infest a systenglevnuances of the way programs store their
run-time control information. Many attacks involve expilog weaknesses in system programs to overwrite
information and thereby take control of the system. Und@adihg how these vulnerabilities arise and how
to guard against them requires a knowledge of the machim-lepresentation of programs. The need for
programmers to learn assembly code has shifted over the frean one of being able to write programs
directly in assembly to one of being able to read and undeddtse code generated by compilers.

In this chapter, we will learn the details of two particulasambly languages and see how C programs
get compiled into these forms of machine code. Reading tbenalsly code generated by a compiler in-
volves a different set of skills than writing assembly cogiénand. We must understand the transformations
typical compilers make in converting the constructs of © imachine code. Relative to the computations
expressed in the C code, optimizing compilers can rearrargeution order, eliminate unneeded computa-
tions, replace slow operations with faster ones, and evangeghrecursive computations into iterative ones.
Understanding the relation between source code and theajedeassembly can often be a challenge—it's
much like putting together a puzzle having a slightly difer design than the picture on the box. Itis a
form of reverse engineeringtrying to understand the process by which a system wasectdst studying
the system and working backward. In this case, the systemmachine-generated, assembly-language pro-
gram, rather than something designed by a human. This siegplhe task of reverse engineering, because
the generated code follows fairly regular patterns, andameran experiments, having the compiler generate
code for many different programs. In our presentation, we ghany examples and provide a number of
exercises illustrating different aspects of assemblydagg and compilers. This is a subject where master-
ing the details is a prerequisite to understanding the desemkmore fundamental concepts. Those who say
“l understand the general principles, | don’t want to botlearning the details” are deluding themselves. It
is critical for you to spend time studying the examples, wagkhrough the exercises, and checking your
solutions with those provided.

Our presentation is based on two related machine langudigies:IA32, the dominant language of most
computers today, and x86-64, its extension to run on 64-bitiimes. Our focus starts with 1A32. Intel
processors have grown from primitive 16-bit processors9mnglto the mainstream machines for today’s
desktop, laptop, and server computers. The architectuisegt@vn correspondingly with new features
added and with the 16-bit architecture transformed to bec#32, supporting 32-bit data and addresses.
The result is a rather peculiar design with features thatenssnse only when viewed from a historical
perspective. It is also laden with features providing baaidwcompatibility that are not used by modern
compilers and operating systems. We will focus on the sulifséie features used bycc and Linux. This
allows us to avoid much of the complexity and arcane featof&&32.

Our technical presentation starts with a quick tour to shlogv relation between C, assembly code, and
machine code. We then proceed to the details of IA32, stawtiith the representation and manipulation
of data and the implementation of control. We see how comaktructs in C, such as , whi | e, and

swi t ch statements, are implemented. We then cover the implen@mtat procedures, including how
the program maintains a run-time stack to support the pgssidata and control between procedures, as
well as storage for local variables. Next, we consider hota d&ructures such as arrays, structures, and
unions are implemented at the machine level. With this bamkgd in machine-level programming, we
can examine the problems of out of bounds memory referermmsha vulnerability of systems to buffer
overflow attacks. We finish this part of the presentation witime tips on using theps debugger for

3.1. AHISTORICAL PERSPECTIVE 147

examining the run-time behavior of a machine-level program

As we will discuss, the extension of IA32 to 64 bits, terme@-83l, was originally developed by Advanced
Micro Devices (AMD), Intel’'s biggest competitor. Wherea82bit machine can only make use of around
4 gigabytes 732 bytes) of random-access memory, current 64-bit machinesisa up to 256 terabyte'f
bytes). The computer industry is currently in the midst afasition from 32-bit to 64-bit machines. Most
of the microprocessors in recent server and desktop mashaisewell as in many laptops, support either
32-bit or 64-bit operation. However, most of the operatiggteams running on these machines support
only 32-bit applications, and so the capabilities of thediaaare are not fully utilized. As memory prices
drop, and the desire to perform computations involving Varge data sets increases, 64-bit machines and
applications will become commonplace. It is therefore appate to take a close look at x86-64. We will
see that in making the transition from 32 to 64 bits, the emgjim at AMD also incorporated features that
make the machines better targets for optimizing compiladsthat improve system performance.

We provide web asides to cover material intended for deglicatachine-language enthusiasts. In one, we
examine the code generated when code is compiled usingrtdgigeees of optimization. Each successive
version of thescccompiler implements more sophisticated optimization @lgms, and these can radically
transform a program to the point where it is difficult to urgtand the relation between the original source
code and the generated machine-level program. Another gidb gives a brief presentation of ways to
incorporate assembly code into C programs. For some afiphsa the programmer must drop down to
assembly code to access low-level features of the machime approach is to write entire functions in
assembly code and combine them with C functions during tiilénlg stage. A second is to useccCs
support for embedding assembly code directly within C protg. We provide separate web asides for
two different machine languages for floating-point codee TX87” floating-point instructions have been
available since the early days of Intel processors. Thiddmpntation of floating point is particularly
arcane, and so we advise that only people determined to witikflwating-point code on older machines
attempt to study this section. The more recent “SSE” inftns were developed to suppanultimedia
applications but in their more recent versions (version 2 and later),sitld more recent versions @fcc,
SSE has become the preferred method for mapping floating poia both IA32 and x86-64 machines.

3.1 A Historical Perspective

The Intel processor line, colloquially referred tox@6 has followed a long, evolutionary development. It
started with one of the first single-chip, 16-bit micropresmers, where many compromises had to be made
due to the limited capabilities of integrated circuit teclogy at the time. Since then it has grown to take
advantage of technology improvements as well as to satieydemands for higher performance and for
supporting more advanced operating systems.

The list that follows shows some models of Intel processntssmme of their key features, especially those
affecting machine-level programming. We use the numberaoisistors required to implement the proces-
sors as an indication of how they have evolved in compleXtgénotes 1000, and M denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, l6rbicroprocessors. The 8088, a variant
of the 8086 with an 8-bit external bus, formed the heart ofdhiginal IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS2S operating system. The original

148 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

models came with 32,768 bytes of memory and two floppy drimesh@rd drive). Architecturally, the
machines were limited to a 655,360-byte address space-esstdr were only 20 bits long (1,048,576
bytes addressable), and the operating system reserve2il8d3ytes for its own use. In 1980, Intel
introduced the 8087 floating-point coprocessor (45 K tistnss) to operate alongside an 8086 or 8088
processor, executing the floating-point instructions. 80&7 established the floating-point model for
the x86 line, often referred to as “x87."

80286: (1982, 134 K transistors). Added more (and now obsoletejemdthg modes. Formed the basis of
the IBM PC-AT personal computer, the original platform foSMVindows.

i386: (1985, 275 K transistors). Expanded the architecture tadt32 Added the flat addressing model used
by Linux and recent versions of the Windows family of opergtsystem. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.2 M transistors). Improved performance and i@tegk the floating-point unit onto the pro-
cessor chip but did not significantly change the instructien

Pentium: (1993, 3.1 M transistors). Improved performance, but omlgleal minor extensions to the in-
struction set.

PentiumPro: (1995, 5.5 M transistors). Introduced a radically new pssoe design, internally known as
the P6 microarchitecture. Added a class of “conditional move'tinstions to the instruction set.

Pentium Il: (1997, 7 M transistors). Continuation of the P6 microaettiire.

Pentium Ill: (1999, 8.2 M transistors). Introduced SSE, a class of inBtms for manipulating vectors
of integer or floating-point data. Each datum can be 1, 2, ortds) packed into vectors of 128 bits.
Later versions of this chip went up to 24 M transistors, duth&incorporation of the level-2 cache
on chip.

Pentium 4: (2000, 42 M transistors). Extended SSE to SSE2, adding né&avtgaes (including double-
precision floating point), along with 144 new instructios these formats. With these extensions,
compilers can use SSE instructions, rather than x87 inging; to compile floating-point code. In-
troduced tha\etBurstmicroarchitecture, which could operate at very high clopkesls, but at the
cost of high power consumption.

Pentium 4E: (2004, 125 M transistors). Adddt/perthreadinga method to run two programs simultane-
ously on a single processor, as well as EM64T, Intel's imgetation of a 64-bit extension to IA32
developed by Advanced Micro Devices (AMD), which we refeatox86-64.

Core 2: (2006, 291 M transistors). Returned back to a microarchitecsimilar to P6. Firstult-core
Intel microprocessor, where multiple processors are implged on a single chip. Did not support
hyperthreading.

Core i7: (2008, 781 M transistors). Incorporated both hyperthmegdnd mult-core, with the initial version
supporting two executing programs on each core and up tocfmess on each chip.

3.1. AHISTORICAL PERSPECTIVE 149

Each successive processor has been designed to be backwapdtible—able to run code compiled for any
earlier version. As we will see, there are many strangesatsfin the instruction set due to this evolutionary
heritage. Intel has had several names for their processmriticludinglA32, for “Intel Architecture 32-bit,”
and most recentlyntel64, the 64-bit extension to IA32, which we will refer to a86-64 We will refer to
the overall line by the commonly used colloquial name “x86flecting the processor naming conventions
up through the i486.

Aside: Moore’s Law.

Intel microprocessor complexity

Core i7
1.0E+09 5

Core QiUO//
1.0E+08 Pentium 4

Pentium 4e
1.0E+07 PentiumPro = Pentium Il |

E
o
% " Pentium I
g 1.0E+06 1486 Pentium
= 80286

1.0E+05 — 8086/ i386

1.0E+04 . : : . : .

1975 1980 1985 1990 1995 2000 2005 2010
Year

If we plot the number of transistors in the different Intebpessors versus the year of introduction, and use a
logarithmic scale for thg-axis, we can see that the growth has been phenomenal.gritfine through the data,
we see that the number of transistors increases at an amteafrapproximately 38%, meaning that the number of
transistors doubles about every 26 months. This growth &es bustained over the multiple-decade history of x86
microprocessors.

In 1965, Gordon Moore, a founder of Intel Corporation exdtaped from the chip technology of the day, in which
they could fabricate circuits with around 64 transistoraaingle chip, to predict that the number of transistors per
chip would double every year for the next 10 years. This athn became known &doore’s law As it turns out,

his prediction was just a little bit optimistic, but also tslsort-sighted. Over more than 45 years, the semiconductor
industry has been able to double transistor counts on a@enagry 18 months.

Similar exponential growth rates have occurred for othpeets of computer technology—disk capacities, memory-
chip capacities, and processor performance. These rebtareowth rates have been the major driving forces of
the computer revolutiorEnd Aside.

Over the years, several companies have produced procelsabese compatible with Intel processors, ca-
pable of running the exact same machine-level programsef@niong these is Advanced Micro Devices
(AMD). For years, AMD lagged just behind Intel in technolodgrcing a marketing strategy where they
produced processors that were less expensive althoughwd@nlewer in performance. They became more
competitive around 2002, being the first to break the 1-gigahclock-speed barrier for a commercially

150 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

available microprocessor, and introducing x86-64, theelyiddopted 64-bit extension to IA32. Although
we will talk about Intel processors, our presentation h@lss as well for the compatible processors pro-
duced by Intel’s rivals.

Much of the complexity of x86 is not of concern to those insted in programs for the Linux operating
system as generated by thec compiler. The memory model provided in the original 8086 #s@xten-
sions in the 80286 are obsolete. Instead, Linux uses whafasred to adlat addressing, where the entire
memory space is viewed by the programmer as a large arraytes.by

As we can see in the list of developments, a number of formadsirestructions have been added to x86
for manipulating vectors of small integers and floatingapeiumbers. These features were added to allow
improved performance on multimedia applications, suchh@ye processing, audio and video encoding
and decoding, and three-dimensional computer graphiass ttiefault invocation for 32-bit executios,cc
assumes it is generating code for an i386, even though theresy few of these 1985-era microprocessors
running any longer. Only by giving specific command-lineiops$, or by compiling for 64-bit operation,
will the compiler make use of the more recent extensions.

For the next part of our presentation, we will focus only oa tA32 instruction set. We will then look at
the extension to 64 bits via x86-64 toward the end of the @rapt

3.2 Program Encodings

Suppose we write a C program as two fifgk. ¢ andp2. ¢c. We can then compile this code on an 1A32
machine using a Unix command line:

uni x> gcc -0l -0 p pl.c p2.c

The commandycc indicates thescc C compiler. Since this is the default compiler on Linux, weilco
also invoke it as simplgc. The command-line optionOLl instructs the compiler to apply level-one opti-
mizations. In general, increasing the level of optimizatnakes the final program run faster, but at a risk
of increased compilation time and difficulties running dgiing tools on the code. As we will also see,
invoking higher levels of optimization can generate cods th so heavily transformed that the relation-
ship between the generated machine code and the originadesoade is difficult to understand. We will
therefore use level-one optimization as a learning toolthrd see what happens as we increase the level
of optimization. In practice, level-two optimization (sjieed with the option- O2) is considered a better
choice in terms of the resulting program performance.

Thegcc command actually invokes a sequence of programs to turnotlmees code into executable code.
First, the Cpreprocessoexpands the source code to include any files specified#viticl ude commands
and to expand any macros, specified wittef i ne declarations. Second, tkempilergenerates assembly-
code versions of the two source files having nampéss andp2. s. Next, theassemblerconverts the
assembly code into binagbject-coddilespl. o andp2. 0. Object code is one form of machine code—it
contains binary representations of all of the instructjdng the addresses of global values are not yet filled
in. Finally, thelinker merges these two object-code files along with code implemgtibrary functions
(e.g.,printf) and generates the final executable code dileExecutable code is the second form of
machine code we will consider—it is the exact form of codd thaxecuted by the processor. The relation

3.2. PROGRAM ENCODINGS 151

between these different forms of machine code and the liniocess is described in more detail in Chapter
7.

3.2.1 Machine-Level Code

As described in Section 1.9.2, computer systems employaaliféferent forms of abstraction, hiding details
of an implementation through the use of a simpler, abstramtehr Two of these are especially important
for machine-level programming. First, the format and bébrasf a machine-level program is defined by
the instruction set architectureor “ISA,” defining the processor state, the format of therinstions, and
the effect each of these instructions will have on the stdtest ISAs, including 1A32 and x86-64, describe
the behavior of a program as if each instruction is executezegquence, with one instruction completing
before the next one begins. The processor hardware is fag glaborate, executing many instructions
concurrently, but it employs safeguards to ensure thatibeal behavior matches the sequential operation
dictated by the ISA. Second, the memory addresses used bgtamadevel program are virtual addresses,
providing a memory model that appears to be a very large byéy.aThe actual implementation of the
memory system involves a combination of multiple hardwassmaries and operating system software, as
described in Chapter 9.

The compiler does most of the work in the overall compilasequence, transforming programs expressed
in the relatively abstract execution model provided by @ iie very elementary instructions that the pro-
cessor executes. The assembly-code representation isleeg/to machine code. Its main feature is that
it is in a more readable textual format, as compared to tharpiformat of machine code. Being able to
understand assembly code and how it relates to the origiradde is a key step in understanding how
computers execute programs.

IA32 machine code differs greatly from the original C codert® of the processor state are visible that
normally are hidden from the C programmer:

e The program counterlcommonly referred to as the “PC,” and callé@i p in 1A32) indicates the
address in memory of the next instruction to be executed.

e The integerregister filecontains eight named locations storing 32-bit values. &hegisters can
hold addresses (corresponding to C pointers) or integer. dme registers are used to keep track
of critical parts of the program state, while others are usdubld temporary data, such as the local
variables of a procedure, and the value to be returned bychidum

e The condition code registers hold status information alieitmost recently executed arithmetic or
logical instruction. These are used to implement condii@manges in the control or data flow, such
as is required to implement andwhi | e statements.

e A set of floating-point registers store floating-point data.

Whereas C provides a model in which objects of different dgbes can be declared and allocated in
memory, machine code views the memory as simply a large;dnjdeessable array. Aggregate data types
in C such as arrays and structures are represented in maduaes contiguous collections of bytes. Even
for scalar data types, assembly code makes no distinctietwgebn signed or unsigned integers, between
different types of pointers, or even between pointers atet)ars.

152 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

The program memory contains the executable machine codddqgorogram, some information required
by the operating system, a run-time stack for managing ploeecalls and returns, and blocks of memory
allocated by the user (for example, by using the | oc library function). As mentioned earlier, the
program memory is addressed using virtual addresses. Agigag time, only limited subranges of virtual
addresses are considered valid. For example, although?tihé addresses of IA32 potentially span a 4-
gigabyte range of address values, a typical program will bal/e access to a few megabytes. The operating
system manages this virtual address space, translatitugih@ddresses into the physical addresses of values
in the actual processor memory.

A single machine instruction performs only a very elemgntgweration. For example, it might add two
numbers stored in registers, transfer data between memdrg eegister, or conditionally branch to a new
instruction address. The compiler must generate sequericgsch instructions to implement program
constructs such as arithmetic expression evaluationslamprocedure calls and returns.

Aside: The ever-changing forms of generated code

In our presentation, we will show the code generated by acpdat version ofccc with particular settings of the
command-line options. If you compile code on your own maeh@imances are you will be using a different compiler
or a different version o cc and hence will generate different code. The open-sourcemority supportingscc
keeps changing the code generator, attempting to genecageafiicient code according to changing code guidelines
provided by the microprocessor manufacturers.

Our goal in studying the examples shown in our presentatida demonstrate how to examine assembly code and
map it back to the constructs found in high-level prograngrianguages. You will need to adapt these techniques
to the style of code generated by your particular compited Aside.

3.2.2 Code Examples
Suppose we write a C code filmde. ¢ containing the following procedure definition:

1 int accum = O;
2

3 int sunint x, int vy)
4 {

5 int t =x +vy;

6 accum += t;

7 return t;

8 }

To see the assembly code generated by the C compiler, we edheaus S” option on the command line:

uni x> gcc -0l -S code.c

This will causecccto run the compiler, generating an assemblydibele. s, and go no further. (Normally
it would then invoke the assembler to generate an objea-&itad)

The assembly-code file contains various declarations dimofuthe set of lines:

sum
pushl %ebp

3.2. PROGRAM ENCODINGS 153

nov| Y%esp, %ebp
nov| 12(%bp), %eax
addl 8(%bp), %eax
addl %eax, accum
popl Y%ebp

ret

Each indented line in the above code corresponds to a sirggaine instruction. For example, theshl
instruction indicates that the contents of regis¥@bp should be pushed onto the program stack. All
information about local variable names or data types has bepped away. We still see a reference to the
global variableaccum since the compiler has not yet determined where in memasyvtriable will be
stored.

If we use the - ¢’ command-line optiongcc will both compile and assemble the code
uni x> gcc -0l -c code.c

This will generate an object-code fitede. o that is in binary format and hence cannot be viewed directly.
Embedded within the 800 bytes of the fdede. o is a 17-byte sequence having hexadecimal representa-
tion:

55 89 e5 8b 45 Oc 03 45 08 01 05 00 00 00 00 5d c3

This is the object code corresponding to the assembly ictains listed above. A key lesson to learn from

this is that the program actually executed by the machinenplg a sequence of bytes encoding a series of
instructions. The machine has very little information abitve source code from which these instructions
were generated.

Aside: How do | find the byte representation of a program?
To generate these bytes, we usetisassemble(to be described shortly) to determine that the codesfanis 17
bytes long. Then we ran the GNU debugging teols on filecode. o and gave it the command

(gdb) x/17xb sum

telling it to examine (abbreviated ‘x’) 17 hex-formatteds@abbreviated X’) bytes (abbreviated ‘b’). You will find
thatGDB has many useful features for analyzing machine-level jarogr as will be discussed in Section 3.Ehd
Aside.

To inspect the contents of machine-code files, a class ofanogknown adisassemblersan be invaluable.
These programs generate a format similar to assembly codetfre machine code. With Linux systems,
the progranoBJDUMP (for “object dump”) can serve this role given thed’ command-line flag:

uni x> obj dunp -d code.o

The result is (where we have added line numbers on the lefaandtations in italicized text) as follows:

Di sassenbly of function sumin binary file code.o

1 00000000 <sunp:

154 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

O fset Byt es Equi val ent assenbly | anguage
2 0: 55 push %ebp
3 1: 89 e5 nov Y%esp, Yebp
4 3: 8b 45 Oc nov Oxc(%ebp) , Yeax
5 6: 03 45 08 add 0x8(Yebp) , Yeax
6 9: 01 05 00 00 00 00 add %eax, 0x0
7 f: 5d pop %ebp
8 10: c3 ret

On the left we see the 17 hexadecimal byte values listed ibytteesequence earlier, partitioned into groups
of 1 to 6 bytes each. Each of these groups is a single ingtryotvith the assembly-language equivalent
shown on the right.

Several features about machine code and its disassembleseatation are worth noting:

e IA32 instructions can range in length from 1 to 15 bytes. Tstruction encoding is designed so that
commonly used instructions and those with fewer operarglsnea smaller number of bytes than do
less common ones or ones with more operands.

e The instruction format is designed in such a way that fronmvamgstarting position, there is a unique
decoding of the bytes into machine instructions. For examily the instructiopushl %ebp can
start with byte valu&5.

e The disassembler determines the assembly code based partg byte sequences in the machine-
code file. It does not require access to the source or assarobiéy versions of the program.

e The disassembler uses a slightly different naming coneeritr the instructions than does the assem-
bly code generated lycc. In our example, it has omitted the sufflx from many of the instructions.
These suffixes are size designators and can be omitted incases.

Generating the actual executable code requires runnimdkerlon the set of object-code files, one of which
must contain a functiomai n. Suppose in filerai n. ¢ we had the following function:

1 int main()

2 {

3 return sum(1l, 3)
4

}

Then, we could generate an executable progpamg as follows:
uni x> gcc -0l -0 prog code.o main.c
The filepr og has grown to 9,123 bytes, since it contains not just the codefr two procedures but also

information used to start and terminate the program as web ateract with the operating system. We can
also disassemble the fifg 0g:

uni x> obj dunp -d prog

3.2. PROGRAM ENCODINGS 155

The disassembler will extract various code sequencesidimg the following:

Di sassenbly of function sumin executable file prog

08048394 <sumnp:

=

O f set Byt es Equi val ent assenbly | anguage
2 8048394: 55 push %ebp
3 8048395: 89 eb5 nov Y%esp, Yebp
4 8048397: 8b 45 Oc nov Oxc(%ebp) , ¥eax
5 804839a: 03 45 08 add 0x8(%ebp) , Yeax
6 804839d: 01 05 18 a0 04 08 add %eax, 0x804a018
7 80483a3: 5d pop %ebp
8 80483a4: «c3 ret

This code is almost identical to that generated by the disakly of code. ¢c. One important difference
is that the addresses listed along the left are differeng-tttker has shifted the location of this code to a
different range of addresses. A second difference is tlealinker has determined the location for storing
global variableaccum On line 6 of the disassembly farode. o the address chiccumwas listed a®.

In the disassembly ogbr og, the address has been set0t0804a018. This is shown in the assembly-
code rendition of the instruction. It can also be seen in &t four bytes of the instruction, listed from
least-significant to most &8 a0 04 08.

3.2.3 Notes on Formatting

The assembly code generateddayc is difficult for a human to read. On one hand, it contains imfation
with which we need not be concerned, while on the other hdrmthes not provide any description of the
program or how it works. For example, suppose thesfilepl e. ¢ contains the following code:

1int sinple(int =xp, int y)
2

3 int t =xxp +vy;

4 xXp =t,

5 return t;

6

}
Whenaccis run with flags < S’ and - OL’, it generates the following file fosi npl e. s:

file "sinple.c"

. text
.globl sinple

.type sinmple, @unction
si mpl e:

pushl Y%ebp

nov| Y%esp, %ebp

nov| 8(%ebp), %edx

nov| 12(%bp), %eax

addl (%edx), %Yeax

156 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

nov| Y%eax, (%edx)

popl %ebp

ret

.size simple, .-sinple

.ident "GCC. (Ubuntu 4.3.2-1lubuntull) 4.3.2"
.section .note. GNU-stack, "", @rogbits

All of the lines beginning with.'” are directives to guide the assembler and linker. We caergdiy ignore
these. On the other hand, there are no explanatory remaokis @hat the instructions do or how they relate
to the source code.

To provide a clearer presentation of assembly code, we hallsit in a form that omits most of the di-
rectives, while including line numbers and explanatoryaations. For our example, an annotated version
would appear as follows:

1 sinple:

2 pushl %ebp Save frame pointer

3 nmovl Y%esp, %ebp Create new frame pointer
4 nmovl 8(%ebp), %edx Retrieve xp

5 nmovl 12(%bp), %eax Retrieve y

6 addl (%edx), %Y%eax Add *xp to get t

7 nmovl %eax, (%edx) Store t at xp

8 popl %ebp Restore frame pointer

9 ret Return

We typically show only the lines of code relevant to the poiging discussed. Each line is numbered on the
left for reference and annotated on the right by a brief deion of the effect of the instruction and how it
relates to the computations of the original C code. This igyl&sd version of the way assembly-language
programmers format their code.

Aside: ATT versus Intel assembly-code formats

In our presentation, we show assembly code in ATT (named ‘&I&T,” the company that operated Bell Labo-
ratories for many years) format, the default formatémc, oBiDuMP and the other tools we will consider. Other
programming tools, including those from Microsoft as wellthe documentation from Intel, show assembly code
in Intel format. The two formats differ in a number of ways. As an exEngcc can generate code in Intel format
for thesumfunction using the following command line:

uni x> gcc -0l -S -masn¥intel code.c
This gives the following assembly code:

Assenbly code for sinple in Intel format

1 sinple:

2 push ebp

3 nov ebp, esp

4 nov edx, DWORD PTR [ebp+8]
5 nov eax, DWORD PTR [ebp+12]
6 add eax, DWORD PTR [edx]

3.3. DATA FORMATS 157
C declaration Intel data type Assembly-code suffix Size (bytes)
char Byte b 1
short Word w 2
i nt Double word I 4
| ong int Double word I 4
long long int | — — 4
char = Double word I 4
fl oat Single precision S 4
doubl e Double precision I 8
| ong doubl e Extended precisior t 10/12

Figure 3.1:Sizes of C data types in IA32. IA32 does not provide hardware support for 64-bit integer
arithmetic. Compiling code with | ong | ong data requires generating sequences of operations to perform
the arithmetic in 32-bit chunks.

7 nov DWORD PTR [edx], eax
8 pop ebp
9 ret

We see that the Intel and ATT formats differ in the followingys:

e The Intel code omits the size designation suffixes. We sérigt®nnov instead ofrovl .
e The Intel code omits theé¥ character in front of register names, usiegp instead oPesp.

e The Intel code has a different way of describing locationa@mory, for exampleDAORD PTR [ebp+8]’
rather than8(%ebp) .

e Instructions with multiple operands list them in the reesosder. This can be very confusing when switching
between the two formats.

Although we will not be using Intel format in our presentatigou will encounter it in IA32 documentation from
Intel and Windows documentation from Microsofind Aside.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expandemlar@2-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit tities as “double words.” They refer to 64-bit
guantities as “quad words.” Most instructions we will enatar operate on bytes or double words.

Figure 3.1 shows the 1A32 representations used for the fivenilata types of C. Most of the common
data types are stored as double words. This includes botitaregnd long nt 's, whether or not they are
signed. In addition, all pointers (shown herecdsar *) are stored as 4-byte double words. Bytes are
commonly used when manipulating string data. As we saw iti@e2.1, more recent extensions of the C
language include the data typeng | ong, which is represented using eight bytes. IA32 does not stppo
this data type in hardware. Instead, the compiler must gémesequences of instructions that operate on
these data 32 bits at a time. Floating-point numbers comareetdifferent forms: single-precision (4-
byte) values, corresponding to C data tyfdeoat ; double-precision (8-byte) values, corresponding to C

158 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

31 15 8 7 0

e ax o@ax %ah %al H‘

o%ecx %€ X o%h ol H‘

Yedx velx | valh gl \H

Y%ebx Ybx | obh %l \H

oesi osi

%edi odi

Y%esp Y%sp Stack pointer
%ebp %p Frame pointer

Figure 3.2:1A32 integer registers. All eight registers can be accessed as either 16 bits (word) or 32 bits
(double word). The two low-order bytes of the first four registers can be accessed independently.

data typedoubl e; and extended-precision (10-byte) valuescdauses the data typeong doubl e

to refer to extended-precision floating-point values. $oastores them as 12-byte quantities to improve
memory system performance, as will be discussed later.gubkiml ong doubl e data type (introduced

in ISO C99) gives us access to the extended-precision dapalfix86. For most other machines, this data
type will be represented using the same 8-byte format of tlimary doubl e data type.

As the table indicates, most assembly-code instructionergéed byccc have a single-character suffix
denoting the size of the operand. For example, the data meneimstruction has three variantspvb
(move byte) movw (move word), androvl (move double word). The suffit * is used for double words,
since 32-bit quantities are considered to be “long word$iblover from an era when 16-bit word sizes
were standard. Note that the assembly code uses the duffxdenote both a 4-byte integer as well as an
8-byte double-precision floating-point number. This cause ambiguity, since floating point involves an
entirely different set of instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eighistersstoring 32-bit values. These registers
are used to store integer data as well as pointers. Figurdi&yPams the eight registers. Their names all
begin with%e, but otherwise, they have peculiar names. With the orig8®6, the registers were 16
bits and each had a specific purpose. The names were chosstetd these different purposes. With flat
addressing, the need for specialized registers is grezdlyced. For the most part, the first six registers can

3.4. ACCESSING INFORMATION 159

Type Form Operand value Name
Immediate| $Imm Imm Immediate
Register | E, R[Eq] Register
Memory | Imm M[Imm] Absolute
Memory | (E,) M[R[E,]] Indirect
Memory | Imm(Ep) M[Imm + R[E]] Base + displacement
Memory | (E, E;) M[R[E;] + R[E;]] Indexed
Memory | Imm(Ey, E;) M[Imm + R[Ep] + R[E;]] Indexed
Memory | (, E;, s) M[R[E;] - s] Scaled indexed
Memory | Imm(, E;, s) M[Imm + R[E;] - 5] Scaled indexed
Memory | (Ep, E;, 8) M[R[Ey] + R[E;] - 5] Scaled indexed
Memory | Imm(Ey, E;, s) | M[Imm + R[Ey] + R[E;] - 5] | Scaled indexed

Figure 3.3:0Operand forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factor s must be either 1, 2, 4, or 8.

be considered general-purpose registers with no restnifdlaced on their use. We said “for the most part,”
because some instructions use fixed registers as sourdes dastinations. In addition, within procedures
there are different conventions for saving and restorimfitist three register§gax, ¥ecx, and%edx),
than for the next threedgbx, %edi , and%esi). This will be discussed in Section 3.7. The final two
registers ¥&bp and%esp) contain pointers to important places in the program statley should only be
altered according to the set of standard conventions fok steanagement.

As indicated in Figure 3.2, the low-order two bytes of thetfiogir registers can be independently read or
written by the byte operation instructions. This features\peovided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessdiat date back to 1974. When a byte instruction
updates one of these single-byte “register elements,@maming three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be @adritten by word operation instructions. This
feature stems from 1A32’s evolutionary heritage as a 16xroprocessor and is also used when operating
on integers with size designatshor t .

3.4.1 Operand Specifiers

Most instructions have one or mooperands specifying the source values to reference in performing an
operation and the destination location into which to pldweresult. 1A32 supports a number of operand
forms (see Figure 3.3). Source values can be given as ctmstaread from registers or memory. Results
can be stored in either registers or memory. Thus, the difteoperand possibilities can be classified into
three types. The first typemmediate is for constant values. In ATT-format assembly code, thease
written with a ‘$’ followed by an integer using standard C notation, for exin$- 577 or $0x1F. Any
value that fits into a 32-bit word can be used, although therabker will use one or two-byte encodings
when possible. The second typegister, denotes the contents of one of the registers, either o aitjht
32-bit registers (e.g%eax) for a double-word operation, one of the eight 16-bit regsie.g.%ax) for a
word operation, or one of the eight single-byte registemelets (e.g.%al) for a byte operation. In Figure

160 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF PROGRAMS

3.3, we use the notatidfy, to denote an arbitrary register and indicate its value with the referenRé, |,
viewing the set of registers as an arRyndexed by register identifiers.

The third type of operand ismemoryreference, in which we access some memory location acaptdia
computed address, often called #iféective addressSince we view the memory as a large array of bytes,
we use the notatioM,[Addr| to denote a reference to theébyte value stored in memory starting at address
Addr. To simplify things, we will generally drop the subscript

As Figure 3.3 shows, there are many differadtressing modeallowing different forms of memory ref-
erences. The most general form is shown at the bottom of tie veth syntax/mm(Ep, E;, s) . Such a
reference has four components: an immediate ofieet, a base registeé;, an index registek;, and a scale
factor s, wheres must be 1, 2, 4, or 8. The effective address is then computéabas+ R[E;| + R[E;] - s.
This general form is often seen when referencing elemengsraf/s. The other forms are simply special
cases of this general form where some of the components dteedmAs we will see, the more complex
addressing modes are useful when referencing array ardwglelements.

Practice Problem 3.1
Assume the following values are stored at the indicated mnmgiaddresses and registers:

Address Value Register Value
0x100 OxFF Y%eax 0x100
0x104 OxAB %ecX Ox1
0x108 0x13 %edx 0x3
0x10C Ox11

Fill in the following table showing the values for the indied operands:

Operand Value
Yeax

0x104

$0x108

(%eax)

4(Y%eax)

9(Y%eax, ¥edx)
260(%ecx, %edx)
OxXFC(, %ecx, 4)
(%eax, Y%edx, 4)

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that clgigt from one location to another. The
generality of the operand notation allows a simple data mma&vet instruction to perform what in many
machines would require a number of instructions. Figurdi§tglthe important data movement instructions.
As can be seen, we group the many different instructionsiimgiouction classeswhere the instructions in

3.4. ACCESSING INFORMATION

161

Instruction Effect Description

MOV S,D|D «— S Move

nmovb Move byte

novw Move word

novl Move double word

Movs S,D | D « SignExtend(S) | Move with sign extensior]

nmovsbw Move sign-extended byte to word

nmovsbl Move sign-extended byte to double word

nmovsw Move sign-extended word to double word

Movz S,D | D < ZeroExtend(S) \ Move with zero extensior

nmovzhbw Move zero-extended byte to word

novzbl Move zero-extended byte to double word

novzw Move zero-extended word to double word

pushl S R[%sp] «— R[%esp] —4; | Push double word
M[R[%esp]] <« S

popl D D — M[R[%esp]]; Pop double word
R[%esp] «— R[%esp|+ 4

Figure 3.4:Data movement instructions.

a class perform the same operation, but with different opksizes. For example theov class consists
of three instructionsnovb, novw, andnovl . All three of these instructions perform the same operation
they differ only in that they operate on data of size 1, 2, ahgtés, respectively.

The instructions in th&ov class copy their source values to their destinations. Thecemperand desig-
nates a value that is immediate, stored in a register, aegiarmemory. The destination operand designates
a location that is either a register or a memory address. iARidses the restriction that a move instruc-
tion cannot have both operands refer to memory locationgyi@g a value from one memory location to
another requires two instructions—the first to load the @®walue into a register, and the second to write
this register value to the destination. Referring to FigBu® the register operands for these instructions
can be any of the 8 32-bit registegax—%ebp) for novl , any of the 8 16-bit register&&x—%op) for
nmovw, and any of the single-byte register elemef@ai{—%bh, ¥al %l) for novb. The followingmov
instruction examples show the five possible combinationsoafce and destination types. Recall that the
source operand comes first and the destination second:

1 nmovl $0x4050, Y%eax | mredi at e- - Regi ster, 4 bytes
2 nmovw %Jp, %sp Regi ster--Register, 2 bytes
3 nmovb (%edi, %ecx), %ah Menory- - Regi st er, 1 byte
4 novb $-17, (%esp) | medi ate--Menory, 1 byte
5 movl %eax, - 12(%ebp) Regi st er - - Menory, 4 bytes

Both themovs and themovz instruction classes serve to copy a smaller amount of salatzeto a larger
data location, filling in the upper bits by either sign expangmovs) or by zero expansiorMovz). With
sign expansion, the upper bits of the destination are fithegith copies of the most significant bit of the
source value. With zero expansion, the upper bits are filléd weros. As can be seen, there are three

