Chapter 2

Representing and Manipulating
Information

Modern computers store and process information represerstdwo-valued signals. These lowly binary
digits, orbits, form the basis of the digital revolution. The familiar deail, or base-10, representation has
been in use for over 1000 years, having been developed ia,limdproved by Arab mathematicians in the
12th century, and brought to the West in the 13th century byltddian mathematician Leonardo Pisano
(c. 1170 — c. 1250), better known as Fibonacci. Using decimatdtion is natural for ten-fingered humans,
but binary values work better when building machines thatesand process information. Two-valued
signals can readily be represented, stored, and trandgiitie example, as the presence or absence of a
hole in a punched card, as a high or low voltage on a wire, orraagnetic domain oriented clockwise or
counterclockwise. The electronic circuitry for storingdgmerforming computations on two-valued signals
is very simple and reliable, enabling manufacturers togiratee millions, or even billions, of such circuits
on a single silicon chip.

In isolation, a single bit is not very useful. When we grougs bogether and apply sonigerpretationthat
gives meaning to the different possible bit patterns, h@aneve can represent the elements of any finite set.
For example, using a binary number system, we can use grédgis €0 encode nonnegative numbers. By
using a standard character code, we can encode the lettésyantools in a document. We cover both of
these encodings in this chapter, as well as encodings tesepir negative numbers and to approximate real
numbers.

We consider the three most important representations obatsnUnsignedencodings are based on tradi-
tional binary notation, representing numbers greater titagqual to 0.Two’s-complemengncodings are
the most common way to represesignedintegers, that is, numbers that may be either positive oaneg
tive. Floating-pointencodings are a base-two version of scientific notationdprasenting real numbers.
Computers implement arithmetic operations, such as addiind multiplication, with these different repre-
sentations, similar to the corresponding operations @ayars and real numbers.

Computer representations use a limited number of bits tod@a number, and hence some operations can
overflowwhen the results are too large to be represented. This cdrtdesome surprising results. For
example, on most of today’s computers (those using a 32piesentation of data typent), computing

29

30 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

the expression
200 » 300 * 400 = 500

yields —884,901,888. This runs counter to the properties of intagéimetic—computing the product of a
set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies/rofiine familiar properties of true integer arith-
metic. For example, multiplication is associative and carnative, so that computing any of the following
C expressions yields 884,901,888:

(500 * 400) * (300 * 200)
((500 = 400) * 300) * 200
((200 * 500) * 300) * 400
400 + (200 * (300 * 500))

The computer might not generate the expected result, baasat it is consistent!

Floating-point arithmetic has altogether different matldécal properties. The product of a set of posi-
tive numbers will always be positive, although overflow wilkld the special value-co. Floating-point
arithmetic is not associative due to the finite precisiorhefrepresentation. For example, the C expression
(3.14+1e20) - 1e20 will evaluate t00.0 on most machines, whild. 14+(1e20- 1e20) will evalu-

ate t03.14. The different mathematical properties of integer vs. ff@gpoint arithmetic stem from the
difference in how they handle the finiteness of their repreg@®ns—integer representations can encode a
comparatively small range of values, but do so preciselyleviloating-point representations can encode a
wide range of values, but only approximately.

By studying the actual number representations, we can stade the ranges of values that can be repre-
sented and the properties of the different arithmetic djfmers. This understanding is critical to writing
programs that work correctly over the full range of numemtues and that are portable across different
combinations of machine, operating system, and compiles.wa will describe, a number of computer
security vulnerabilities have arisen due to some of thelstids of computer arithmetic. Whereas in an ear-
lier era program bugs would only inconvenience people whey happened to be triggered, there are now
legions of hackers who try to exploit any bug they can find tmwbunauthorized access to other people’s
systems. This puts a higher level of obligation on programsrteunderstand how their programs work and
how they can be made to behave in undesirable ways.

Computers use several different binary representatiorené@de numeric values. You will need to be
familiar with these representations as you progress intohina-level programming in Chapter 3. We
describe these encodings in this chapter and show you hasason about number representations.

We derive several ways to perform arithmetic operationsitgctly manipulating the bit-level representa-
tions of numbers. Understanding these techniques will goitant for understanding the machine-level
code generated by compilers in their attempt to optimizepréormance of arithmetic expression evalua-
tion.

Our treatment of this material is based on a core set of mattieah principles. We start with the basic
definitions of the encodings and then derive such propestighe range of representable numbers, their bit-
level representations, and the properties of the arittmogterations. We believe it is important for you to

31

C version Gcccommand line optiory
GNU 89 none - st d=gnu89
ANSI, ISO C90| - ansi ,-std=c89

ISO C99 -std=c99

GNU 99 -std=gnu99

Figure 2.1:Specifying different versions of C to ccc

examine the material from this abstract viewpoint, becausgrammers need to have a clear understanding
of how computer arithmetic relates to the more familiargeteand real arithmetic.

Aside: How to read this chapter.

If you find equations and formulas daunting, do not let thap stou from getting the most out of this chapter! We
provide full derivations of mathematical ideas for cometedss, but the best way to read this material is often to
skip over the derivation on your initial reading. Insteatldy the examples provided, and be sure to waltkof

the practice problems. The examples will give you an induitbehind the ideas, and the practice problems engage
you inactive learning helping you put thoughts into action. With these as baakgio you will find it much easier

to go back and follow the derivations. Be assured, as walt, tthe mathematical skills required to understand this
material are within reach of someone with good grasp of hajlosl algebraEnd Aside.

The C++ programming language is built upon C, using the esatte numeric representations and opera-
tions. Everything said in this chapter about C also hold<fer. The Java language definition, on the other
hand, created a new set of standards for numeric repreismstaind operations. Whereas the C standards
are designed to allow a wide range of implementations, tha Seandard is quite specific on the formats
and encodings of data. We highlight the representationsoparthtions supported by Java at several places
in the chapter.

Aside: The Evolution of the C Programming Language.

As was described in an aside in Section 1.2, the C programlaimgiage was first developed by Dennis Ritchie of
Bell Laboratories for use with the Unix operating systensdadeveloped at Bell Labs). At the time, most system
programs, such as operating systems, had to be writtenylargassembly code, in order to have access to the
low-level representations of different data types. Fomaxa, it was not feasible to write a memory allocator, such
as is provided by thewal | oc library function, in other high-level languages of that.era

The original Bell Labs version of C was documented in the &dstion of the book by Brian Kernighan and Dennis
Ritchie [57]. Over time, C has evolved through the effortsseferal standardization groups. The first major
revision of the original Bell Labs C led to the ANSI C standard 989, by a group working under the auspices of
the American National Standards Institute. ANSI C was a m@gparture from Bell Labs C, especially in the way
functions are declared. ANSI C is described in the seconiibaddf Kernighan and Ritchie’s book [58], which is
still considered one of the best references on C.

The International Standards Organization took over resipdity for standardizing the C language, adopting a
version that was substantially the same as ANSI C in 1990 andehis referred to as “ISO C90.”

This same organization sponsored an updating of the laegimat®99, yielding “ISO C99.” Among other things
this version introduced some new data types and providegosufor text strings requiring characters not found in
the English language.

The GNU Compiler Collectiongcc) can compile programs according to the conventions of sedfferent ver-
sions of the C language, based on different command linemgtas shown in Figure 2.1. For example, to compile
programpr og. ¢ according to ISO C99, we could give the command line

32 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

uni x> gcc -std=c99 prog.c

The options ansi and- st d=c89 have the same effect—the code is compiled according to thelANISO C90
standard. (C90 is sometimes referred to as “C89,” sincetdtsdardization effort began in 1989.) The option
- st d=c99 causes the compiler to follow the ISO C99 convention.

As of the writing of this book, when no option is specified, firegram will be compiled according to a version of
C based on ISO C90, but including some features of C99, sorfie-6f and others specific ®cc. This version
can be specified explicitly using the optiest d=gnu89. The GNU project is developing a version that combines
ISO C99, plus other features, that can be specified with camdntiae option- st d=gnu99. (Currently, this
implementation is incomplete.) This will become the defastsion.End Aside.

2.1 Information Storage

Rather than accessing individual bits in memory, most cderpuuse blocks of 8 bits, diytes as the
smallest addressable unit of memory. A machine-level pnogviews memory as a very large array of
bytes, referred to agirtual memory Every byte of memory is identified by a unique number, known a
its address and the set of all possible addresses is known asithel address spaceAs indicated by its
name, this virtual address space is just a conceptual imegemed to the machine-level program. The
actual implementation (presented in Chapter 9) uses a catidnn of random-access memory (RAM), disk
storage, special hardware, and operating system softowgm@vide the program with what appears to be a
monolithic byte array.

In subsequent chapters, we will cover how the compiler anetime system partitions this memory space
into more manageable units to store the diffengmigram objectsthat is, program data, instructions, and
control information. Various mechanisms are used to aleoead manage the storage for different parts of
the program. This management is all performed within theualraddress space. For example, the value
of a pointer in C—whether it points to an integer, a structoresome other program object—is the virtual
address of the first byte of some block of storage. The C cemplso associataype information with
each pointer, so that it can generate different maching-leyde to access the value stored at the location
designated by the pointer depending on the type of that valltkough the C compiler maintains this type
information, the actual machine-level program it generdigs no information about data types. It simply
treats each program object as a block of bytes, and the proggalf as a sequence of bytes.

New to C?: The role of pointers in C.

Pointers are a central feature of C. They provide the meshafor referencing elements of data structures, includ-
ing arrays. Just like a variable, a pointer has two aspetgsalueand itstype The value indicates the location
of some object, while its type indicates what kind of objexg(, integer or floating-point number) is stored at that
location.End.

2.1.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its \ehanges fron90000000, to 111111115. When

viewed as a decimal integer, its value ranges figto 25515. Neither notation is very convenient for
describing bit patterns. Binary notation is too verboseilewhith decimal notation, it is tedious to convert
to and from bit patterns. Instead, we write bit patterns a4, othexadecimahumbers. Hexadecimal

2.1. INFORMATION STORAGE 33

Hex digit 0 1 2 3 4 5 6 7
Decimal value| 0 1 2 3 4 5 6 7
Binary value | 0000| 0001| 0010| 0011 | 0100| 0101 | 0110 0111

Hex digit 8 9 A B C D E F
Decimal value| 8 9 10 11 12 13 14 15
Binary value | 1000| 1001| 1010| 1011 | 1100| 1101 | 1110 1111

Figure 2.2:Hexadecimal notation. Each Hex digit encodes one of 16 values.

(or simply “hex”) uses digits ‘0" through ‘9’ along with chacters ‘A’ through ‘F’ to represent 16 possible
values. Figure 2.2 shows the decimal and binary values iatsdavith the 16 hexadecimal digits. Written
in hexadecimal, the value of a single byte can range frorg @OFF ;.

In C, numeric constants starting wifhx or 0X are interpreted as being in hexadecimal. The characters
‘A through ‘F' may be written in either upper or lower caseorFexample, we could write the number
FA1D37B;s asOxFAL1D37B, asOxf ald37b, or even mixing upper and lower case, e@xFalD37b.

We will use the C notation for representing hexadecimalesin this book.

A common task in working with machine-level programs is tonomly convert between decimal, binary,
and hexadecimal representations of bit patterns. Congeltetween binary and hexadecimal is straight-
forward, since it can be performed one hexadecimal digittaha. Digits can be converted by referring
to a chart such as that shown in Figure 2.2. One simple trickldéing the conversion in your head is to
memorize the decimal equivalents of hex digi4<C, andF. The hex value8, D, andE can be translated to
decimal by computing their values relative to the first three

For example, suppose you are given the nunitbet73A4C. You can convert this to binary format by
expanding each hexadecimal digit, as follows:

Hexadecimal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

This gives the binary representatiof0101110011101001001100.

Conversely, given a binary numbg&r11001010110110110011, you convert it to hexadecimal by first split-
ting it into groups of 4 bits each. Note, however, that if tbeat number of bits is not a multiple of 4,
you should make thkeftmostgroup be the one with fewer than 4 bits, effectively paddmgriumber with
leading zeros. Then you translate each group of bits intecdhesponding hexadecimal digit:

Binary 11 1100 1010 1101 1011 oOO011
Hexadecimal 3 C A D B 3

Practice Problem 2.1
Perform the following number conversions:

A. Ox39A7F8 to binary

34 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

B. Binary1100100101111011 to hexadecimal
C. OxD5E4Cto binary
D. Binary1001101110011110110101 to hexadecimal

When a valuer is a power of two, that isy = 2" for some nonnegative integet we can readily write: in
hexadecimal form by remembering that the binary repreientaf = is simply 1 followed byn zeros. The
hexadecimal digiD represents four binary zeros. So, forvritten in the form: + 45, where0 < i < 3,
we can writex with a leading hex digit ofl (i = 0),2 (i = 1), 4 (i = 2), or 8 (: = 3), followed by j
hexadecimaDs. As an example, far = 2048 = 2!, we haven = 11 = 3 + 4 - 2, giving hexadecimal
representatioi®x800.

Practice Problem 2.2

Fill in the blank entries in the following table, giving thecdmal and hexadecimal representations of
different powers of 2:

n | 2" (Decimal) | 2" (Hexadecimal)
9 512 0x200
19
16,384
0x10000
17
32
0x80

Converting between decimal and hexadecimal represensat@quires using multiplication or division to
handle the general case. To convert a decimal numlderhexadecimal, we can repeatedly dividdy
16, giving a quotieny and a remainder, such thatr = ¢ - 16 + . We then use the hexadecimal digit
representing as the least significant digit and generate the remaininigsdiy repeating the process gn
As an example, consider the conversion of decimal 314156:

314156 = 19634-16+12 (C)
19634 = 1227-16+2 (2)
1227 = 76-16+11 (B)

6 = 4-16+12 (©)

4 = 0-16+4 (4)

From this we can read off the hexadecimal representati@x4€B2C.

Conversely, to convert a hexadecimal number to decimal, amencultiply each of the hexadecimal digits
by the appropriate power of 16. For example, given the nurkR&AF, we compute its decimal equivalent
as7-162+10-16 415 =7-256 410 - 16 + 15 = 1792 + 160 + 15 = 1967.

Practice Problem 2.3

A single byte can be represented by two hexadecimal digilisnEhe missing entries in the following
table, giving the decimal, binary, and hexadecimal valdesfterent byte patterns:

2.1. INFORMATION STORAGE 35

Decimal Binary Hexadecimal
0 0000 0000 0x00
167
62
188
00110111
1000 1000
1111 0011
0x52
OxAC
OxE7

Aside: Converting between decimal and hexadecimal.

For converting larger values between decimal and hexadegiis best to let a computer or calculator do the work.
For example, the following script in the Perl language caotsva list of numbers (given on the command line) from
decimal to hexadecimal: bin/d2h

#!/usr/ 1 ocal / bin/perl
Convert |ist of decimal nunmbers into hex

1
2

3

4 for ($i =0; $i < @RGV; $i++) {

5 printf("%\t= Ox%\n", $ARGV[$i], $ARGV[Si]);
6}

bin/d2h Once this file has been set to be executable, the command

uni x> ./d2h 100 500 751

yields output:

100 = 0x64
500 = 0Ox1f4
751 = Ox2ef
Similarly, the following script converts from hexadecintaldecimal: bin/h2d
1 #!'/usr/local/bin/perl
2 # Convert list of hex numbers into decinal
3
4 for ($i =0; $i < @RGV; $i++) {
5 $val = hex($ARGV[$i]);
6 printf("Ox% = %\n", val, Sval);
7}

bin/h2d End Aside.

Practice Problem 2.4

Without converting the numbers to decimal or binary, try ¢dve the following arithmetic problems,
giving the answers in hexadecimaHint: Just modify the methods you use for performing decimal
addition and subtraction to use base 16.

36 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

C declaration| 32-bit | 64-bit
char 1 1
short int 2 2
i nt 4 4
| ong int 4 8
Il ong long int 8 8
char = 4 8
fl oat 4 4
doubl e 8 8

Figure 2.3:Sizes (in bytes) of C numeric data types. The number of bytes allocated varies with machine
and compiler. This chart shows the values typical of 32-bit and 64-bit machines.

A. 0x503c + 0x8 =

B. 0x503c — 0x40 =
C. 0x503c + 64 =

D. 0x50ea — 0x503c =

2.1.2 Words

Every computer has word size indicating the nominal size of integer and pointer datanc8ia virtual
address is encoded by such a word, the most important systemmpter determined by the word size is
the maximum size of the virtual address space. That is, fomaehine with aw-bit word size, the virtual
addresses can range frénto 2% — 1, giving the program access to at m@%tbytes.

Most personal computers today have a 32-bit word size. Thisslthe virtual address space to 4 gigabytes
(written 4 GB), that is, just ovet x 10° bytes. Although this is ample space for most applications, w

have reached the point where many large-scale scientificlatatbase applications require larger amounts
of storage. Consequently, high-end machines with 64-bithges are becoming increasingly common as
storage costs decrease. As hardware costs drop over tieredegktop and laptop machines will switch to

64-bit word sizes, and so we will consider the general caseuebit word size, as well as the special cases
of w = 32 andw = 64.

2.1.3 Data Sizes

Computers and compilers support multiple data formatsgudifierent ways to encode data, such as in-
tegers and floating point, as well as different lengths. Kkangle, many machines have instructions for
manipulating single bytes, as well as integers represesdesvo-, four-, and eight-byte quantities. They
also support floating-point numbers represented as fouemyd-byte quantities.

The C language supports multiple data formats for both ert@mgd floating-point data. The C data type
char represents a single byte. Although the narobdr ” derives from the fact that it is used to store a

2.1. INFORMATION STORAGE 37

single character in a text string, it can also be used to stbeger values. The C data typat can also
be prefixed by the qualifieshor t ,| ong, and recently ong | ong, providing integer representations of
various sizes. Figure 2.3 shows the number of bytes allddatedifferent C data types. The exact number
depends on both the machine and the compiler. We show typiras for 32-bit and 64-bit machines.
Observe that “short” integers have two-byte allocationbjlevan unqualified nt is 4 bytes. A “long”
integer uses the full word size of the machine. The “long Tdntgger data type, introduced in ISO C99,
allows the full range of 64-bit integers. For 32-bit maclsinéne compiler must compile operations for this
data type by generating code that performs sequences df 8@dvations.

Figure 2.3 also shows that a pointer (e.g., a variable dettlas being of typechar ") uses the full word
size of the machine. Most machines also support two diftefleating-point formats: single precision,
declared in C a6l oat , and double precision, declared in Cdamubl e. These formats use four and eight
bytes, respectively.

New to C?: Declaring pointers.
For any data typ&’, the declaration

T *p;
indicates thap is a pointer variable, pointing to an object of type For example
char =*p;

is the declaration of a pointer to an object of tygdear . End.

Programmers should strive to make their programs portatstesa different machines and compilers. One
aspect of portability is to make the program insensitivehto éxact sizes of the different data types. The
C standards set lower bounds on the numeric ranges of treratiff data types, as will be covered later,
but there are no upper bounds. Since 32-bit machines havetheestandard since around 1980, many
programs have been written assuming the allocations lifgtethis word size in Figure 2.3. Given the
increasing availability of 64-bit machines, many hidderrdvsize dependencies will show up as bugs in
migrating these programs to new machines. For example, pragyammers assume that a program object
declared as typent can be used to store a pointer. This works fine for most 32-aithimes, but it leads
to problems on a 64-bit machine.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must @skatwo conventions: what the address of the
object will be, and how we will order the bytes in memory. Intwally all machines, a multi-byte object
is stored as a contiguous sequence of bytes, with the aduofréss object given by the smallest address of
the bytes used. For example, suppose a varialgktypei nt has addres8x100, that is, the value of the
address expressiaix is 0x100. Then the four bytes of would be stored in memory locatiofisx 100,
0x101,0x102, and0x103.

For ordering the bytes representing an object, there aretwonon conventions. Consideabit integer
having a bit representatiop,,—1, -2, - . . , 1, 2o], Wherez,,_; is the most significant bit, ang, is the

38 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

least. Assumingu is a multiple of eight, these bits can be grouped as bytes, twé most significant byte
having bits[z,,_1, Tw—2, ..., x4—g], the least significant byte having bits;, =g, . . . , z¢|, and the other
bytes having bits from the middle. Some machines choos®te 8ie object in memory ordered from least
significant byte to most, while other machines store thermfroost to least. The former convention—
where the least significant byte comes first—is referred tidtessendian This convention is followed by
most Intel-compatible machines. The latter convention-enghthe most significant byte comes first—is
referred to avig endian This convention is followed by most machines from IBM andh 3dicrosystems.
Note that we said “most.” The conventions do not split prelgiglong corporate boundaries. For example,
both IBM and Sun manufacture machines that use Intel-cdbipgirocessors and hence are little endian.
Many recent microprocessors dreendian meaning that they can be configured to operate as eitHer litt
or big-endian machines.

Continuing our earlier example, suppose the varialétypei nt and at addred3x 100 has a hexadecimal
value 0f0x01234567. The ordering of the bytes within the address rabg&00 throughOx103 depends
on the type of machine:

Big endian
0x100 0x101 0x102 0x103
| 01 | 23 | 45 | 67 |

Little endian
0x100 0x101 0x102 0x103
| 67 | 45 [23 | 01 |

Note that in the worddx01234567 the high-order byte has hexadecimal value 1, while the low-order
byte has valu®x67.

People get surprisingly emotional about which byte ordgisthe proper one. In fact, the terms “little
endian” and “big endian” come from the bodkulliver's Travelsby Jonathan Swift, where two warring
factions could not agree as to how a soft-boiled egg shouldpemed—nby the little end or by the big.
Just like the egg issue, there is no technological reasohdose one byte ordering convention over the
other, and hence the arguments degenerate into bickering abcio-political issues. As long as one of the
conventions is selected and adhered to consistently, thieecks arbitrary.

Aside: Origin of “endian.”
Here is how Jonathan Swift, writing in 1726, described ttetdny of the controversy between big and little endians:

... Lilliput and Blefuscu ...have, as | was going to tell ydigen engaged in a most obstinate
war for six-and-thirty moons past. It began upon the follagvbccasion. It is allowed on all hands,
that the primitive way of breaking eggs, before we eat theas upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat anautjbreaking it according to the ancient
practice, happened to cut one of his fingers. Whereupon tleemhis father published an edict,
commanding all his subjects, upon great penalties, to litemkmaller end of their eggs. The people
so highly resented this law, that our histories tell us, ¢éhesve been six rebellions raised on that
account; wherein one emperor lost his life, and another to&m. These civil commotions were
constantly fomented by the monarchs of Blefuscu; and whenrere quelled, the exiles always fled
for refuge to that empire. It is computed that eleven thodgaersons have at several times suffered
death, rather than submit to break their eggs at the smaitér Many hundred large volumes have

2.1. INFORMATION STORAGE 39
1 #include <stdio. h>
2
3 typedef unsigned char *byte_pointer;
4
5 voi d show bytes(byte pointer start, int len) {
6 int i;
7 for (i =0; i < len; i++)
8 printf(" % 2x", start[i]);
9 printf("\n");
10 }
11
12 void show int(int x) {
13 show bytes((byte pointer) &x, sizeof(int));
14 }
15
16 void show float (float x) {
17 show bytes((byte pointer) &, sizeof(float));
18 }
19
20 voi d show pointer(void *x) {
21 show bytes((byte pointer) &x, sizeof(void *));
22 }

Figure 2.4:Code to print the byte representation of program objects. This code uses casting to cir-
cumvent the type system. Similar functions are easily defined for other data types.

been published upon this controversy: but the books of tigeeBdians have been long forbidden, and
the whole party rendered incapable by law of holding empleyts.

In his day, Swift was satirizing the continued conflicts be¢w England (Lilliput) and France (Blefuscu). Danny
Cohen, an early pioneer in networking protocols, first agplihese terms to refer to byte ordering [25], and the
terminology has been widely adoptdghd Aside.

For most application programmers, the byte orderings ugelddir machines are totally invisible; programs
compiled for either class of machine give identical resulis times, however, byte ordering becomes an
issue. The first is when binary data are communicated ovettvaorie between different machines. A
common problem is for data produced by a little-endian mato be sent to a big-endian machine, or vice
versa, leading to the bytes within the words being in reverder for the receiving program. To avoid such
problems, code written for networking applications mudibfe established conventions for byte ordering
to make sure the sending machine converts its internal septation to the network standard, while the
receiving machine converts the network standard to itgnaterepresentation. We will see examples of
these conversions in Chapter 11.

A second case where byte ordering becomes important is valo&int at the byte sequences representing

integer data. This occurs often when inspecting machivel-fgograms. As an example, the following line
occurs in a file that gives a text representation of the maelavel code for an Intel IA32 processor:

80483bd: 01 05 64 94 04 08 add Y%eax, 0x8049464

40 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

This line was generated bydisassemblera tool that determines the instruction sequence repreddiyt

an executable program file. We will learn more about disabEsiand how to interpret lines such as this
in Chapter 3. For now, we simply note that this line statestt@hexadecimal byte sequer@e 05 64

94 04 08 is the byte-level representation of an instruction thatsaaldvord of data to the value stored
at addres®9®x8049464. If we take the final 4 bytes of the sequen&@t 94 04 08, and write them

in reverse order, we hav@8 04 94 64. Dropping the leading 0, we have the valde8049464, the
numeric value written on the right. Having bytes appear wrerse order is a common occurrence when
reading machine-level program representations genefatdittle-endian machines such as this one. The
natural way to write a byte sequence is to have the lowest ruedbbyte on the left and the highest on the
right, but this is contrary to the normal way of writing num&evith the most significant digit on the left
and the least on the right.

A third case where byte ordering becomes visible is whenrarag are written that circumvent the normal
type system. In the C language, this can be done usoasto allow an object to be referenced according
to a different data type from which it was created. Such apdiitks are strongly discouraged for most
application programming, but they can be quite useful amh eecessary for system-level programming.

Figure 2.4 shows C code that uses casting to access and lpgillyte representations of different pro-
gram objects. We uskypedef to define data typbyt e poi nt er as a pointer to an object of type
“unsi gned char.” Such a byte pointer references a sequence of bytes whehebyée is considered
to be a nonnegative integer. The first routsleow byt es is given the address of a sequence of bytes,
indicated by a byte pointer, and a byte count. It prints tlévidual bytes in hexadecimal. The C formatting
directive ‘% 2x” indicates that an integer should be printed in hexadecimithl at least two digits.

New to C?: Naming data types witht ypedef .
Thet ypedef declaration in C provides a way of giving a name to a data typés can be a great help in improving
code readability, since deeply nested type declaratiombedalifficult to decipher.

The syntax foit ypedef is exactly like that of declaring a variable, except thatsési a type name rather than a
variable name. Thus, the declarationbgft e_poi nt er in Figure 2.4 has the same form as the declaration of a
variable of type tinsi gned char .

For example, the declaration:

typedef int *int_pointer;
int_pointer ip;

defines typei‘nt _poi nt er " to be a pointer to am nt , and declares a variabig of this type. Alternatively, we
could declare this variable directly as:

int xip;
End.

New to C?: Formatted printing with printf.

Theprint f function (along with its cousinspr i nt f andspri nt f) provides a way to print information with
considerable control over the formatting details. The firgiument is dormat string while any remaining argu-
ments are values to be printed. Within the format stringhed@racter sequence starting with indicates how to
format the next argument. Typical examples incluég’‘to print a decimal integer,% ' to print a floating-point
number, and%¢’ to print a character having the character code given by tgeraent.End.

2.1. INFORMATION STORAGE 41

code/data/show-bytes.c

voi d test _show bytes(int val) {
int ival = val;
float fval = (float) ival;
int xpval = & val;

show_ int(ival);
show fl oat (fval);

1
2
3
4
5
6
7 show poi nter(pval);
8

}
code/data/show-bytes.c

Figure 2.5: Byte representation examples. This code prints the byte representations of sample data
objects.

New to C?: Pointers and arrays.

In functionshow_byt es (Figure 2.4) we see the close connection between pointdraraays, as will be discussed
in detail in Section 3.8. We see that this function has anraemist art of type byt e_poi nt er (which has
been defined to be a pointeramsi gned char), but we see the array referergeart[i] online 8. In C, we
can dereference a pointer with array notation, and we camner€e array elements with pointer notation. In this
example, the referencet art [i] indicates that we want to read the byte thait ipositions beyond the location
pointed to byst ar t . End.

Procedureshow_i nt ,show_f | oat ,andshow_poi nt er demonstrate how to use procedateow_byt es
to print the byte representations of C program objects aétyqt , f | oat , andvoi d =, respectively. Ob-
serve that they simply pasf©iow_byt es a pointer&x to their argumenx, casting the pointer to be of type
“unsi gned char =.” This cast indicates to the compiler that the program stheohsider the pointer to
be to a sequence of bytes rather than to an object of the afidata type. This pointer will then be to the
lowest byte address occupied by the object.

New to C?: Pointer creation and dereferencing.

In lines 13, 17, and 21 of Figure 2.4 we see uses of two opeatitat give C (and therefore C++) its distinctive
character. The C “address of” operascreates a pointer. On all three lines, the expres&oureates a pointer to
the location holding the object indicated by variakleThe type of this pointer depends on the typ& pdnd hence
these three pointers are of typat =+, fl oat =*, andvoi d ==, respectively. (Data typeoi d * is a special
kind of pointer with no associated type information.)

The cast operator converts from one data type to anothers, Tha cast byt e_poi nter) &x indicates that
whatever type the pointetx had before, the program will now reference a pointer to datyme unsi gned
char. The casts shown here do not change the actual pointer; itg@jysdirect the compiler to refer to the data
being pointed to according to the new data tylgad.

These procedures use thesCzeof operator to determine the number of bytes used by the objact.
general, the expressiai zeof (1) returns the number of bytes required to store an object af Typ
Using si zeof rather than a fixed value is one step toward writing code thabitable across different
machine types.

We ran the code shown in Figure 2.5 on several different mashigiving the results shown in Figure 2.6.
The following machines were used:

42 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Machine | Value Type Bytes (hex)
Linux 32 | 12,345 i nt 39 30 00 00
Windows | 12,345 i nt 39 30 00 00

Sun 12,345 i nt 00 00 30 39
Linux 64 | 12,345 i nt 39 30 00 00
Linux 32 | 12,345.0 | fl oat | 00 e4 40 46
Windows | 12,345.0 | fl oat | 00 e4 40 46

Sun 12,345.0 | fl oat | 46 40 e4 00
Linux 64 | 12,345.0 | fl oat | 00 e4 40 46
Linux 32 | &i val int x | ed4 f9 ff bf
Windows | & val int x| b4 cc 22 00

Sun &i val int x| ef ff fa Oc
Linux 64 | &i val int | b8 11 e5 ff ff 7f 00 00

Figure 2.6:Byte representations of different data values. Results for i nt and f | oat are identical,
except for byte ordering. Pointer values are machine dependent.

Linux 32: Intel IA32 processor running Linux.
Windows: Intel IA32 processor running Windows.
Sun: Sun Microsystems SPARC processor running Solaris.

Linux 64: Intel x86-64 processor running Linux.

Our argument 12,345 has hexadecimal represent@td@0003039. For thei nt data, we get identical
results for all machines, except for the byte ordering. Irtipalar, we can see that the least significant
byte value 0f0x39 is printed first for Linux 32, Windows, and Linux 64, indiaadj little-endian machines,
and last for Sun, indicating a big-endian machine. SinyjaHhe bytes of thd | oat data are identical,
except for the byte ordering. On the other hand, the poirdkres are completely different. The different
machine/operating system configurations use differenteraions for storage allocation. One feature to
note is that the Linux 32, Windows, and Sun machines useligta-addresses, while the Linux 64 machine
uses eight-byte addresses.

Observe that although the floating-point and the integeat Bath encode the numeric value 12,345, they
have very different byte pattern€x00003039 for the integer, and®@x4640E400 for floating point. In
general, these two formats use different encoding schethese expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequericEanatching bits, indicated by a sequence
of asterisks, as follows:

0 0 0 0 3 0 3 9
00000000000000000011000000111001
kkhkkkkhhkkkhkkhkkkk*k
4 6 4 0 E 4 0 0
01000110010000001110010000000000

2.1. INFORMATION STORAGE 43

This is not coincidental. We will return to this example whea study floating-point formats.

Practice Problem 2.5

Consider the following three calls ghow_byt es:

int val = 0x87654321,

byte pointer valp = (byte_pointer) &val;
show bytes(valp, 1); /+ A =/

show bytes(valp, 2); /* B. =*/

show bytes(valp, 3); /* C =/

Indicate which of the following values will be printed by d&acall on a little-endian machine and on a
big-endian machine:

A. Little endian: Big endian:
B. Little endian: Big endian:
C. Little endian: Big endian:

Practice Problem 2.6

Usingshow_i nt andshow_f | oat , we determine that the integer 3510593 has hexadecimad-repr
sentation0x00359141, while the floating-point numbe3510593.0 has hexadecimal representation
0x4A564504.

A. Write the binary representations of these two hexadeoraliaes.

B. Shift these two strings relative to one another to maxéize number of matching bits. How
many bits match?

C. What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminajethé null (having value 0) character. Each
character is represented by some standard encoding, withdst common being the ASCII character code.
Thus, if we run our routineshow_byt es with arguments' 12345" and6 (to include the terminating
character), we get the resiitlt 32 33 34 35 00. Observe that the ASCII code for decimal digit
happens to b6x 3z, and that the terminating byte has the hex representai@®. This same result would
be obtained on any system using ASCII as its character cadepéendent of the byte ordering and word
size conventions. As a consequence, text data is more pratfalependent than binary data.

Aside: Generating an ASClI table.
You can display a table showing the ASCII character code g@ing the commandan asci i . End Aside.

Practice Problem 2.7
What would be printed as a result of the following calstoow byt es?

