
Chapter 2

Representing and Manipulating
Information

Modern computers store and process information represented as two-valued signals. These lowly binary
digits, orbits, form the basis of the digital revolution. The familiar decimal, or base-10, representation has
been in use for over 1000 years, having been developed in India, improved by Arab mathematicians in the
12th century, and brought to the West in the 13th century by the Italian mathematician Leonardo Pisano
(c. 1170 – c. 1250), better known as Fibonacci. Using decimalnotation is natural for ten-fingered humans,
but binary values work better when building machines that store and process information. Two-valued
signals can readily be represented, stored, and transmitted, for example, as the presence or absence of a
hole in a punched card, as a high or low voltage on a wire, or as amagnetic domain oriented clockwise or
counterclockwise. The electronic circuitry for storing and performing computations on two-valued signals
is very simple and reliable, enabling manufacturers to integrate millions, or even billions, of such circuits
on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and apply someinterpretationthat
gives meaning to the different possible bit patterns, however, we can represent the elements of any finite set.
For example, using a binary number system, we can use groups of bits to encode nonnegative numbers. By
using a standard character code, we can encode the letters and symbols in a document. We cover both of
these encodings in this chapter, as well as encodings to represent negative numbers and to approximate real
numbers.

We consider the three most important representations of numbers.Unsignedencodings are based on tradi-
tional binary notation, representing numbers greater thanor equal to 0.Two’s-complementencodings are
the most common way to representsignedintegers, that is, numbers that may be either positive or nega-
tive. Floating-pointencodings are a base-two version of scientific notation for representing real numbers.
Computers implement arithmetic operations, such as addition and multiplication, with these different repre-
sentations, similar to the corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number, and hence some operations can
overflowwhen the results are too large to be represented. This can lead to some surprising results. For
example, on most of today’s computers (those using a 32-bit representation of data typeint), computing

29

30 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

the expression

200 * 300 * 400 * 500

yields−884,901,888. This runs counter to the properties of integerarithmetic—computing the product of a
set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar properties of true integer arith-
metic. For example, multiplication is associative and commutative, so that computing any of the following
C expressions yields−884,901,888:

(500 * 400) * (300 * 200)
((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 * (300 * 500))

The computer might not generate the expected result, but at least it is consistent!

Floating-point arithmetic has altogether different mathematical properties. The product of a set of posi-
tive numbers will always be positive, although overflow willyield the special value+∞. Floating-point
arithmetic is not associative due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to0.0 on most machines, while3.14+(1e20-1e20) will evalu-
ate to3.14. The different mathematical properties of integer vs. floating-point arithmetic stem from the
difference in how they handle the finiteness of their representations—integer representations can encode a
comparatively small range of values, but do so precisely, while floating-point representations can encode a
wide range of values, but only approximately.

By studying the actual number representations, we can understand the ranges of values that can be repre-
sented and the properties of the different arithmetic operations. This understanding is critical to writing
programs that work correctly over the full range of numeric values and that are portable across different
combinations of machine, operating system, and compiler. As we will describe, a number of computer
security vulnerabilities have arisen due to some of the subtleties of computer arithmetic. Whereas in an ear-
lier era program bugs would only inconvenience people when they happened to be triggered, there are now
legions of hackers who try to exploit any bug they can find to obtain unauthorized access to other people’s
systems. This puts a higher level of obligation on programmers to understand how their programs work and
how they can be made to behave in undesirable ways.

Computers use several different binary representations toencode numeric values. You will need to be
familiar with these representations as you progress into machine-level programming in Chapter 3. We
describe these encodings in this chapter and show you how to reason about number representations.

We derive several ways to perform arithmetic operations by directly manipulating the bit-level representa-
tions of numbers. Understanding these techniques will be important for understanding the machine-level
code generated by compilers in their attempt to optimize theperformance of arithmetic expression evalua-
tion.

Our treatment of this material is based on a core set of mathematical principles. We start with the basic
definitions of the encodings and then derive such propertiesas the range of representable numbers, their bit-
level representations, and the properties of the arithmetic operations. We believe it is important for you to

31

C version GCC command line option
GNU 89 none, -std=gnu89
ANSI, ISO C90 -ansi, -std=c89
ISO C99 -std=c99
GNU 99 -std=gnu99

Figure 2.1:Specifying different versions of C to GCC

examine the material from this abstract viewpoint, becauseprogrammers need to have a clear understanding
of how computer arithmetic relates to the more familiar integer and real arithmetic.

Aside: How to read this chapter.
If you find equations and formulas daunting, do not let that stop you from getting the most out of this chapter! We
provide full derivations of mathematical ideas for completeness, but the best way to read this material is often to
skip over the derivation on your initial reading. Instead, study the examples provided, and be sure to workall of
the practice problems. The examples will give you an intuition behind the ideas, and the practice problems engage
you inactive learning, helping you put thoughts into action. With these as background, you will find it much easier
to go back and follow the derivations. Be assured, as well, that the mathematical skills required to understand this
material are within reach of someone with good grasp of high school algebra.End Aside.

The C++ programming language is built upon C, using the exactsame numeric representations and opera-
tions. Everything said in this chapter about C also holds forC++. The Java language definition, on the other
hand, created a new set of standards for numeric representations and operations. Whereas the C standards
are designed to allow a wide range of implementations, the Java standard is quite specific on the formats
and encodings of data. We highlight the representations andoperations supported by Java at several places
in the chapter.

Aside: The Evolution of the C Programming Language.
As was described in an aside in Section 1.2, the C programminglanguage was first developed by Dennis Ritchie of
Bell Laboratories for use with the Unix operating system (also developed at Bell Labs). At the time, most system
programs, such as operating systems, had to be written largely in assembly code, in order to have access to the
low-level representations of different data types. For example, it was not feasible to write a memory allocator, such
as is provided by themalloc library function, in other high-level languages of that era.

The original Bell Labs version of C was documented in the firstedition of the book by Brian Kernighan and Dennis
Ritchie [57]. Over time, C has evolved through the efforts ofseveral standardization groups. The first major
revision of the original Bell Labs C led to the ANSI C standardin 1989, by a group working under the auspices of
the American National Standards Institute. ANSI C was a major departure from Bell Labs C, especially in the way
functions are declared. ANSI C is described in the second edition of Kernighan and Ritchie’s book [58], which is
still considered one of the best references on C.

The International Standards Organization took over responsibility for standardizing the C language, adopting a
version that was substantially the same as ANSI C in 1990 and hence is referred to as “ISO C90.”

This same organization sponsored an updating of the language in 1999, yielding “ISO C99.” Among other things
this version introduced some new data types and provided support for text strings requiring characters not found in
the English language.

The GNU Compiler Collection (GCC) can compile programs according to the conventions of several different ver-
sions of the C language, based on different command line options, as shown in Figure 2.1. For example, to compile
programprog.c according to ISO C99, we could give the command line

32 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

unix> gcc -std=c99 prog.c

The options-ansi and-std=c89 have the same effect—the code is compiled according to the ANSI or ISO C90
standard. (C90 is sometimes referred to as “C89,” since its standardization effort began in 1989.) The option
-std=c99 causes the compiler to follow the ISO C99 convention.

As of the writing of this book, when no option is specified, theprogram will be compiled according to a version of
C based on ISO C90, but including some features of C99, some ofC++, and others specific toGCC. This version
can be specified explicitly using the option-std=gnu89. The GNU project is developing a version that combines
ISO C99, plus other features, that can be specified with command line option-std=gnu99. (Currently, this
implementation is incomplete.) This will become the default version.End Aside.

2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blocks of 8 bits, orbytes, as the
smallest addressable unit of memory. A machine-level program views memory as a very large array of
bytes, referred to asvirtual memory. Every byte of memory is identified by a unique number, known as
its address, and the set of all possible addresses is known as thevirtual address space. As indicated by its
name, this virtual address space is just a conceptual image presented to the machine-level program. The
actual implementation (presented in Chapter 9) uses a combination of random-access memory (RAM), disk
storage, special hardware, and operating system software to provide the program with what appears to be a
monolithic byte array.

In subsequent chapters, we will cover how the compiler and run-time system partitions this memory space
into more manageable units to store the differentprogram objects, that is, program data, instructions, and
control information. Various mechanisms are used to allocate and manage the storage for different parts of
the program. This management is all performed within the virtual address space. For example, the value
of a pointer in C—whether it points to an integer, a structure, or some other program object—is the virtual
address of the first byte of some block of storage. The C compiler also associatestype information with
each pointer, so that it can generate different machine-level code to access the value stored at the location
designated by the pointer depending on the type of that value. Although the C compiler maintains this type
information, the actual machine-level program it generates has no information about data types. It simply
treats each program object as a block of bytes, and the program itself as a sequence of bytes.

New to C?: The role of pointers in C.
Pointers are a central feature of C. They provide the mechanism for referencing elements of data structures, includ-
ing arrays. Just like a variable, a pointer has two aspects: its valueand itstype. The value indicates the location
of some object, while its type indicates what kind of object (e.g., integer or floating-point number) is stored at that
location.End.

2.1.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from000000002 to 111111112 . When
viewed as a decimal integer, its value ranges from010 to 25510. Neither notation is very convenient for
describing bit patterns. Binary notation is too verbose, while with decimal notation, it is tedious to convert
to and from bit patterns. Instead, we write bit patterns as base-16, orhexadecimalnumbers. Hexadecimal

2.1. INFORMATION STORAGE 33

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.2:Hexadecimal notation. Each Hex digit encodes one of 16 values.

(or simply “hex”) uses digits ‘0’ through ‘9’ along with characters ‘A’ through ‘F’ to represent 16 possible
values. Figure 2.2 shows the decimal and binary values associated with the 16 hexadecimal digits. Written
in hexadecimal, the value of a single byte can range from 0016 to FF16.

In C, numeric constants starting with0x or 0X are interpreted as being in hexadecimal. The characters
‘A’ through ‘F’ may be written in either upper or lower case. For example, we could write the number
FA1D37B16 as0xFA1D37B, as0xfa1d37b, or even mixing upper and lower case, e.g.,0xFa1D37b.
We will use the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually convert between decimal, binary,
and hexadecimal representations of bit patterns. Converting between binary and hexadecimal is straight-
forward, since it can be performed one hexadecimal digit at atime. Digits can be converted by referring
to a chart such as that shown in Figure 2.2. One simple trick for doing the conversion in your head is to
memorize the decimal equivalents of hex digitsA, C, andF. The hex valuesB, D, andE can be translated to
decimal by computing their values relative to the first three.

For example, suppose you are given the number0x173A4C. You can convert this to binary format by
expanding each hexadecimal digit, as follows:

Hexadecimal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

This gives the binary representation000101110011101001001100.

Conversely, given a binary number1111001010110110110011, you convert it to hexadecimal by first split-
ting it into groups of 4 bits each. Note, however, that if the total number of bits is not a multiple of 4,
you should make theleftmostgroup be the one with fewer than 4 bits, effectively padding the number with
leading zeros. Then you translate each group of bits into thecorresponding hexadecimal digit:

Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 C A D B 3

Practice Problem 2.1:

Perform the following number conversions:

A. 0x39A7F8 to binary

34 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

B. Binary1100100101111011 to hexadecimal

C. 0xD5E4C to binary

D. Binary1001101110011110110101 to hexadecimal

When a valuex is a power of two, that is,x = 2n for some nonnegative integern, we can readily writex in
hexadecimal form by remembering that the binary representation of x is simply 1 followed byn zeros. The
hexadecimal digit0 represents four binary zeros. So, forn written in the formi + 4j, where0 ≤ i ≤ 3,
we can writex with a leading hex digit of1 (i = 0), 2 (i = 1), 4 (i = 2), or 8 (i = 3), followed by j

hexadecimal0s. As an example, forx = 2048 = 211, we haven = 11 = 3 + 4 · 2, giving hexadecimal
representation0x800.

Practice Problem 2.2:

Fill in the blank entries in the following table, giving the decimal and hexadecimal representations of
different powers of 2:

n 2n (Decimal) 2n (Hexadecimal)
9 512 0x200

19
16,384

0x10000
17

32
0x80

Converting between decimal and hexadecimal representations requires using multiplication or division to
handle the general case. To convert a decimal numberx to hexadecimal, we can repeatedly dividex by
16, giving a quotientq and a remainderr, such thatx = q · 16 + r. We then use the hexadecimal digit
representingr as the least significant digit and generate the remaining digits by repeating the process onq.
As an example, consider the conversion of decimal 314156:

314156 = 19634 · 16 + 12 (C)
19634 = 1227 · 16 + 2 (2)
1227 = 76 · 16 + 11 (B)

76 = 4 · 16 + 12 (C)
4 = 0 · 16 + 4 (4)

From this we can read off the hexadecimal representation as0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply each of the hexadecimal digits
by the appropriate power of 16. For example, given the number0x7AF, we compute its decimal equivalent
as7 · 162 + 10 · 16 + 15 = 7 · 256 + 10 · 16 + 15 = 1792 + 160 + 15 = 1967.

Practice Problem 2.3:

A single byte can be represented by two hexadecimal digits. Fill in the missing entries in the following
table, giving the decimal, binary, and hexadecimal values of different byte patterns:

2.1. INFORMATION STORAGE 35

Decimal Binary Hexadecimal
0 0000 0000 0x00

167
62

188
0011 0111
1000 1000
1111 0011

0x52
0xAC
0xE7

Aside: Converting between decimal and hexadecimal.
For converting larger values between decimal and hexadecimal, it is best to let a computer or calculator do the work.
For example, the following script in the Perl language converts a list of numbers (given on the command line) from
decimal to hexadecimal: bin/d2h

1 #!/usr/local/bin/perl
2 # Convert list of decimal numbers into hex
3

4 for ($i = 0; $i < @ARGV; $i++) {
5 printf("%d\t= 0x%x\n", $ARGV[$i], $ARGV[$i]);
6 }

bin/d2h Once this file has been set to be executable, the command

unix> ./d2h 100 500 751

yields output:

100 = 0x64
500 = 0x1f4
751 = 0x2ef

Similarly, the following script converts from hexadecimalto decimal: bin/h2d

1 #!/usr/local/bin/perl
2 # Convert list of hex numbers into decimal
3

4 for ($i = 0; $i < @ARGV; $i++) {
5 $val = hex($ARGV[$i]);
6 printf("0x%x = %d\n", $val, $val);
7 }

bin/h2d End Aside.

Practice Problem 2.4:

Without converting the numbers to decimal or binary, try to solve the following arithmetic problems,
giving the answers in hexadecimal.Hint: Just modify the methods you use for performing decimal
addition and subtraction to use base 16.

36 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

C declaration 32-bit 64-bit
char 1 1

short int 2 2
int 4 4

long int 4 8
long long int 8 8

char * 4 8
float 4 4

double 8 8

Figure 2.3:Sizes (in bytes) of C numeric data types. The number of bytes allocated varies with machine
and compiler. This chart shows the values typical of 32-bit and 64-bit machines.

A. 0x503c+ 0x8 =

B. 0x503c− 0x40 =

C. 0x503c+ 64 =

D. 0x50ea− 0x503c =

2.1.2 Words

Every computer has aword size, indicating the nominal size of integer and pointer data. Since a virtual
address is encoded by such a word, the most important system parameter determined by the word size is
the maximum size of the virtual address space. That is, for a machine with aw-bit word size, the virtual
addresses can range from0 to 2w − 1, giving the program access to at most2w bytes.

Most personal computers today have a 32-bit word size. This limits the virtual address space to 4 gigabytes
(written 4 GB), that is, just over4 × 109 bytes. Although this is ample space for most applications, we
have reached the point where many large-scale scientific anddatabase applications require larger amounts
of storage. Consequently, high-end machines with 64-bit word sizes are becoming increasingly common as
storage costs decrease. As hardware costs drop over time, even desktop and laptop machines will switch to
64-bit word sizes, and so we will consider the general case ofaw-bit word size, as well as the special cases
of w = 32 andw = 64.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to encode data, such as in-
tegers and floating point, as well as different lengths. For example, many machines have instructions for
manipulating single bytes, as well as integers representedas two-, four-, and eight-byte quantities. They
also support floating-point numbers represented as four andeight-byte quantities.

The C language supports multiple data formats for both integer and floating-point data. The C data type
char represents a single byte. Although the name “char” derives from the fact that it is used to store a

2.1. INFORMATION STORAGE 37

single character in a text string, it can also be used to storeinteger values. The C data typeint can also
be prefixed by the qualifiersshort,long, and recentlylong long, providing integer representations of
various sizes. Figure 2.3 shows the number of bytes allocated for different C data types. The exact number
depends on both the machine and the compiler. We show typicalsizes for 32-bit and 64-bit machines.
Observe that “short” integers have two-byte allocations, while an unqualifiedint is 4 bytes. A “long”
integer uses the full word size of the machine. The “long long” integer data type, introduced in ISO C99,
allows the full range of 64-bit integers. For 32-bit machines, the compiler must compile operations for this
data type by generating code that performs sequences of 32-bit operations.

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of type “char *”) uses the full word
size of the machine. Most machines also support two different floating-point formats: single precision,
declared in C asfloat, and double precision, declared in C asdouble. These formats use four and eight
bytes, respectively.

New to C?: Declaring pointers.
For any data typeT , the declaration

T *p;

indicates thatp is a pointer variable, pointing to an object of typeT . For example

char *p;

is the declaration of a pointer to an object of typechar. End.

Programmers should strive to make their programs portable across different machines and compilers. One
aspect of portability is to make the program insensitive to the exact sizes of the different data types. The
C standards set lower bounds on the numeric ranges of the different data types, as will be covered later,
but there are no upper bounds. Since 32-bit machines have been the standard since around 1980, many
programs have been written assuming the allocations listedfor this word size in Figure 2.3. Given the
increasing availability of 64-bit machines, many hidden word size dependencies will show up as bugs in
migrating these programs to new machines. For example, manyprogrammers assume that a program object
declared as typeint can be used to store a pointer. This works fine for most 32-bit machines, but it leads
to problems on a 64-bit machine.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions: what the address of the
object will be, and how we will order the bytes in memory. In virtually all machines, a multi-byte object
is stored as a contiguous sequence of bytes, with the addressof the object given by the smallest address of
the bytes used. For example, suppose a variablex of typeint has address0x100, that is, the value of the
address expression&x is 0x100. Then the four bytes ofx would be stored in memory locations0x100,
0x101, 0x102, and0x103.

For ordering the bytes representing an object, there are twocommon conventions. Consider aw-bit integer
having a bit representation[xw−1, xw−2, . . . , x1, x0], wherexw−1 is the most significant bit, andx0 is the

38 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

least. Assumingw is a multiple of eight, these bits can be grouped as bytes, with the most significant byte
having bits[xw−1, xw−2, . . . , xw−8], the least significant byte having bits[x7, x6, . . . , x0], and the other
bytes having bits from the middle. Some machines choose to store the object in memory ordered from least
significant byte to most, while other machines store them from most to least. The former convention—
where the least significant byte comes first—is referred to aslittle endian. This convention is followed by
most Intel-compatible machines. The latter convention—where the most significant byte comes first—is
referred to asbig endian. This convention is followed by most machines from IBM and Sun Microsystems.
Note that we said “most.” The conventions do not split precisely along corporate boundaries. For example,
both IBM and Sun manufacture machines that use Intel-compatible processors and hence are little endian.
Many recent microprocessors arebi-endian, meaning that they can be configured to operate as either little-
or big-endian machines.

Continuing our earlier example, suppose the variablex of typeint and at address0x100 has a hexadecimal
value of0x01234567. The ordering of the bytes within the address range0x100 through0x103 depends
on the type of machine:

Big endian
0x100 0x101 0x102 0x103

· · · 01 23 45 67 · · ·

Little endian
0x100 0x101 0x102 0x103

· · · 67 45 23 01 · · ·

Note that in the word0x01234567 the high-order byte has hexadecimal value0x01, while the low-order
byte has value0x67.

People get surprisingly emotional about which byte ordering is the proper one. In fact, the terms “little
endian” and “big endian” come from the bookGulliver’s Travelsby Jonathan Swift, where two warring
factions could not agree as to how a soft-boiled egg should beopened—by the little end or by the big.
Just like the egg issue, there is no technological reason to choose one byte ordering convention over the
other, and hence the arguments degenerate into bickering about socio-political issues. As long as one of the
conventions is selected and adhered to consistently, the choice is arbitrary.

Aside: Origin of “endian.”
Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and little endians:

. . . Lilliput and Blefuscu . . . have, as I was going to tell you,been engaged in a most obstinate
war for six-and-thirty moons past. It began upon the following occasion. It is allowed on all hands,
that the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking it according to the ancient
practice, happened to cut one of his fingers. Whereupon the emperor his father published an edict,
commanding all his subjects, upon great penalties, to breakthe smaller end of their eggs. The people
so highly resented this law, that our histories tell us, there have been six rebellions raised on that
account; wherein one emperor lost his life, and another his crown. These civil commotions were
constantly fomented by the monarchs of Blefuscu; and when they were quelled, the exiles always fled
for refuge to that empire. It is computed that eleven thousand persons have at several times suffered
death, rather than submit to break their eggs at the smaller end. Many hundred large volumes have

2.1. INFORMATION STORAGE 39

1 #include <stdio.h>
2

3 typedef unsigned char *byte_pointer;
4

5 void show_bytes(byte_pointer start, int len) {
6 int i;
7 for (i = 0; i < len; i++)
8 printf(" %.2x", start[i]);
9 printf("\n");

10 }
11

12 void show_int(int x) {
13 show_bytes((byte_pointer) &x, sizeof(int));
14 }
15

16 void show_float(float x) {
17 show_bytes((byte_pointer) &x, sizeof(float));
18 }
19

20 void show_pointer(void *x) {
21 show_bytes((byte_pointer) &x, sizeof(void *));
22 }

Figure 2.4:Code to print the byte representation of program objects. This code uses casting to cir-
cumvent the type system. Similar functions are easily defined for other data types.

been published upon this controversy: but the books of the Big-endians have been long forbidden, and
the whole party rendered incapable by law of holding employments.

In his day, Swift was satirizing the continued conflicts between England (Lilliput) and France (Blefuscu). Danny
Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte ordering [25], and the
terminology has been widely adopted.End Aside.

For most application programmers, the byte orderings used by their machines are totally invisible; programs
compiled for either class of machine give identical results. At times, however, byte ordering becomes an
issue. The first is when binary data are communicated over a network between different machines. A
common problem is for data produced by a little-endian machine to be sent to a big-endian machine, or vice
versa, leading to the bytes within the words being in reverseorder for the receiving program. To avoid such
problems, code written for networking applications must follow established conventions for byte ordering
to make sure the sending machine converts its internal representation to the network standard, while the
receiving machine converts the network standard to its internal representation. We will see examples of
these conversions in Chapter 11.

A second case where byte ordering becomes important is when looking at the byte sequences representing
integer data. This occurs often when inspecting machine-level programs. As an example, the following line
occurs in a file that gives a text representation of the machine-level code for an Intel IA32 processor:

80483bd: 01 05 64 94 04 08 add %eax,0x8049464

40 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

This line was generated by adisassembler, a tool that determines the instruction sequence represented by
an executable program file. We will learn more about disassemblers and how to interpret lines such as this
in Chapter 3. For now, we simply note that this line states that the hexadecimal byte sequence01 05 64
94 04 08 is the byte-level representation of an instruction that adds a word of data to the value stored
at address0x8049464. If we take the final 4 bytes of the sequence:64 94 04 08, and write them
in reverse order, we have08 04 94 64. Dropping the leading 0, we have the value0x8049464, the
numeric value written on the right. Having bytes appear in reverse order is a common occurrence when
reading machine-level program representations generatedfor little-endian machines such as this one. The
natural way to write a byte sequence is to have the lowest numbered byte on the left and the highest on the
right, but this is contrary to the normal way of writing numbers with the most significant digit on the left
and the least on the right.

A third case where byte ordering becomes visible is when programs are written that circumvent the normal
type system. In the C language, this can be done using acastto allow an object to be referenced according
to a different data type from which it was created. Such coding tricks are strongly discouraged for most
application programming, but they can be quite useful and even necessary for system-level programming.

Figure 2.4 shows C code that uses casting to access and print the byte representations of different pro-
gram objects. We usetypedef to define data typebyte_pointer as a pointer to an object of type
“unsigned char.” Such a byte pointer references a sequence of bytes where each byte is considered
to be a nonnegative integer. The first routineshow_bytes is given the address of a sequence of bytes,
indicated by a byte pointer, and a byte count. It prints the individual bytes in hexadecimal. The C formatting
directive “%.2x” indicates that an integer should be printed in hexadecimalwith at least two digits.

New to C?: Naming data types withtypedef.
Thetypedef declaration in C provides a way of giving a name to a data type.This can be a great help in improving
code readability, since deeply nested type declarations can be difficult to decipher.

The syntax fortypedef is exactly like that of declaring a variable, except that it uses a type name rather than a
variable name. Thus, the declaration ofbyte_pointer in Figure 2.4 has the same form as the declaration of a
variable of type “unsigned char *.”

For example, the declaration:

typedef int *int_pointer;
int_pointer ip;

defines type “int_pointer” to be a pointer to anint, and declares a variableip of this type. Alternatively, we
could declare this variable directly as:

int *ip;

End.

New to C?: Formatted printing with printf.
Theprintf function (along with its cousinsfprintf andsprintf) provides a way to print information with
considerable control over the formatting details. The firstargument is aformat string, while any remaining argu-
ments are values to be printed. Within the format string, each character sequence starting with ‘%’ indicates how to
format the next argument. Typical examples include ‘%d’ to print a decimal integer, ‘%f’ to print a floating-point
number, and ‘%c’ to print a character having the character code given by the argument.End.

2.1. INFORMATION STORAGE 41

code/data/show-bytes.c

1 void test_show_bytes(int val) {
2 int ival = val;
3 float fval = (float) ival;
4 int *pval = &ival;
5 show_int(ival);
6 show_float(fval);
7 show_pointer(pval);
8 }

code/data/show-bytes.c

Figure 2.5: Byte representation examples. This code prints the byte representations of sample data
objects.

New to C?: Pointers and arrays.
In functionshow_bytes (Figure 2.4) we see the close connection between pointers and arrays, as will be discussed
in detail in Section 3.8. We see that this function has an argumentstart of typebyte_pointer (which has
been defined to be a pointer tounsigned char), but we see the array referencestart[i] on line 8. In C, we
can dereference a pointer with array notation, and we can reference array elements with pointer notation. In this
example, the referencestart[i] indicates that we want to read the byte that isi positions beyond the location
pointed to bystart. End.

Proceduresshow_int,show_float, andshow_pointerdemonstrate how to use procedureshow_bytes
to print the byte representations of C program objects of typeint, float, andvoid *, respectively. Ob-
serve that they simply passshow_bytes a pointer&x to their argumentx, casting the pointer to be of type
“unsigned char *.” This cast indicates to the compiler that the program should consider the pointer to
be to a sequence of bytes rather than to an object of the original data type. This pointer will then be to the
lowest byte address occupied by the object.

New to C?: Pointer creation and dereferencing.
In lines 13, 17, and 21 of Figure 2.4 we see uses of two operations that give C (and therefore C++) its distinctive
character. The C “address of” operator& creates a pointer. On all three lines, the expression&x creates a pointer to
the location holding the object indicated by variablex. The type of this pointer depends on the type ofx, and hence
these three pointers are of typeint *, float *, andvoid **, respectively. (Data typevoid * is a special
kind of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast(byte_pointer) &x indicates that
whatever type the pointer&x had before, the program will now reference a pointer to data of type unsigned
char. The casts shown here do not change the actual pointer; they simply direct the compiler to refer to the data
being pointed to according to the new data type.End.

These procedures use the Csizeof operator to determine the number of bytes used by the object.In
general, the expressionsizeof(T) returns the number of bytes required to store an object of type T .
Usingsizeof rather than a fixed value is one step toward writing code that is portable across different
machine types.

We ran the code shown in Figure 2.5 on several different machines, giving the results shown in Figure 2.6.
The following machines were used:

42 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Machine Value Type Bytes (hex)
Linux 32 12,345 int 39 30 00 00
Windows 12,345 int 39 30 00 00

Sun 12,345 int 00 00 30 39
Linux 64 12,345 int 39 30 00 00
Linux 32 12, 345.0 float 00 e4 40 46
Windows 12, 345.0 float 00 e4 40 46

Sun 12, 345.0 float 46 40 e4 00
Linux 64 12, 345.0 float 00 e4 40 46
Linux 32 &ival int * e4 f9 ff bf
Windows &ival int * b4 cc 22 00

Sun &ival int * ef ff fa 0c
Linux 64 &ival int * b8 11 e5 ff ff 7f 00 00

Figure 2.6: Byte representations of different data values. Results for int and float are identical,
except for byte ordering. Pointer values are machine dependent.

Linux 32: Intel IA32 processor running Linux.

Windows: Intel IA32 processor running Windows.

Sun: Sun Microsystems SPARC processor running Solaris.

Linux 64: Intel x86-64 processor running Linux.

Our argument 12,345 has hexadecimal representation0x00003039. For theint data, we get identical
results for all machines, except for the byte ordering. In particular, we can see that the least significant
byte value of0x39 is printed first for Linux 32, Windows, and Linux 64, indicating little-endian machines,
and last for Sun, indicating a big-endian machine. Similarly, the bytes of thefloat data are identical,
except for the byte ordering. On the other hand, the pointer values are completely different. The different
machine/operating system configurations use different conventions for storage allocation. One feature to
note is that the Linux 32, Windows, and Sun machines use four-byte addresses, while the Linux 64 machine
uses eight-byte addresses.

Observe that although the floating-point and the integer data both encode the numeric value 12,345, they
have very different byte patterns:0x00003039 for the integer, and0x4640E400 for floating point. In
general, these two formats use different encoding schemes.If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits, indicated by a sequence
of asterisks, as follows:

0 0 0 0 3 0 3 9
00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

2.1. INFORMATION STORAGE 43

This is not coincidental. We will return to this example whenwe study floating-point formats.

Practice Problem 2.5:

Consider the following three calls toshow_bytes:

int val = 0x87654321;
byte_pointer valp = (byte_pointer) &val;
show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

Indicate which of the following values will be printed by each call on a little-endian machine and on a
big-endian machine:

A. Little endian: Big endian:

B. Little endian: Big endian:

C. Little endian: Big endian:

Practice Problem 2.6:

Usingshow_int andshow_float, we determine that the integer 3510593 has hexadecimal repre-
sentation0x00359141, while the floating-point number3510593.0 has hexadecimal representation
0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of matching bits. How
many bits match?

C. What parts of the strings do not match?

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having value 0) character. Each
character is represented by some standard encoding, with the most common being the ASCII character code.
Thus, if we run our routineshow_bytes with arguments"12345" and6 (to include the terminating
character), we get the result31 32 33 34 35 00. Observe that the ASCII code for decimal digitx

happens to be0x3x, and that the terminating byte has the hex representation0x00. This same result would
be obtained on any system using ASCII as its character code, independent of the byte ordering and word
size conventions. As a consequence, text data is more platform-independent than binary data.

Aside: Generating an ASCII table.
You can display a table showing the ASCII character code by executing the commandman ascii. End Aside.

Practice Problem 2.7:

What would be printed as a result of the following call toshow_bytes?

