Chapter 12

Concurrent Programming

As we learned in Chapter 8, logical control flows a&amcurrent if they overlap in time. This general
phenomenon, known a®ncurrency, shows up at many different levels of a computer system. \wanrel
exception handlers, processes, and Unix signal handleralldamiliar examples.

Thus far, we have treated concurrency mainly as a mechahanthte operating system kernel uses to run
multiple application programs. But concurrency is not |usited to the kernel. It can play an important role
in application programs as well. For example, we have seanUix signal handlers allow applications
to respond to asynchronous events such as the user tgpinig- ¢ or the program accessing an undefined
area of virtual memory. Application-level concurrency setul in other ways as well:

e Accessing slow /O devices. When an application is waiting for data to arrive from a slé@ tevice
such as a disk, the kernel keeps the CPU busy by running otbeesses. Individual applications can
exploit concurrency in a similar way by overlapping usefarivwith I/O requests.

e Interacting with humans. People who interact with computers demand the ability téoper multiple
tasks at the same time. For example, they might want to resizemdow while they are printing a
document. Modern windowing systems use concurrency toigieathis capability. Each time the
user requests some action (say, by clicking the mouse),aaaepconcurrent logical flow is created
to perform the action.

e Reducing latency by deferring work. Sometimes, applications can use concurrency to reduce the
latency of certain operations by deferring other operatiand performing them concurrently. For
example, a dynamic storage allocator might reduce thedgteh individual f r ee operations by
deferring coalescing to a concurrent “coalescing” flow tiuais at a lower priority, soaking up spare
CPU cycles as they become available.

e Servicing multiple network clients. The iterative network servers that we studied in Chapterrgl a
unrealistic because they can only service one client at a. tilthus, a single slow client can deny
service to every other client. For a real server that mighexpeected to service hundreds or thousands
of clients per second, it is not acceptable to allow one sliemtto deny service to the others. A better
approach is to build eoncurrent server that creates a separate logical flow for each client. Thasvl|

895

896 CHAPTER 12. CONCURRENT PROGRAMMING

the server to service multiple clients concurrently, aretfudes slow clients from monopolizing the
server.

e Computing in parallel on multi-core machines. Many modern systems are equipped with multi-core
processors that contain multiple CPUs. Applications thatpartitioned into concurrent flows often
run faster on multi-core machines than on uniprocessor meslbecause the flows execute in parallel
rather than being interleaved.

Applications that use application-level concurrency amevin asconcurrent programs. Modern operating
systems provide three basic approaches for building comauprograms:

e Processes. With this approach, each logical control flow is a processithscheduled and maintained
by the kernel. Since processes have separate virtual adsppases, flows that want to communicate
with each other must use some kind of expliaterprocess communication (IPC) mechanism.

e |/O multiplexing. This is a form of concurrent programming where applicatierglicitly schedule
their own logical flows in the context of a single process. icabflows are modeled as state machines
that the main program explicitly transitions from state tate as a result of data arriving on file
descriptors. Since the program is a single process, all fihvase the same address space.

e Threads. Threads are logical flows that run in the context of a singbeess and are scheduled by the
kernel. You can think of threads as a hybrid of the other twaregches, scheduled by the kernel like
process flows, and sharing the same virtual address spadéQiknultiplexing flows.

This chapter investigates these three different concupesgramming techniques. To keep our discus-
sion concrete, we will work with the same motivating apgiima throughout — a concurrent version of the
iterative echo server from Section 11.4.9.

12.1 Concurrent Programming With Processes

The simplest way to build a concurrent program is with preessusing familiar functions such fer k,
exec, andwai t pi d. For example, a natural approach for building a concurrentes is to accept client
connection requests in the parent, and then create a nadvxbitess to service each new client.

To see how this might work, suppose we have two clients andherséhat is listening for connection
requests on a listening descriptor (say, 3). Now suppogehbaserver accepts a connection request from
client 1 and returns a connected descriptor (say, 4), asrsiofigure 12.1.

After accepting the connection request, the server forksld,avhich gets a complete copy of the server's
descriptor table. The child closes its copy of listeningctdigsor 3, and the parent closes its copy of con-
nected descriptor 4, since they are no longer needed. Tas gs the situation in Figure 12.2, where the
child process is busy servicing the client. Since the coteaedescriptors in the parent and child each point
to the same file table entry, it is crucial for the parent teselds copy of the connected descriptor. Other-
wise, the file table entry for connected descriptor 4 willerele released, and the resulting memory leak
will eventually consume the available memory and crash yatem.

12.1. CONCURRENT PROGRAMMING WITH PROCESSES 897

Connection
i “T--___request
Client 1 RIS st enf d(3)
clientfd Ta
Server
connf d(4)
Client 2
clientfd

Figure 12.1:Step 1: Server accepts connection request from client.

Data
transfers

Child 1

connf d(4)
Client 1 l'i stenfd(3)
clientfd
Server
Client 2
clientfd

Figure 12.2:Step 2: Server forks a child process to service the client.

Now suppose that after the parent creates the child fortclieit accepts a new connection request from
client 2 and returns a new connected descriptor (say, Shasrsin Figure 12.3.

Data Child 1
transfers
connf d(4)
Client 1 I'i st enfd(3)
lientfd
clien I 4 Server
C i connf d(5)
Client 2 onnection
request
clientfd

Figure 12.3:Step 3: Server accepts another connection request.

The parent then forks another child, which begins serviigglient using connected descriptor 5, as shown

in Figure 12.4. At this point, the parent is waiting for thexneonnection request and the two children are
servicing their respective clients concurrently.

12.1.1 A Concurrent Server Based on Processes

Figure 12.5 shows the code for a concurrent echo server laaspobcesses. Thecho function called in
line 29 comes from Figure 11.21. There are several impopaints to make about this server:

e First, servers typically run for long periods of time, so wesninclude a SIGCHLD handler that

898 CHAPTER 12. CONCURRENT PROGRAMMING

Data Child 1
transfers
connf d(4)
Client 1 l'istenfd(3)
clientfd
Server
] Data
Client 2 transfers
clientfd Child 2
connf d(5)

Figure 12.4:Step 4: Server forks another child to service the new client.

reaps zombie children (lines 4-9). Since SIGCHLD signatsdwcked while the SIGCHLD handler
is executing, and since Unix signals are not queued, the Bi®Chandler must be prepared to reap
multiple zombie children.

e Second, the parent and the child must close their respectipies ofconnf d (lines 33 and 30,
respectively). As we have mentioned, this is especiallyartgmt for the parent, which must close its
copy of the connected descriptor to avoid a memory leak.

e Finally, because of the reference count in the socket'sdbéetentry, the connection to the client will
not be terminated until both the parent’'s and child’s copiesonnf d are closed.

12.1.2 Prosand Cons of Processes

Processes have a clean model for sharing state informaditmebn parents and children: file tables are
shared and user address spaces are not. Having separassagfuiices for processes is both an advantage
and a disadvantage. It is impossible for one process toewizilly overwrite the virtual memory of another
process, which eliminates a lot of confusing failures — avials advantage.

On the other hand, separate address spaces make it moreltdifficprocesses to share state information.
To share information, they must use explicit IPC (intergsgccommunications) mechanisms. (See Aside.)
Another disadvantage of process-based designs is thattehelyto be slower because the overhead for
process control and IPC is high.

Aside: Unix IPC

You have already encountered several examples of IPC iekisThewai t pi d function and Unix signals from
Chapter 8 are primitive IPC mechanisms that allow processsgnd tiny messages to processes running on the
same host. The sockets interface from Chapter 11 is an iandidrm of IPC that allows processes on different
hosts to exchange arbitrary byte streams. However, the tmimIPC is typically reserved for a hodge-podge of
techniques that allow processes to communicate with otf@egses that are running on the same host. Examples
include pipes, FIFOs, System V shared memory, and Systenmdleores. These mechanisms are beyond our
scope. The book by Stevens [108] is a good refereBoe. Aside.

Practice Problem 12.1:

12.1. CONCURRENT PROGRAMMING WITH PROCESSES 899

code/conc/echoserverp.c

1
2
3
4
5 {
6
7
8
9

10
11 int
12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 }

#i ncl ude "csapp. h"
voi d echo(int connfd);

voi d sigchld_handler(int sig)

while (waitpid(-1, 0, WNCHANG > 0)

return;

mai n(i nt argc, char =*xargv)

int listenfd, connfd, port;
socklen_t clientlen=sizeof (struct sockaddr _in);
struct sockaddr in clientaddr;

if (argc '= 2) {
fprintf(stderr, "usage: % <port>\n", argv[0]);
exit(0);

}

port = atoi(argv[1]);

Si gnal (SI GCHLD, sigchld_handl er);
listenfd = Open_Ilistenfd(port);
while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {
Close(listenfd); /+ Child closes its |listening socket =*/

echo(connfd); /* Child services client x/
Cl ose(connfd); /+* Child closes connection with client */
exit(0); [+ Child exits =/

}

Cl ose(connfd); /+ Parent closes connected socket (inportant!) =*/

code/conc/echoserverp.c

Figure 12.5:Concurrent echo server based on processes. The parent forks a child to handle each new
connection request.

900 CHAPTER 12. CONCURRENT PROGRAMMING

After the parent closes the connected descriptor in linef3Beconcurrent server in Figure 12.5, the
child is still able to communicate with the client using itsoy of the descriptor. Why?

Practice Problem 12.2:

If we were to delete line 30 of Figure 12.5, which closes thenexted descriptor, the code would still
be correct, in the sense that there would be no memory leak?Wh

12.2 Concurrent Programming With I/O Multiplexing

Suppose you are asked to write an echo server that can afgmceto interactive commands that the user
types to standard input. In this case, the server must resjotwo independent 1/0 events: (1) a network
client making a connection request, and (2) a user typingra@and line at the keyboard. Which event do
we wait for first? Neither option is ideal. If we are waiting f@ connection request mccept , then we
cannot respond to input commands. Similarly, if we are wgifior an input command inead, then we
cannot respond to any connection requests.

One solution to this dilemma is a technique call&d multiplexing. The basic idea is to use tiseel ect
function to ask the kernel to suspend the process, retuntntyol to the application only after one or more
I/0 events have occurred, as in the following examples:

e Return when any descriptor in the 46t 4} is ready for reading.
e Return when any descriptor in the gét 2, 7} is ready for writing.

e Timeout if 152.13 seconds have elapsed waiting for an /O event to occur.

Sel ect is a complicated function with many different usage sce&sariWe will only discuss the first
scenario: waiting for a set of descriptors to be ready fodirea See [109, 110] for a complete discussion.

#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int select(int n, fdset »fdset, NULL, NULL, NULL);

Returns nonzero count of ready descripterg, on error

FD_ZERQ(f d_set =*fdset); /* Cear all bits in fdset */
FDCLR(int fd, fdset *fdset); /+ Clear bit fd in fdset */
FD.SET(int fd, fdset =fdset); /+ Turn on bit fd in fdset =/

FD.I SSET(int fd, fdset xfdset); /« Is bit fd in fdset turned on? =/
Macros for manipulating descriptor sets

Thesel ect function manipulates sets of typel _set , which are known adescriptor sets. Logically, we
think of a descriptor set as a bit vector (introduced in $&cf.1) of sizen:

bn-1,---,b1,bo.

12.2. CONCURRENT PROGRAMMING WITH I/O MULTIPLEXING 901

Each bitb,, corresponds to descriptér Descriptork is a member of the descriptor set if and onlyif= 1.
You are only allowed to do three things with descriptor sgt¥allocate them, (2) assign one variable of this
type to another, and (3) modify and inspect them using theZERO, FDSET, FDCLR, and FRISSET
macros.

For our purposes, theel ect function takes two inputs: a descriptor setiéet) called theread set, and

the cardinality) of the read set (actually the maximum cardinality of anycdesor set). Thesel ect
function blocks until at least one descriptor in the readiseeady for reading. A descriptdr is ready

for reading if and only if a request to read 1 byte from that descriptor Mawt block. As a side effect,
sel ect modifies the d_set pointed to by argumeritdset to indicate a subset of the read set called the
ready set, consisting of the descriptors in the read set that are remdgading. The value returned by the
function indicates the cardinality of the ready set. No&g thecause of the side effect, we must update the
read set every timeel ect is called.

The best way to understarsa!| ect is to study a concrete example. Figure 12.6 shows how we gt
sel ect to implement an iterative echo server that also acceptsaasemands on the standard input. We
begin by using th@pen_ i st enf d function from Figure 11.17 to open a listening descriptorg(I17),
and then using FIZERO to create an empty read set (line 19):

listenfd stdin
3 2 1 0
readset):| 0O | 0O | O [0]

Next, in lines 20 and 21, we define the read set to consist @irigsr O (standard input) and descriptor 3
(the listening descriptor), respectively:

listenfd stdin
3 2 1 0
readset ({0,3)):[1 | 0 [O | 1 |

At this point, we begin the typical server loop. But insteddvaiting for a connection request by calling
theaccept function, we call thesel ect function, which blocks until either the listening descoipbr
standard input is ready for reading (line 25). For exampéeelis the value of eady _set thatsel ect
would return if the user hit the enter key, thus causing theddrd input descriptor to become ready for
reading:

listenfd stdin
3 2 1 0
readyset ({0}): | 0O [0 | O [1]

Oncesel ect returns, we use the FIBSET macro to determine which descriptors are ready fatinga

If standard input is ready (line 26), we call themrand function, which reads, parses, and responds to the
command before returning to the main routine. If the listgrdescriptor is ready (line 28), we calt cept

to get a connected descriptor, and then calleh&o function from Figure 11.21, which echoes each line
from the client until the client closes its end of the coniwatt

While this program is a good example of usiagl ect , it still leaves something to be desired. The
problem is that once it connects to a client, it continueaghinput lines until the client closes its end of

902

CHAPTER 12. CONCURRENT PROGRAMMING

code/conc/select.c
1 #incl ude "csapp. h"
2 void echo(int connfd);
3 void comand(void);
4
5 int main(int argc, char *xargv)
6 {
7 int listenfd, connfd, port;
8 socklen_t clientlen = sizeof(struct sockaddr_in);
9 struct sockaddr in clientaddr;
10 fd set read_set, ready_set;
11
12 if (argc '= 2) {
13 fprintf(stderr, "usage: % <port>\n", argv[0]);
14 exit(0);
15 }
16 port = atoi(argv[1]);
17 listenfd = Open_Ilistenfd(port);
18
19 FD ZERQ(&r ead_set); /+* Clear read set =*/
20 FD SET(STDI N FI LENO, &read _set); /* Add stdin to read set =/
21 FD SET(listenfd, & ead set); /+* Add listenfd to read set */
22
23 while (1) {
24 ready set = read_set;
25 Select(listenfd+1, & eady set, NULL, NULL, NULL);
26 if (FD_I SSET(STDI N_FI LENO, &ready_set))
27 command(); /* Read conmand line fromstdin */
28 if (FD_ISSET(listenfd, & eady_set)) {
29 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
30 echo(connfd); /* Echo client input until ECF x/
31 Cl ose(connfd);
32 }
33 }
34 }
35
36 void comand(void) {
37 char buf [MAXLI NE] ;
38 if (!Fgets(buf, MAXLINE, stdin))
39 exit(0); /+ EOF =/
40 printf("%", buf); /* Process the input conmand =*/
41 '}

code/conc/select.c

Figure 12.6:An iterative echo server that uses I/O multiplexing.

The server uses sel ect to wait for

connection requests on a listening descriptor and commands on standard input.

12.2. CONCURRENT PROGRAMMING WITH I/O MULTIPLEXING 903

the connection. Thus, if you type a command to standard ,jryouwt will not get a response until the server
is finished with the client. A better approach would be to ipldk at a finer granularity, echoing (at most)
one text line each time through the server loop.

Practice Problem 12.3:

In most Unix systems, typingt r| - d indicates EOF on standard input. What happens if you type
ctrl -d tothe programin Figure 12.6 while it is blocked in the calb®l ect ?

12.2.1 A Concurrent Event-Driven Server Based on /0O Multiplexing

I/0 multiplexing can be used as the basis for concuregett-driven programs, where flows make progress
as a result of certain events. The general idea is to modelitpws as state machines. Informallystate
machineis a collection oftates, input events, andtransitions that map states and input events to states. Each
transition maps an (input state, input event) pair to anwufate. Aself-loop is a transition between the
same input and output state. State machines are typicallyrdas directed graphs, where nodes represent
states, directed arcs represent transitions, and arcslabpiesent input events. A state machine begins
execution in some initial state. Each input event triggarauasition from the current state to the next state.

For each new clienkt, a concurrent server based on I/O multiplexing creates astete machine; and
associates it with connected descripifpr As shown in Figure 12.7, each state machipéhas one state
(“waiting for descriptord;, to be ready for reading”), one input event (“descripipiis ready for reading”),
and one transition (“read a text line from descripdpt).

Transition:
"read a text line from

! descriptor d, "

State:
"waiting for descriptor d, to
be ready for reading”

Input event:
"descriptor d,
is ready for reading”

Figure 12.7:State machine for a logical flow in a concurrent event-driven echo server.

The server uses the 1/0O multiplexing, courtesy of $fe¢ ect function, to detect the occurrence of input
events. As each connected descriptor becomes ready fangedle server executes the transition for the
corresponding state machine, in this case reading andreghdext line from the descriptor.

Figure 12.8 shows the complete example code for a concwevent-driven server based on 1/0O multiplex-
ing. The set of active clients is maintained ipaol structure (lines 3—11). After initializing the pool by
callingi ni t _pool (line 29), the server enters an infinite loop. During eacdfatten of this loop, the server
calls thesel ect function to detect two different kinds of input events: (a)annection request arriving
from a new client, and (b) a connected descriptor for an iexjstlient being ready for reading. When a
connection request arrives (line 36), the server opensdheeaction (line 37) and calls treedd_cl i ent
function to add the client to the pool (line 38). Finally, therver calls theheck_cl i ent s function to
echo a single text line from each ready connected desci(iner4?2).

904

CHAPTER 12. CONCURRENT PROGRAMMING

code/conc/echoservers.c
1 #incl ude "csapp. h"
2
3 typedef struct { /* represents a pool of connected descriptors */
4 i nt maxfd,; [+ largest descriptor in read_set =x/
5 fd set read_set; [/* set of all active descriptors x/
6 fd set ready_set; /* subset of descriptors ready for reading =/
7 i nt nready; [+ nunmber of ready descriptors fromselect =/
8 int maxi; [+ highwater index into client array =/
9 int clientfd][FD_SETSI ZE]; [+ set of active descriptors =*/
10 rio_t clientrio[FD_SETSI ZE]; /* set of active read buffers =/
11 } pool
12
13 int byte cnt = 0; /* counts total bytes received by server x/
14
15 int main(int argc, char xxargv)
16 {
17 int listenfd, connfd, port;
18 socklen_t clientlen = sizeof(struct sockaddr_in);
19 struct sockaddr in clientaddr
20 static pool pool;
21
22 if (argc '= 2) {
23 fprintf(stderr, "usage: % <port>\n", argv[0]);
24 exit(0);
25 }
26 port = atoi(argv[1]);
27
28 listenfd = Open_Ilistenfd(port);
29 init_pool (listenfd, &pool);
30 while (1) {
31 [+ Wit for |istening/connected descriptor(s) to becone ready */
32 pool . ready_set = pool.read_set;
33 pool . nready = Sel ect (pool . maxfd+1, &pool.ready set, NULL, NULL, NULL);
34
35 [+ If listening descriptor ready, add new client to pool =/
36 if (FD_ISSET(listenfd, &pool.ready_set)) {
37 connfd = Accept (listenfd, (SA *)&clientaddr, &clientlen);
38 add_client (connfd, &pool);
39 }
40
41 /+* Echo a text line fromeach ready connected descriptor =/
42 check_clients(&pool);
43 }
44 }
code/conc/echoservers.c
Figure 12.8:Concurrent echo server based on I/O multiplexing. Each server iteration echoes a text line

from each ready descriptor.

12.2. CONCURRENT PROGRAMMING WITH I/O MULTIPLEXING 905

Thei ni t _pool function (Figure 12.9) initializes the client pool. Théi ent f d array represents a set
of connected descriptors, with the integet denoting an available slot. Initially, the set of connected
descriptors is empty (lines 5-7), and the listening degariis the only descriptor in theel ect read set
(lines 10-12).

code/conc/echoservers.c
1 void init_pool (int listenfd, pool =p)
2 {
3 /* Initially, there are no connected descriptors */
4 int i;
5 p->maxi = -1;
6 for (i=0; i< FD_SETSIZE; i ++)
7 p->clientfd[i] = -1;
8
9 [+ Initially, listenfd is only nenber of select read set =/
10 p->maxfd = |istenfd,
11 FD ZERQ(&p- >read_set);
12 FD SET(listenfd, &p->read set);
13 }
code/conc/echoservers.c

Figure 12.9: ni t _pool : Initializes the pool of active clients.

Theadd_cl i ent function (Figure 12.10) adds a new client to the pool of &ctlients. After finding

an empty slot in thel i ent f d array, the server adds the connected descriptor to the angynitializes

a corresponding B® read buffer so that we can call o_r eadl i neb on the descriptor (lines 8-9). We
then add the connected descriptor to $ted ect read set (line 12), and we update some global properties
of the pool. Themaxf d variable (lines 15-16) keeps track of the largest file dptarifor sel ect .

The maxi variable (lines 17-18) keeps track of the largest index thtocl i ent f d array so that the
check_cl i ent s functions does not have to search the entire array.

Thecheck_cl i ent s function echoes a text line from each ready connected gescrilf we are suc-
cessful in reading a text line from the descriptor, then weoethat line back to the client (lines 15-18).
Notice that in line 15 we are maintaining a cumulative courtbtal bytes received from all clients. If we
detect EOF because the client has closed its end of the dmwmetien we close our end of the connection
(line 23) and remove the descriptor from the pool (lines -2

In terms of the finite state model in Figure 12.7, thel ect function detects input events, and the
add_cl i ent function creates a new logical flow (state machine). Theck_cl i ent s function per-
forms state transitions by echoing input lines, and it alsteteés the state machine when the client has
finished sending text lines.

12.2.2 Prosand Consof I/O Multiplexing

The server in Figure 12.8 provides a nice example of the ddgas and disadvantages of event-driven
programming based on I/0O multiplexing. One advantage iséhant-driven designs give programmers

906 CHAPTER 12. CONCURRENT PROGRAMMING

code/conc/echoservers.c
1 void add_client(int connfd, pool =*p)
2 {
3 int i;
4 p- >nr eady- -;
5 for (i =0; i < FD SETSIZE; i++) /=* Find an avail able slot =/
6 if (p->clientfd[i] < 0) {
7 [+ Add connected descriptor to the pool =/
8 p->clientfd[i] = connfd;
9 Rio_readinitb(&p->clientrio[i], connfd);
10
11 [+ Add the descriptor to descriptor set =/
12 FD SET(connfd, &p->read_set);
13
14 /* Update max descriptor and pool highwater mark =/
15 if (connfd > p->maxfd)
16 p- >maxfd = connfd;
17 if (i > p->naxi)
18 p->maxi = i;
19 br eak;
20 }
21 if (i == FD_SETSIZE) /* Couldn’t find an enpty slot =x/
22 app_error("add_client error: Too many clients");
23 }
code/conc/echoservers.c

Figure 12.10add_cl i ent : Adds a new client connection to the pool.

12.2. CONCURRENT PROGRAMMING WITH I/O MULTIPLEXING 907

code/conc/echoservers.c
1 void check_clients(pool =*p)
2 {
3 int i, connfd, n;
4 char buf [MAXLI NE] ;
5 rio t rio;
6
7 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
8 connfd = p->clientfd[i];
9 rio =p->clientrio[i];
10
11 /+* If the descriptor is ready, echo a text line fromit «/
12 if ((connfd > 0) && (FD_I SSET(connfd, &p->ready_set))) {
13 p- >nr eady- -;
14 if ((n = Ro_readlineb(&io, buf, MAXLINE)) !'= 0) {
15 byte cnt += n;
16 printf("Server received % (% total) bytes on fd %\ n",
17 n, byte cnt, connfd);
18 Ri o_witen(connfd, buf, n);
19 }
20
21 [+ EOF detected, renove descriptor from pool =*/
22 el se {
23 G ose(connfd);
24 FD CLR(connfd, &p->read_set);
25 p->clientfd[i] = -1;
26 }
27 }
28 }
29 }
code/conc/echoservers.c

Figure 12.11check_cl i ent s: Services ready client connections.

908 CHAPTER 12. CONCURRENT PROGRAMMING

more control over the behavior of their programs than pretesed designs. For example, we can imagine
writing an event-driven concurrent server that gives prefe service to some clients, which would be
difficult for a concurrent server based on processes.

Another advantage is that an event-driven server basedomtultiplexing runs in the context of a single
process, and thus every logical flow has access to the ewlileess space of the process. This makes it
easy to share data between flows. A related advantage ohguasia single process is that you can debug
your concurrent server as you would any sequential proguaing a familiar debugging tool such asB.
Finally, event-driven designs are often significantly meffecient than process-based designs because they
do not require a process context switch to schedule a new flow.

A significant disadvantage of event-driven designs is apdiomplexity. Our event-driven concurrent echo
server requires three times more code than the procesd-baser. Unfortunately, the complexity increases
as the granularity of the concurrency decreasesgmpularity, we mean the number of instructions that
each logical flow executes per time slice. For instance, ire@ample concurrent server, the granularity of
concurrency is the number of instructions required to reeeldire text line. As long as some logical flow is
busy reading a text line, no other logical flow can make pregyréhis is fine for our example, but it makes
our event-driver server vulnerable to a malicious cliemtt tends only a partial text line and then halts.
Modifying an event-driven server to handle partial texé#ins a nontrivial task, but it is handled cleanly and
automatically by a process-based design. Another signifidsadvantage of event-based designs is that
they cannot fully utilize multi-core processors.

Practice Problem 12.4:

In the server in Figure 12.8, we are careful to reinitializefiool . r eady_set variable immediately
before every call tsel ect . Why?

12.3 Concurrent Programming With Threads

To this point, we have looked at two approaches for creatongcuerrent logical flows. With the first ap-
proach, we use a separate process for each flow. The kerrezlideh each process automatically. Each
process has its own private address space, which make$dutlifor flows to share data. With the sec-
ond approach, we create our own logical flows and use I/O pheting to explicitly schedule the flows.
Because there is only one process, flows share the entiressddpace. This section introduces a third
approach—based on threads—that is a hybrid of these two.

A thread is a logical flow that runs in the context of a process. Thusrfahis book, our programs have
consisted of a single thread per process. But modern sysitsnsallow us to write programs that have
multiple threads running concurrently in a single procélse threads are scheduled automatically by the
kernel. Each thread has its owiread context, including a unique integehread ID (TID), stack, stack
pointer, program counter, general-purpose registerscandition codes. All threads running in a process
share the entire virtual address space of that process.

Logical flows based on threads combine qualities of flowsdbaseprocesses and I/O multiplexing. Like
processes, threads are scheduled automatically by thellard are known to the kernel by an integer ID.
Like flows based on I/O multiplexing, multiple threads rurilie context of a single process, and thus share

12.3. CONCURRENT PROGRAMMING WITH THREADS 909

the entire contents of the process virtual address spadading its code, data, heap, shared libraries, and
open files.

12.3.1 Thread Execution M odel

The execution model for multiple threads is similar in someysvto the execution model for multiple
processes. Consider the example in Figure 12.12. Eachgzrbegins life as a single thread called ttegn
thread. At some point, the main thread createpear thread, and from this point in time the two threads
run concurrently. Eventually, control passes to the peeatihvia a context switch, because the main thread
executes a slow system call suchrasad or sl eep, or because it is interrupted by the system’s interval
timer. The peer thread executes for a while before contredgmback to the main thread, and so on.

Thread 1 Thread 2
(main thread) | (peer thread)

}Thread context switch
Time

}Thread context switch

}Thread context switch

v

Figure 12.12:Concurrent thread execution.

Thread execution differs from processes in some importayswBecause a thread context is much smaller
than a process context, a thread context switch is fastarah@ocess context switch. Another difference
is that threads, unlike processes, are not organized indapagent-child hierarchy. The threads associated
with a process form pool of peers, independent of which threads were created by vatir threads. The
main thread is distinguished from other threads only in #rese that it is always the first thread to run in
the process. The main impact of this notion of a pool of peetkat a thread can kill any of its peers, or
wait for any of its peers to terminate. Further, each peeread and write the same shared data.

12.3.2 Posix Threads

Posix threads (Pthreads) is a standard interface for miatiipgl threads from C programs. It was adopted
in 1995 and is available on most Unix systems. Pthreads dedineut 60 functions that allow programs to
create, kill, and reap threads, to share data safely withthesads, and to notify peers about changes in the
system state.

Figure 12.13 shows a simple Pthreads program. The maindtloreates a peer thread and then waits for it
to terminate. The peer thread printdei | o, wor | d!\ n” and terminates. When the main thread detects
that the peer thread has terminated, it terminates the ggdmecallingexi t .

