
Chapter 10

System-Level I/O

Input/output(I/O) is the process of copying data between main memory and external devices such as disk
drives, terminals, and networks. An input operation copiesdata from an I/O device to main memory, and an
output operation copies data from memory to a device.

All language run-time systems provide higher-level facilities for performing I/O. For example, ANSI C
provides thestandard I/Olibrary, with functions such asprintf andscanf that perform buffered I/O.
The C++ language provides similar functionality with its overloaded<< (“put to”) and >> (“get from”)
operators. On Unix systems, these higher-level I/O functions are implemented using system-levelUnix I/O
functions provided by the kernel. Most of the time, the higher-level I/O functions work quite well and there
is no need to use Unix I/O directly. So why bother learning about Unix I/O?

• Understanding Unix I/O will help you understand other systems concepts.I/O is integral to the
operation of a system, and because of this we often encountercircular dependences between I/O and
other systems ideas. For example, I/O plays a key role in process creation and execution. Conversely,
process creation plays a key role in how files are shared by different processes. Thus, to really
understand I/O you need to understand processes, and vice versa. We have already touched on aspects
of I/O in our discussions of the memory hierarchy, linking and loading, processes, and virtual memory.
Now that you have a better understanding of these ideas, we can close the circle and delve into I/O in
more detail.

• Sometimes you have no choice but to use Unix I/O.There are some important cases where using
higher-level I/O functions is either impossible or inappropriate. For example, the standard I/O library
provides no way to access file metadata such as file size or file creation time. Further, there are
problems with the standard I/O library that make it risky to use for network programming.

This chapter introduces you to the general concepts of Unix I/O and standard I/O, and shows you how to
use them reliably from your C programs. Besides serving as a general introduction, this chapter lays a firm
foundation for our subsequent study of network programmingand concurrency.

825

826 CHAPTER 10. SYSTEM-LEVEL I/O

10.1 Unix I/O

A Unix file is a sequence ofm bytes:

B0, B1, . . . , Bk, . . . , Bm−1.

All I/O devices, such as networks, disks, and terminals, aremodeled as files, and all input and output is
performed by reading and writing the appropriate files. Thiselegant mapping of devices to files allows the
Unix kernel to export a simple, low-level application interface, known asUnix I/O, that enables all input
and output to be performed in a uniform and consistent way:

• Opening files. An application announces its intention to access an I/O device by asking the kernel to
openthe corresponding file. The kernel returns a small nonnegative integer, called adescriptor, that
identifies the file in all subsequent operations on the file. The kernel keeps track of all information
about the open file. The application only keeps track of the descriptor.

Each process created by a Unix shell begins life with three open files: standard input(descriptor
0), standard output(descriptor 1), andstandard error(descriptor 2). The header file<unistd.h>
defines constantsSTDIN FILENO, STDOUTFILENO, andSTDERRFILENO, which can be used
instead of the explicit descriptor values.

• Changing the current file position. The kernel maintains afile positionk, initially 0, for each open
file. The file position is a byte offset from the beginning of a file. An application can set the current
file positionk explicitly by performing aseekoperation.

• Reading and writing files. A readoperation copiesn > 0 bytes from a file to memory, starting at the
current file positionk, and then incrementingk by n. Given a file with a size ofm bytes, performing
a read operation whenk ≥ m triggers a condition known asend-of-file(EOF), which can be detected
by the application. There is no explicit “EOF character” at the end of a file.

Similarly, a write operation copiesn > 0 bytes from memory to a file, starting at the current file
positionk, and then updatingk.

• Closing files. When an application has finished accessing a file, it informsthe kernel by asking it to
closethe file. The kernel responds by freeing the data structures it created when the file was opened
and restoring the descriptor to a pool of available descriptors. When a process terminates for any
reason, the kernel closes all open files and frees their memory resources.

10.2 Opening and Closing Files

A process opens an existing file or creates a new file by callingtheopen function:

10.2. OPENING AND CLOSING FILES 827

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(char * filename, int flags, mode t mode);
Returns: new file descriptor if OK,−1 on error

The open function converts afilename to a file descriptor and returns the descriptor number. The
descriptor returned is always the smallest descriptor thatis not currently open in the process. Theflags
argument indicates how the process intends to access the file:

• O RDONLY: Reading only

• O WRONLY: Writing only

• O RDWR: Reading and writing

For example, here is how to open an existing file for reading:

fd = Open("foo.txt", O_RDONLY, 0);

The flags argument can also be or’d with one or more bit masks that provide additional instructions for
writing:

• O CREAT: If the file doesn’t exist, then create atruncated(empty) version of it.

• O TRUNC: If the file already exists, then truncate it.

• O APPEND: Before each write operation, set the file position tothe end of the file.

For example, here is how you might open an existing file with the intent of appending some data:

fd = Open("foo.txt", O_WRONLY|O_APPEND, 0);

The mode argument specifies the access permission bits of new files. The symbolic names for these bits
are shown in Figure 10.1. As part of its context, each processhas aumask that is set by calling theumask
function. When a process creates a new file by calling theopen function with somemode argument, then
the access permission bits of the file are set tomode & ˜umask . For example, suppose we are given the
following default values formodeandumask:

#define DEF_MODE S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IR OTH|S_IWOTH
#define DEF_UMASK S_IWGRP|S_IWOTH

Then the following code fragment creates a new file in which the owner of the file has read and write
permissions, and all other users have read permissions:

828 CHAPTER 10. SYSTEM-LEVEL I/O

Mask Description

S IRUSR User (owner) can read this file
S IWUSR User (owner) can write this file
S IXUSR User (owner) can execute this file
S IRGRP Members of the owner’s group can read this file
S IWGRP Members of the owner’s group can write this file
S IXGRP Members of the owner’s group can execute this file
S IROTH Others (anyone) can read this file
S IWOTH Others (anyone) can write this file
S IXOTH Others (anyone) can execute this file

Figure 10.1:Access permission bits. Defined in sys/stat.h .

umask(DEF_UMASK);
fd = Open("foo.txt", O_CREAT|O_TRUNC|O_WRONLY, DEF_MODE);

Finally, a process closes an open file by calling theclose function.

#include <unistd.h>

int close(int fd);
Returns: zero if OK,−1 on error

Closing a descriptor that is already closed is an error.

Practice Problem 10.1:

What is the output of the following program?

1 #include "csapp.h"
2

3 int main()
4 {
5 int fd1, fd2;
6

7 fd1 = Open("foo.txt", O_RDONLY, 0);
8 Close(fd1);
9 fd2 = Open("baz.txt", O_RDONLY, 0);

10 printf("fd2 = %d\n", fd2);
11 exit(0);
12 }

10.3 Reading and Writing Files

Applications perform input and output by calling theread andwrite functions, respectively.

10.3. READING AND WRITING FILES 829

#include <unistd.h>

ssize t read(int fd, void * buf, size t n);
Returns: number of bytes read if OK, 0 on EOF,−1 on error

ssize t write(int fd, const void * buf, size t n);
Returns: number of bytes written if OK,−1 on error

Theread function copies at mostn bytes from the current file position of descriptorfd to memory location
buf . A return value of−1 indicates an error, and a return value of0 indicates EOF. Otherwise, the return
value indicates the number of bytes that were actually transferred.

The write function copies at mostn bytes from memory locationbuf to the current file position of
descriptorfd . Figure 10.2 shows a program that usesread andwrite calls to copy the standard input to
the standard output, 1 byte at a time.

code/io/cpstdin.c

1 #include "csapp.h"
2

3 int main(void)
4 {
5 char c;
6

7 while(Read(STDIN_FILENO, &c, 1) != 0)
8 Write(STDOUT_FILENO, &c, 1);
9 exit(0);

10 }

code/io/cpstdin.c

Figure 10.2:Copies standard input to standard output one byte at a time.

Applications can explicitly modify the current file position by calling thelseek function, which is beyond
our scope.

Aside: What’s the difference between ssize t and size t?
You might have noticed that theread function has asize t input argument and anssize t return value. So
what’s the difference between these two types? Asize t is defined as anunsigned int , and anssize t
(signed size) is defined as anint . The read function returns a signed size rather than an unsigned size because
it must return a−1 on error. Interestingly, the possibility of returning a single−1 reduces the maximum size of a
read by a factor of two, from 4 GB down to 2 GB.End Aside.

In some situations,read andwrite transfer fewer bytes than the application requests. Suchshort counts
do not indicate an error. They occur for a number of reasons:

• Encountering EOF on reads.Suppose that we are ready to read from a file that contains only20 more
bytes from the current file position and that we are reading the file in 50-byte chunks. Then the next
read will return a short count of 20, and theread after that will signal EOF by returning a short
count of zero.

830 CHAPTER 10. SYSTEM-LEVEL I/O

• Reading text lines from a terminal.If the open file is associated with a terminal (i.e., a keyboard and
display), then eachread function will transfer one text line at a time, returning a short count equal
to the size of the text line.

• Reading and writing network sockets.If the open file corresponds to a network socket (Section 11.3.3),
then internal buffering constraints and long network delays can causeread andwrite to return short
counts. Short counts can also occur when you callread andwrite on a Unixpipe, an interprocess
communication mechanism that is beyond our scope.

In practice, you will never encounter short counts when you read from disk files except on EOF, and you will
never encounter short counts when you write to disk files. However, if you want to build robust (reliable)
network applications such as Web servers, then you must dealwith short counts by repeatedly callingread
andwrite until all requested bytes have been transferred.

10.4 Robust Reading and Writing with the RIO Package

In this section, we will develop an I/O package, called the RIO (Robust I/O) package, that handles these short
counts for you automatically. The RIO package provides convenient, robust, and efficient I/O in applications
such as network programs that are subject to short counts. RIO provides two different kinds of functions:

• Unbuffered input and output functions.These functions transfer data directly between memory and
a file, with no application-level buffering. They are especially useful for reading and writing binary
data to and from networks.

• Buffered input functions.These functions allow you to efficiently read text lines and binary data
from a file whose contents are cached in an application-levelbuffer, similar to the one provided for
standard I/O functions such asprintf . Unlike the buffered I/O routines presented in [109], the
buffered RIO input functions are thread-safe (Section 12.7.1) and can beinterleaved arbitrarily on the
same descriptor. For example, you can read some text lines from a descriptor, then some binary data,
and then some more text lines.

We are presenting the RIO routines for two reasons. First, we will be using them in the network applications
we develop in the next two chapters. Second, by studying the code for these routines, you will gain a deeper
understanding of Unix I/O in general.

10.4.1 RIO Unbuffered Input and Output Functions

Applications can transfer data directly between memory anda file by calling therio readn andrio writen
functions.

10.4. ROBUST READING AND WRITING WITH THERIO PACKAGE 831

#include "csapp.h"

ssize t rio readn(int fd, void * usrbuf, size t n);
ssize t rio writen(int fd, void * usrbuf, size t n);

Returns: number of bytes transferred if OK, 0 on EOF (rio readn only),−1 on error

Therio readn function transfers up ton bytes from the current file position of descriptorfd to memory
locationusrbuf . Similarly, therio writen function transfersn bytes from locationusrbuf to descrip-
tor fd . Therio readn function can only return a short count if it encounters EOF. The rio writen
function never returns a short count. Calls torio readn andrio writen can be interleaved arbitrarily
on the same descriptor.

Figure 10.3 shows the code forrio readn andrio writen . Notice that each function manually restarts
the read or write function if it is interrupted by the return from an application signal handler. To be as
portable as possible, we allow for interrupted system callsand restart them when necessary. (See Section
8.5.4 for a discussion on interrupted system calls).

10.4.2 RIO Buffered Input Functions

A text line is a sequence of ASCII characters terminated by a newline character. On Unix systems, the
newline character (‘\n ’) is the same as the ASCII line feed character (LF) and has a numeric value of
0x0a . Suppose we wanted to write a program that counts the number of text lines in a text file. How
might we do this? One approach is to use theread function to transfer 1 byte at a time from the file to the
user’s memory, checking each byte for the newline character. The disadvantage of this approach is that it is
inefficient, requiring a trap to the kernel to read each byte in the file.

A better approach is to call a wrapper function (rio readlineb) that copies the text line from an internal
read buffer, automatically making aread call to refill the buffer whenever it becomes empty. For files that
contain both text lines and binary data (such as the HTTP responses described in Section 11.5.3) we also
provide a buffered version ofrio readn , calledrio readnb , that transfers raw bytes from the same
read buffer asrio readlineb .

#include "csapp.h"

void rio readinitb(rio t * rp, int fd);
Returns: nothing

ssize t rio readlineb(rio t * rp, void * usrbuf, size t maxlen);
ssize t rio readnb(rio t * rp, void * usrbuf, size t n);

Return: number of bytes read if OK, 0 on EOF,−1 on error

The rio readinitb function is called once per open descriptor. It associates the descriptorfd with a
read buffer of typerio t at addressrp .

The rio readlineb function reads the next text line from filerp (including the terminating newline
character), copies it to memory locationusrbuf , and terminates the text line with the null (zero) character.

832 CHAPTER 10. SYSTEM-LEVEL I/O

code/src/csapp.c

1 ssize_t rio_readn(int fd, void * usrbuf, size_t n)
2 {
3 size_t nleft = n;
4 ssize_t nread;
5 char * bufp = usrbuf;
6

7 while (nleft > 0) {
8 if ((nread = read(fd, bufp, nleft)) < 0) {
9 if (errno == EINTR) / * interrupted by sig handler return * /

10 nread = 0; / * and call read() again * /
11 else
12 return -1; / * errno set by read() * /
13 }
14 else if (nread == 0)
15 break; / * EOF * /
16 nleft -= nread;
17 bufp += nread;
18 }
19 return (n - nleft); / * return >= 0 * /
20 }

code/src/csapp.c

code/src/csapp.c

1 ssize_t rio_writen(int fd, void * usrbuf, size_t n)
2 {
3 size_t nleft = n;
4 ssize_t nwritten;
5 char * bufp = usrbuf;
6

7 while (nleft > 0) {
8 if ((nwritten = write(fd, bufp, nleft)) <= 0) {
9 if (errno == EINTR) / * interrupted by sig handler return * /

10 nwritten = 0; / * and call write() again * /
11 else
12 return -1; / * errno set by write() * /
13 }
14 nleft -= nwritten;
15 bufp += nwritten;
16 }
17 return n;
18 }

code/src/csapp.c

Figure 10.3:The rio readn and rio writen functions.

10.4. ROBUST READING AND WRITING WITH THERIO PACKAGE 833

The rio readlineb function reads at mostmaxlen-1 bytes, leaving room for the terminating null
character. Text lines that exceedmaxlen-1 bytes are truncated and terminated with a null character.

The rio readnb function reads up ton bytes from filerp to memory locationusrbuf . Calls to
rio readlineb andrio readnb can be interleaved arbitrarily on the same descriptor. However, calls
to these buffered functions should not be interleaved with calls to the unbufferedrio readn function.

You will encounter numerous examples of the RIO functions in the remainder of this text. Figure 10.4 shows
how to use the RIO functions to copy a text file from standard input to standard output, one line at a time.

code/io/cpfile.c

1 #include "csapp.h"
2

3 int main(int argc, char ** argv)
4 {
5 int n;
6 rio_t rio;
7 char buf[MAXLINE];
8

9 Rio_readinitb(&rio, STDIN_FILENO);
10 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
11 Rio_writen(STDOUT_FILENO, buf, n);
12 }

code/io/cpfile.c

Figure 10.4:Copying a text file from standard input to standard output.

Figure 10.5 shows the format of a read buffer, along with the code for therio readinitb function that
initializes it. Therio readinitb function sets up an empty read buffer and associates an open file
descriptor with that buffer.

The heart of the RIO read routines is therio read function shown in Figure 10.6. Therio read function
is a buffered version of the Unixread function. Whenrio read is called with a request to readn bytes,
there arerp->rio cnt unread bytes in the read buffer. If the buffer is empty, then it is replenished with
a call toread . Receiving a short count from this invocation ofread is not an error, and simply has the
effect of partially filling the read buffer. Once the buffer is nonempty,rio read copies the minimum ofn
andrp->rio cnt bytes from the read buffer to the user buffer and returns the number of bytes copied.

To an application program, therio read function has the same semantics as the Unixread function.
On error, it returns−1 and setserrno appropriately. On EOF, it returns 0. It returns a short countif the
number of requested bytes exceeds the number of unread bytesin the read buffer. The similarity of the two
functions makes it easy to build different kinds of bufferedread functions by substitutingrio read for
read . For example, therio readnb function in Figure 10.7 has the same structure asrio readn , with
rio read substituted forread . Similarly, therio readlineb routine in Figure 10.7 callsrio read
at mostmaxlen-1 times. Each call returns 1 byte from the read buffer, which isthen checked for being
the terminating newline.

Aside: Origins of the RIO package.

834 CHAPTER 10. SYSTEM-LEVEL I/O

code/include/csapp.h

1 #define RIO_BUFSIZE 8192
2 typedef struct {
3 int rio_fd; / * descriptor for this internal buf * /
4 int rio_cnt; / * unread bytes in internal buf * /
5 char * rio_bufptr; / * next unread byte in internal buf * /
6 char rio_buf[RIO_BUFSIZE]; / * internal buffer * /
7 } rio_t;

code/include/csapp.h

code/src/csapp.c

1 void rio_readinitb(rio_t * rp, int fd)
2 {
3 rp->rio_fd = fd;
4 rp->rio_cnt = 0;
5 rp->rio_bufptr = rp->rio_buf;
6 }

code/src/csapp.c

Figure 10.5:A read buffer of type rio t and the rio readinitb function that initializes it.

The RIO functions are inspired by thereadline , readn , andwriten functions described by W. Richard Stevens
in his classic network programming text [109]. Therio readn andrio writen functions are identical to the
Stevensreadn and writen functions. However, the Stevensreadline function has some limitations that
are corrected in RIO. First, becausereadline is buffered andreadn is not, these two functions cannot be
used together on the same descriptor. Second, because it uses astatic buffer, the Stevensreadline function
is not thread-safe, which required Stevens to introduce a different thread-safe version calledreadline r . We
have corrected both of these flaws with therio readlineb and rio readnb functions, which are mutually
compatible and thread-safe.End Aside.

10.5 Reading File Metadata

An application can retrieve information about a file (sometimes called the file’smetadata) by calling the
stat andfstat functions.

#include <unistd.h>
#include <sys/stat.h>

int stat(const char * filename, struct stat * buf);
int fstat(int fd, struct stat * buf);

Returns: 0 if OK,−1 on error

The stat function takes as input a file name and fills in the members of astat structure shown in

10.5. READING FILE METADATA 835

code/src/csapp.c

1 static ssize_t rio_read(rio_t * rp, char * usrbuf, size_t n)
2 {
3 int cnt;
4

5 while (rp->rio_cnt <= 0) { / * refill if buf is empty * /
6 rp->rio_cnt = read(rp->rio_fd, rp->rio_buf,
7 sizeof(rp->rio_buf));
8 if (rp->rio_cnt < 0) {
9 if (errno != EINTR) / * interrupted by sig handler return * /

10 return -1;
11 }
12 else if (rp->rio_cnt == 0) / * EOF * /
13 return 0;
14 else
15 rp->rio_bufptr = rp->rio_buf; / * reset buffer ptr * /
16 }
17

18 / * Copy min(n, rp->rio_cnt) bytes from internal buf to user buf * /
19 cnt = n;
20 if (rp->rio_cnt < n)
21 cnt = rp->rio_cnt;
22 memcpy(usrbuf, rp->rio_bufptr, cnt);
23 rp->rio_bufptr += cnt;
24 rp->rio_cnt -= cnt;
25 return cnt;
26 }

code/src/csapp.c

Figure 10.6:The internal rio read function.

836 CHAPTER 10. SYSTEM-LEVEL I/O

code/src/csapp.c

1 ssize_t rio_readlineb(rio_t * rp, void * usrbuf, size_t maxlen)
2 {
3 int n, rc;
4 char c, * bufp = usrbuf;
5

6 for (n = 1; n < maxlen; n++) {
7 if ((rc = rio_read(rp, &c, 1)) == 1) {
8 * bufp++ = c;
9 if (c == ’\n’)

10 break;
11 } else if (rc == 0) {
12 if (n == 1)
13 return 0; / * EOF, no data read * /
14 else
15 break; / * EOF, some data was read * /
16 } else
17 return -1; / * error * /
18 }
19 * bufp = 0;
20 return n;
21 }

code/src/csapp.c

code/src/csapp.c

1 ssize_t rio_readnb(rio_t * rp, void * usrbuf, size_t n)
2 {
3 size_t nleft = n;
4 ssize_t nread;
5 char * bufp = usrbuf;
6

7 while (nleft > 0) {
8 if ((nread = rio_read(rp, bufp, nleft)) < 0) {
9 if (errno == EINTR) / * interrupted by sig handler return * /

10 nread = 0; / * call read() again * /
11 else
12 return -1; / * errno set by read() * /
13 }
14 else if (nread == 0)
15 break; / * EOF * /
16 nleft -= nread;
17 bufp += nread;
18 }
19 return (n - nleft); / * return >= 0 * /
20 }

code/src/csapp.c

Figure 10.7:The rio readlineb and rio readnb functions.

10.5. READING FILE METADATA 837

Figure 10.8. Thefstat function is similar, but takes a file descriptor instead of a file name. We will need
thest modeandst size members of thestat structure when we discuss Web servers in Section 11.5.
The other members are beyond our scope.

statbuf.h (included by sys/stat.h)

/ * Metadata returned by the stat and fstat functions * /
struct stat {

dev_t st_dev; / * device * /
ino_t st_ino; / * inode * /
mode_t st_mode; / * protection and file type * /
nlink_t st_nlink; / * number of hard links * /
uid_t st_uid; / * user ID of owner * /
gid_t st_gid; / * group ID of owner * /
dev_t st_rdev; / * device type (if inode device) * /
off_t st_size; / * total size, in bytes * /
unsigned long st_blksize; / * blocksize for filesystem I/O * /
unsigned long st_blocks; / * number of blocks allocated * /
time_t st_atime; / * time of last access * /
time_t st_mtime; / * time of last modification * /
time_t st_ctime; / * time of last change * /

};

statbuf.h (included by sys/stat.h)

Figure 10.8:The stat structure.

Thest size member contains the file size in bytes. Thest modemember encodes both the file permis-
sion bits (Figure 10.1) and thefile type. Unix recognizes a number of different file types. Aregular file
contains some sort of binary or text data. To the kernel thereis no difference between text files and binary
files. A directory filecontains information about other files. Asocketis a file that is used to communicate
with another process across a network (Section 11.4).

Unix provides macro predicates for determining the file typefrom thest mode member. Figure 10.9 lists
a subset of these macros.

Macro Description

S ISREG() Is this a regular file?
S ISDIR() Is this a directory file?
S ISSOCK() Is this a network socket?

Figure 10.9:Macros for determining file type from the st mode bits. Defined in sys/stat.h

Figure 10.10 shows how we might use these macros and thestat function to read and interpret a file’s
st modebits.

838 CHAPTER 10. SYSTEM-LEVEL I/O

code/io/statcheck.c

1 #include "csapp.h"
2

3 int main (int argc, char ** argv)
4 {
5 struct stat stat;
6 char * type, * readok;
7

8 Stat(argv[1], &stat);
9 if (S_ISREG(stat.st_mode)) / * Determine file type * /

10 type = "regular";
11 else if (S_ISDIR(stat.st_mode))
12 type = "directory";
13 else
14 type = "other";
15 if ((stat.st_mode & S_IRUSR)) / * Check read access * /
16 readok = "yes";
17 else
18 readok = "no";
19

20 printf("type: %s, read: %s\n", type, readok);
21 exit(0);
22 }

code/io/statcheck.c

Figure 10.10:Querying and manipulating a file’s st mode bits.

10.6. SHARING FILES 839

10.6 Sharing Files

Unix files can be shared in a number of different ways. Unless you have a clear picture of how the kernel
represents open files, the idea of file sharing can be quite confusing. The kernel represents open files using
three related data structures:

• Descriptor table.Each process has its own separatedescriptor tablewhose entries are indexed by the
process’s open file descriptors. Each open descriptor entrypoints to an entry in thefile table.

• File table. The set of open files is represented by a file table that is shared by all processes. Each file
table entry consists of (for our purposes) the current file position, areference countof the number of
descriptor entries that currently point to it, and a pointerto an entry in thev-node table. Closing a
descriptor decrements the reference count in the associated file table entry. The kernel will not delete
the file table entry until its reference count is zero.

• v-node table.Like the file table, the v-node table is shared by all processes. Each entry contains most
of the information in thestat structure, including thest modeandst size members.

Figure 10.11 shows an example where descriptors 1 and 4 reference two different files through distinct
open file table entries. This is the typical situation, wherefiles are not shared, and where each descriptor
corresponds to a distinct file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table

per process)

Open file table
(shared by

all processes)

v-node table
(shared by

all processes)

File pos
refc nt =1

...

File pos
refc nt =1

...

stde r r
stdo ut

stdi n File access

...

File size

File type

File access

...

File size

File type

File A

File B

Figure 10.11:Typical kernel data structures for open files. In this example, two descriptors reference
distinct files. There is no sharing.

Multiple descriptors can also reference the same file through different file table entries, as shown in Fig-
ure 10.12. This might happen, for example, if you were to callthe open function twice with the same
filename . The key idea is that each descriptor has its own distinct fileposition, so different reads on
different descriptors can fetch data from different locations in the file.

We can also understand how parent and child processes share files. Suppose that before a call tofork , the
parent process has the open files shown in Figure 10.11. Then Figure 10.13 shows the situation after the
call to fork . The child gets its own duplicate copy of the parent’s descriptor table. Parent and child share

