Chapter 1

A Tour of Computer Systems

A computer systernonsists of hardware and systems software that work togéthin application pro-
grams. Specific implementations of systems change over twtethe underlying concepts do not. All
computer systems have similar hardware and software coemg®rthat perform similar functions. This
book is written for programmers who want to get better atrtbeift by understanding how these compo-
nents work and how they affect the correctness and perfarenaftheir programs.

You are poised for an exciting journey. If you dedicate yelired learning the concepts in this book, then
you will be on your way to becoming a rare “power programmenlightened by an understanding of the
underlying computer system and its impact on your appbecapirograms.

You are going to learn practical skills such as how to avaidngje numerical errors caused by the way that
computers represent numbers. You will learn how to optingimer C code by using clever tricks that ex-
ploit the designs of modern processors and memory systemswitl learn how the compiler implements
procedure calls and how to use this knowledge to avoid tharsgtoles from buffer overflow vulnerabil-
ities that plague network and Internet software. You w#iriehow to recognize and avoid the nasty errors
during linking that confound the average programmer. Yolli l@arn how to write your own Unix shell,
your own dynamic storage allocation package, and even yonieb server. You will learn the promises
and pitfalls of concurrency, a topic of increasing impoceias multiple processor cores are integrated onto
single chips.

In their classic text on the C programming language [58],nigran and Ritchie introduce readers to C
using thehel | o program shown in Figure 1.1. Althoudtel | o is a very simple program, every major
part of the system must work in concert in order for it to ruicdopletion. In a sense, the goal of this book
is to help you understand what happens and why, when yoteuh o on your system.

We begin our study of systems by tracing the lifetime of tked | o program, from the time it is created
by a programmer, until it runs on a system, prints its simpéssage, and terminates. As we follow the
lifetime of the program, we will briefly introduce the key a@apts, terminology, and components that come
into play. Later chapters will expand on these ideas.
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code/intro/hello.c

1 #include <stdio. h>
2

3 int main()

4 {

5 printf("hello, world\n");
6}

code/intro/hello.c

Figure 1.1:The hel | o program.

1.1 Information IsBits+ Context

Our hel | o program begins life as source progran{or source fil¢ that the programmer creates with an
editor and saves in a text file callé@! | 0. c. The source program is a sequence of bits, each with a value
of 0 or 1, organized in 8-bit chunks callbgtes Each byte represents some text character in the program.

Most modern systems represent text characters using thél A@dard that represents each character with
a unique byte-sized integer value. For example, Figuretio®s the ASCII representation of thel | 0. ¢
program.

# i n c I u d e <sp> < S t d [ 0 .
35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \'n \'n [ n t <sp> m a [ n ( ) \'n {
104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123

\n <sp> <sp> <sp> <sp> p r i n t f ( " h e |
10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108

I 0 , <sp> w 0 r I d \ n " ) ; \n }
108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125

Figure 1.2:The ASCII text representation of hel | 0. c.

The hel | 0. ¢ program is stored in a file as a sequence of bytes. Each bytarhageger value that
corresponds to some character. For example, the first bgtéhkainteger value 35, which corresponds to
the character#’. The second byte has the integer value 105, which correfptmthe character *, and so
on. Notice that each text line is terminated by the invisitevlinecharacter\ n’, which is represented by
the integer value 10. Files suchlasl | 0. ¢ that consist exclusively of ASCII characters are knowiteas
files All other files are known abkinary files

The representation dfel | o. c illustrates a fundamental idea: All information in a systemincluding
disk files, programs stored in memory, user data stored inangrand data transferred across a network
— is represented as a bunch of bits. The only thing that djsisihes different data objects is the context



1.2. PROGRAMS ARE TRANSLATED BY OTHER PROGRAMS INTO DIFFERE FORMS 3

in which we view them. For example, in different context® #ame sequence of bytes might represent an
integer, floating-point number, character string, or maehinstruction.

As programmers, we need to understand machine represastati numbers because they are not the same
as integers and real numbers. They are finite approximattwatscan behave in unexpected ways. This
fundamental idea is explored in detail in Chapter 2.

Aside: Originsof the C programming language.

C was developed from 1969 to 1973 by Dennis Ritchie of Belldratories. The American National Standards
Institute (ANSI) ratified the ANSI C standard in 1989, andsteiandardization later became the responsibility of
the International Standards Organization (ISO). The statgldefine the C language and a set of library functions
known as theC standard library Kernighan and Ritchie describe ANSI C in their classic haskich is known
affectionately as “K&R” [58]. In Ritchie’s words [88], C igjuirky, flawed, and an enormous success.” So why the
success?

e C was closely tied with the Unix operating systef.was developed from the beginning as the system
programming language for Unix. Most of the Unix kernel, aficbhits supporting tools and libraries, were
written in C. As Unix became popular in universities in the2l&970s and early 1980s, many people were
exposed to C and found that they liked it. Since Unix was emithlmost entirely in C, it could be easily
ported to new machines, which created an even wider audfenbeth C and Unix.

e Cis a small, simple languagélhe design was controlled by a single person, rather thammmitbee, and
the result was a clean, consistent design with little baggabe K&R book describes the complete language
and standard library, with numerous examples and exeréisesly 261 pages. The simplicity of C made it
relatively easy to learn and to port to different computers.

e C was designed for a practical purpos€ was designed to implement the Unix operating system. Later
other people found that they could write the programs theytedy without the language getting in the way.

C is the language of choice for system-level programming, there is a huge installed base of application-level
programs as well. However, it is not perfect for all prograensnand all situations. C pointers are a common source
of confusion and programming errors. C also lacks expligig®rt for useful abstractions such as classes, objects,
and exceptions. Newer languages such as C++ and Java attdresdssues for application-level prograrisd
Aside.

1.2 ProgramsAre Translated by Other Programsinto Different Forms

Thehel | o program begins life as a high-level C program because it eardd and understood by human
beings in that form. However, in order to rhel | 0. ¢ on the system, the individual C statements must be
translated by other programs into a sequence of low-teaehine-languagastructions. These instructions
are then packaged in a form called executable object programnd stored as a binary disk file. Object
programs are also referred to@secutable object files

On a Unix system, the translation from source file to objeetigilperformed by aompiler driver
uni x> gcc -o hello hello.c

Here, theccc compiler driver reads the source filel | 0. ¢ and translates it into an executable object file
hel | 0. The translation is performed in the sequence of four phsisean in Figure 1.3. The programs
that perform the four phasepréprocessarcompiler, assemblerandlinker) are known collectively as the
compilation system
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printf.o
hello.c rolz:ees-sor hello.i | Compiler | hello.s |Assembler| hello.o Linker hello
—P toon) (cel) (as) 18
Source Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Figure 1.3:The compilation system.

Preprocessing phasé@he preprocessoc p) modifies the original C program according to directives
that begin with thet character. For example, thé ncl ude <st di 0. h>command in line 1 of
hel | o. c tells the preprocessor to read the contents of the systedehékest di 0. h and insert it
directly into the program text. The result is another C paogyrtypically with the. i suffix.

Compilation phaseThe compiler ¢c 1) translates the text fileel | o. i into the text filehel | 0. s,
which contains arassembly-language prograntach statement in an assembly-language program
exactly describes one low-level machine-language instnudn a standard text form. Assembly
language is useful because it provides a common output éayegior different compilers for different
high-level languages. For example, C compilers and Fodoanpilers both generate output files in
the same assembly language.

Assembly phasé\ext, the assemblen§) translateshel | 0. s into machine-language instructions,
packages them in a form known asedocatable object programand stores the result in the object
file hel | 0. 0. Thehel | 0. o file is a binary file whose bytes encode machine languageuigins

rather than characters. If we were to vieel | 0. o with a text editor, it would appear to be gibberish.

Linking phaseNotice that outhel | o program calls the@r i nt f function, which is part of thetan-
dard C library provided by every C compiler. Ther i nt f function resides in a separate precom-
piled object file calledori nt f . 0, which must somehow be merged with dwel | 0. o program.
The linker ( d) handles this merging. The result is thel | o file, which is anexecutable object file
(or simplyexecutablethat is ready to be loaded into memory and executed by thierays

Aside: The GNU project.

Gccis one of many useful tools developed by the GNU (short for GNNbt Unix) project. The GNU project is a
tax-exempt charity started by Richard Stallman in 1984hwie ambitious goal of developing a complete Unix-like
system whose source code is unencumbered by restrictiohswrit can be modified or distributed. The GNU
project has developed an environment with all the major aomepts of a Unix operating system, except for the
kernel, which was developed separately by the Linux projébe GNU environment includes tlBvAcs editor,
Gcc compiler, GDB debugger, assembler, linker, utilities for manipulatingabies, and other components. The
Gcc compiler has grown to support many different languaged) thié ability to generate code for many different
machines. Supported languages include C, C++, Fortraa, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it enofiverlooked. The modern open-source movement
(commonly associated with Linux) owes its intellectuabons to the GNU project’s notion dfee softwarg“free”

as in “free speech” not “free beer”). Further, Linux owes mo€ its popularity to the GNU tools, which provide
the environment for the Linux kerndtnd Aside.
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1.3 It Paysto Understand How Compilation Systems Work

For simple programs such &®l | 0. ¢, we can rely on the compilation system to produce correct and
efficient machine code. However, there are some importasores why programmers need to understand
how compilation systems work:

e Optimizing program performanceModern compilers are sophisticated tools that usually pced
good code. As programmers, we do not need to know the inneédmgs of the compiler in order to
write efficient code. However, in order to make good codingjslens in our C programs, we do need
a basic understanding of machine-level code and how the itemtanslates different C statements
into machine code. For example, isai t ch statement always more efficient than a sequence of
i f-el se statements? How much overhead is incurred by a functiof? dallawhi | e loop more
efficient than & or loop? Are pointer references more efficient than array ied@xWhy does our
loop run so much faster if we sum into a local variable instedn argument that is passed by
reference? How can a function run faster when we simply aege the parentheses in an arithmetic
expression?

In Chapter 3, we will introduce two related machine langsad@&32, the 32-bit code that has be-
come ubiquitous on machines running Linux, Windows, andamecently the Macintosh operating
systems, and x86-64, a 64-bit extension found in more rewdcrioprocessors. We describe how
compilers translate different C constructs into these uanggs. In Chapter 5, you will learn how to
tune the performance of your C programs by making simplestcamations to the C code that help
the compiler do its job better. In Chapter 6 you will learn atine hierarchical nature of the memory
system, how C compilers store data arrays in memory, and lmaw @ programs can exploit this

knowledge to run more efficiently.

e Understanding link-time errorsin our experience, some of the most perplexing programming e
rors are related to the operation of the linker, especiathgnvyou are trying to build large software
systems. For example, what does it mean when the linker teefiat it cannot resolve a reference?
What is the difference between a static variable and a gledoghble? What happens if you define
two global variables in different C files with the same nameRRat\is the difference between a static
library and a dynamic library? Why does it matter what orderlist libraries on the command line?
And scariest of all, why do some linker-related errors ngiegp until run time? You will learn the
answers to these kinds of questions in Chapter 7

e Avoiding security holeskFor many yearshuffer overflow vulnerabilitiefiave accounted for the ma-
jority of security holes in network and Internet servers.e3d vulnerabilities exist because too few
programmers understand the need to carefully restrictubatgy and forms of data they accept from
untrusted sources. A first step in learning secure prograigiisito understand the consequences of
the way data and control information are stored on the progtack. We cover the stack discipline
and buffer overflow vulnerabilities in Chapter 3 as part of study of assembly language. We will
also learn about methods that can be used by the programomapiler, and operating system to
reduce the threat of attack.
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1.4 ProcessorsRead and Interpret Instructions Stored in Memory

At this point, ourhel | 0. ¢ source program has been translated by the compilationrsyiste an exe-

cutable object file calletiel | o that is stored on disk. To run the executable file on a Unixesgsive type
uni x> ./hello

its name to an application program known ahelt hel | o, worl d
uni x>

The shell is a command-line interpreter that prints a promvptts for you to type a command line, and then

performs the command. If the first word of the command linesduoa correspond to a built-in shell com-
mand, then the shell assumes that it is the name of an exéztitelihat it should load and run. So in this
case, the shell loads and runs thel | o program and then waits for it to terminate. Tiel | o program
prints its message to the screen and then terminates. Théhareprints a prompt and waits for the next
input command line.

141 Hardware Organization of a System

To understand what happens to dwal | o program when we run it, we need to understand the hardware
organization of a typical system, which is shown in Figuré. 1This particular picture is modeled after
the family of Intel Pentium systems, but all systems haveralai look and feel. Don’t worry about the
complexity of this figure just now. We will get to its varioustdils in stages throughout the course of the
book.

CPU

Register file

a ALU

ir . !
Bus interface < 7 Vo > Main
ust ] bridge memory

/0 bus Expansion slots for
other devices such

System bus Memory bus

<

USB Graphics Disk as network adapters
controller adapter controller
Mouse Keyboard Displa >
. y Py sk hel | o executable
Dis stored on disk
Figure 1.4: Hardware organization of a typical system. CPU: Central Processing Unit, ALU: Arith-

metic/Logic Unit, PC: Program counter, USB: Universal Serial Bus.
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Buses

Running throughout the system is a collection of electramaiduits callecdbusesthat carry bytes of infor-
mation back and forth between the components. Buses amatlypilesigned to transfer fixed-sized chunks
of bytes known asvords The number of bytes in a word (theord siz¢ is a fundamental system parameter
that varies across systems. Most machines today have vwaas af either 4 bytes (32 bits) or 8 bytes (64
bits). For the sake of our discussion here, we will assumerd wiae of 4 bytes, and we will assume that
buses transfer only one word at a time.

/O Devices

Input/output (I/0O) devices are the system’s connectioréoexternal world. Our example system has four
I/O devices: a keyboard and mouse for user input, a displayder output, and a disk drive (or simply disk)
for long-term storage of data and programs. Initially, tkeceitablehel | o program resides on the disk.

Each 1/0 device is connected to the 1/O bus by eithewatroller or anadapter The distinction between the
two is mainly one of packaging. Controllers are chip seth@device itself or on the system’s main printed
circuit board (often called thmotherboardl. An adapter is a card that plugs into a slot on the mothethoar
Regardless, the purpose of each is to transfer informatimk bnd forth between the 1/0O bus and an 1/0O
device.

Chapter 6 has more to say about how 1/O devices such as digks WwoChapter 10, you will learn how
to use the Unix I/O interface to access devices from youriegigdn programs. We focus on the especially
interesting class of devices known as networks, but thentqales generalize to other kinds of devices as
well.

Main Memory

The main memornyis a temporary storage device that holds both a program anddta it manipulates
while the processor is executing the program. Physicallinrmemory consists of a collection dfnamic
random access memory (DRAIlDIps. Logically, memory is organized as a linear array debyeach
with its own unique address (array index) starting at zenagydneral, each of the machine instructions that
constitute a program can consist of a variable number ofsbylbe sizes of data items that correspond to
C program variables vary according to type. For example,moiA&82 machine running Linux, data of type
short requires two bytes, typest , f | oat , andl ong four bytes, and typdoubl e eight bytes.

Chapter 6 has more to say about how memory technologies subRRAM chips work, and how they are
combined to form main memory.

Processor

The central processing unfCPU), or simplyprocessor is the engine that interprets (executesinstruc-
tions stored in main memory. At its core is a word-sized gjerdevice (oregistel) called theprogram
counter (PC). At any point in time, the PC points at (contains the adglrof) some machine-language



8 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

instruction in main memory.

From the time that power is applied to the system, until theetithat the power is shut off, a processor
repeatedly executes the instruction pointed at by the progrounter and updates the program counter to
point to the next instruction. A processmppears taperate according to a very simple instruction execution
model, defined by itinstruction set architectureln this model, instructions execute in strict sequencd, an
executing a single instruction involves performing a seoksteps. The processor reads the instruction from
memory pointed at by the program counter (PC), interpret$its in the instruction, performs some simple
operation dictated by the instruction, and then update® @& point to the next instruction, which may or
may not be contiguous in memory to the instruction that wasguecuted.

There are only a few of these simple operations, and theyue@oound main memory, thregister file and
the arithmetic/logic unit(ALU). The register file is a small storage device that cdesié a collection of
word-sized registers, each with its own unique name. The Adtdputes new data and address values. Here
are some examples of the simple operations that the CPU gt out at the request of an instruction:

e Load: Copy a byte or a word from main memory into a register, ovdimgithe previous contents of
the register.

e Store: Copy a byte or a word from a register to a location in main megmarerwriting the previous
contents of that location.

e Operate:Copy the contents of two registers to the ALU, perform arhamitic operation on the two
words, and store the result in a register, overwriting tlevipus contents of that register.

e Jump: Extract a word from the instruction itself and copy that worth the program counter (PC),
overwriting the previous value of the PC.

We say that a processor appears to be a simple implementdtitsninstruction set architecture, but in fact
modern processors use far more complex mechanisms to spga@gram execution. Thus, we can dis-
tinguish the processor’s instruction set architecturecdiing the effect of each machine-code instruction,
from its microarchitecture describing how the processor is actually implemented. Wine study machine
code in Chapter 3, we will consider the abstraction provibgedhe machine’s instruction set architecture.
Chapter 4 has more to say about how processors are actualgnmanted.

1.4.2 Runningthehel | o Program

Given this simple view of a system’s hardware organizatiath @peration, we can begin to understand what
happens when we run our example program. We must omit a lottaflsl here that will be filled in later,
but for now we will be content with the big picture.

Initially, the shell program is executing its instructiomgaiting for us to type a command. As we type the
characters */ hel | 0" at the keyboard, the shell program reads each one into steegand then stores it
in memory, as shown in Figure 1.5.

IPCis also a commonly used acronym for “personal computestvéver, the distinction between the two should be clear from
the context.
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CPU

Register file

pal A ’/N i v . ., .
Bus interla.m 170 —> Main |"hello
N 77 orfge memory

4 /O bus Expansion slots for
other devices such

System bus Memory bus

<

us Graphics Disk as network adapters
control\gr adapter controller
Mouse Keyboard Display -
types
"hello"

Figure 1.5:Reading the hel | o command from the keyboard.

When we hit theent er key on the keyboard, the shell knows that we have finisheagytfie command.
The shell then loads the executahlel | o file by executing a sequence of instructions that copiesdhe c
and data in thdnel | o object file from disk to main memory. The data include thengtrof characters
“hel | o, wor | d\ n”that will eventually be printed out.

Using a technique known alirect memory acceg®MA, discussed in Chapter 6), the data travels directly
from disk to main memory, without passing through the presoesThis step is shown in Figure 1.6.

Once the code and data in thel | o object file are loaded into memory, the processor beginsugixecthe
machine-language instructions in thel | o program’smai n routine. These instructions copy the bytes
in the “hel 1 o, wor | d\ n” string from memory to the register file, and from there to th&play device,
where they are displayed on the screen. This step is showigumd=1.7.

1.5 CachesMatter

An important lesson from this simple example is that a systpemds a lot of time moving information from
one place to another. The machine instructions irhillel o program are originally stored on disk. When
the program is loaded, they are copied to main memory. Asrbaegsor runs the program, instructions are
copied from main memory into the processor. Similarly, théadstring hel | o, wor | d\ n”, originally

on disk, is copied to main memory, and then copied from maimarg to the display device. From a
programmer’s perspective, much of this copying is overhiatslows down the “real work” of the program.
Thus, a major goal for system designers is to make these qmgnations run as fast as possible.

Because of physical laws, larger storage devices are sknrrsmaller storage devices. And faster devices
are more expensive to build than their slower counterp&is.example, the disk drive on a typical system
might be 1000 times larger than the main memory, but it migke tthe processor 10,000,000 times longer
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CPU

Register file

?
System bus Memory bus

intert <::‘* I/Fé Main "hello,world\n"
Bus interface L brifge memory| || ¢ code
< HH=>
{} {} /0 bus 4; Expansion slots for
other devices such

<---

USB Graphics Digk as network adapters
controller adapter contrplier
Mouse Keyboard Display -

hel | o executable
stored on disk

Figure 1.6:Loading the executable from disk into main memory.

CPU

Register file —
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==
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" Lr J_X N\ —=2 Main ['hello,world\n"
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4} 4; /O bus Expansion slots for
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<

USB Grapghics Disk as network adapters
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Mouse Keyboard Display <
. . Disk hel | o executable
hello,world\n 1S stored on disk

Figure 1.7:Writing the output string from memory to the display.



1.6. STORAGE DEVICES FORM A HIERARCHY 11

to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundredds of information, as opposed to billions of
bytes in the main memory. However, the processor can readfidah the register file almost 100 times
faster than from memory. Even more troublesome, as semicbmdtechnology progresses over the years,
this processor-memory gagmntinues to increase. It is easier and cheaper to makegsaserun faster than

it is to make main memory run faster.

To deal with the processor-memory gap, system designehsdecsmaller faster storage devices called
cache memoriefr simply caches) that serve as temporary staging areasféomation that the processor
is likely to need in the near future. Figure 1.8 shows the eankmories in a typical system. Al cache

on the processor chip holds tens of thousands of bytes andecaccessed nearly as fast as the register file.
A largerL2 cachewith hundreds of thousands to millions of bytes is connetdetie processor by a special
bus. It might take 5 times longer for the process to accesk2teache than the L1 cache, but this is still 5
to 10 times faster than accessing the main memory. The L1 drmaéthes are implemented with a hardware
technology known astatic random access memd&RAM). Newer and more powerful systems even have
three levels of cache: L1, L2, and L3. The idea behind cachirigat a system can get the effect of both
a very large memory and a very fast one by exploitiocglity, the tendency for programs to access data
and code in localized regions. By setting up caches to hdil tiiat is likely to be accessed often, we can
perform most memory operations using the fast caches.

CPU chip

Register file
Cache C:”‘/ ) ALU
memories
iI System bus Memory bus

1 N
] 110 Main
Bus interface <:—|/ bridge <:>memow

Figure 1.8:Cache memories.

One of the most important lessons in this book is that apidicgorogrammers who are aware of cache
memories can exploit them to improve the performance of fhieigrams by an order of magnitude. You
will learn more about these important devices and how toaixfiiem in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage devicg.(€ache memory) between the processor and a
larger slower device (e.g., main memory) turns out to be @iggidea. In fact, the storage devices in every
computer system are organized asmi@mory hierarchysimilar to Figure 1.9. As we move from the top of
the hierarchy to the bottom, the devices become slowerelaend less costly per byte. The register file
occupies the top level in the hierarchy, which is known asll@wr LO. We show three levels of caching L1
to L3, occupying memory hierarchy levels 1 to 3. Main memargupies level 4, and so on.

The main idea of a memory hierarchy is that storage at oné $evees as a cache for storage at the next
lower level. Thus, the register file is a cache for the L1 cadbaches L1 and L2 are caches for L2 and
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LO:
Smaller. Regs CPU registers hold words retrieved from
faster, cache memory.
and L1: / L1cache
cos:)lletr (SRAM) L1 cache holds cache lines retrieved
(zteorrayeE) from the L2 cache.
i Lo: L2 cache
evices .
(SRAM)
L2 cache holds cache lines
retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines

Larger, retrieved from memory.

slower, L4: .
and . Main memory

cheaper (DRAM) ) _

(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.

L5: Local secondary storage
(local disks)
Local disks hold files
v retrieved from disks on
remote network servers.
L6: Remote secondary storage

(distributed file systems, Web servers)

Figure 1.9:An example of a memory hierarchy.

L3, respectively. The L3 cache is a cache for the main menvanich is a cache for the disk. On some
networked systems with distributed file systems, the lots slerves as a cache for data stored on the disks

of other systems.

Just as programmers can exploit knowledge of the differadhes to improve performance, programmers
can exploit their understanding of the entire memory hamar Chapter 6 will have much more to say about
this.

1.7 TheOperating System Managesthe Hardware

Back to ourhel | o example. When the shell loaded and rantile¢ | 0 program, and when thieel | o
program printed its message, neither program accessedyhedrd, display, disk, or main memory directly.
Rather, they relied on the services provided bydberating systeme can think of the operating system as
a layer of software interposed between the applicationraragand the hardware, as shown in Figure 1.10.
All attempts by an application program to manipulate thelhare must go through the operating system.

Application programs Software
Operating system
Processor Main memory I/0 devices } Hardware

Figure 1.10:Layered view of a computer system.
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The operating system has two primary purposes: (1) to pristechardware from misuse by runaway appli-
cations, and (2) to provide applications with simple andarmi mechanisms for manipulating complicated
and often wildly different low-level hardware devices. Tdgerating system achieves both goals via the
fundamental abstractions shown in Figure 1.pfocessesvirtual memory andfiles As this figure sug-
gests, files are abstractions for 1/O devices, virtual mgnwan abstraction for both the main memory and
disk I/O devices, and processes are abstractions for tleegsor, main memory, and 1/0O devices. We will
discuss each in turn.

Processes

Virtual memory
A

R

Processor Main memory | 1/0 devices

Figure 1.11:Abstractions provided by an operating system.

Aside: Unix and Posix.

The 1960s was an era of huge, complex operating systemsasuBM’s OS/360 and Honeywell's Multics systems.
While OS/360 was one of the most successful software pojaditistory, Multics dragged on for years and never
achieved wide-scale use. Bell Laboratories was an origiagther in the Multics project, but dropped out in 1969
because of concern over the complexity of the project andatile of progress. In reaction to their unpleasant
Multics experience, a group of Bell Labs researchers — Keonipsson, Dennis Ritchie, Doug Mcllroy, and Joe
Ossanna — began work in 1969 on a simpler operating systera REC PDP-7 computer, written entirely in
machine language. Many of the ideas in the new system, sutttedsierarchical file system and the notion of a
shell as a user-level process, were borrowed from Multitsrbplemented in a smaller, simpler package. In 1970,
Brian Kernighan dubbed the new system “Unix” as a pun on tmeptexity of “Multics.” The kernel was rewritten
in Cin 1973, and Unix was announced to the outside world ir41[89].

Because Bell Labs made the source code available to schishlgemerous terms, Unix developed a large following
at universities. The most influential work was done at thevesity of California at Berkeley in the late 1970s and
early 1980s, with Berkeley researchers adding virtual nrgrand the Internet protocols in a series of releases called
Unix 4.xBSD (Berkeley Software Distribution). ConcurrignBell Labs was releasing their own versions, which
became known as System V Unix. Versions from other vendac$ as the Sun Microsystems Solaris system, were
derived from these original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to difidate themselves by adding new and often incom-
patible features. To combat this trend, IEEE (InstituteBtactrical and Electronics Engineers) sponsored an effort
to standardize Unix, later dubbed “Posix” by Richard Staitm The result was a family of standards, known as
the Posix standards, that cover such issues as the C languedace for Unix system calls, shell programs and
utilities, threads, and network programming. As more systeomply more fully with the Posix standards, the
differences between Unix versions are gradually disappgaEnd Aside.

1.7.1 Processes

When a program such &=l | o runs on a modern system, the operating system providedukmil that
the program is the only one running on the system. The progygmears to have exclusive use of both the
processor, main memory, and 1/0O devices. The processoaepfmeexecute the instructions in the program,
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one after the other, without interruption. And the code aaid @f the program appear to be the only objects
in the system’s memory. These illusions are provided by tit®n of a process, one of the most important
and successful ideas in computer science.

A processs the operating system’s abstraction for a running prognstultiple processes can run concur-
rently on the same system, and each process appears to lchugexuse of the hardware. Bpncurrently

we mean that the instructions of one process are interleaitbdhe instructions of another process. In most
systems, there are more processes to run than there are €RWsthem. Traditional systems could only
execute one program at a time, while newmulti-core processors can execute several programs simulta-
neously. In either case, a single CPU can appear to executlmprocesses concurrently by having the
processor switch among them. The operating system perfihissterleaving with a mechanism known as
context switchingTo simplify the rest of this discussion, we consider onlyngrocessor systegontaining

a single CPU. We will return to the discussionmfiltiprocessoisystems in Section 1.9.1.

The operating system keeps track of all the state informédtiat the process needs in order to run. This
state, which is known as tlentex} includes information such as the current values of the RErdgister
file, and the contents of main memory. At any point in time, grotessor system can only execute the
code for a single process. When the operating system detidesnsfer control from the current process
to some new process, it performsantext switchby saving the context of the current process, restoring the
context of the new process, and then passing control to thepnecess. The new process picks up exactly
where it left off. Figure 1.12 shows the basic idea for oumegke hel | o scenario.

ProcessA | Process B
Time * q

User code
read ---» Context
v Kernel code } switch

N * User code
Disk interrupt ---» : Context
Return ___, / Kernel code } switch

fromr ead i 5 User code

v 1

Figure 1.12:Process context switching.

There are two concurrent processes in our example scerthgoshell process and theel | o process.
Initially, the shell process is running alone, waiting foput on the command line. When we ask it to run
the hel | o program, the shell carries out our request by invoking aigp&anction known as aystem
call that passes control to the operating system. The operagstgrs saves the shell’s context, creates
a newhel | o process and its context, and then passes control to théhaéwo process. Aftehel | o
terminates, the operating system restores the context shibll process and passes control back to it, where
it waits for the next command line input.

Implementing the process abstraction requires close catpe between both the low-level hardware and
the operating system software. We will explore how this vgpend how applications can create and control
their own processes, in Chapter 8.
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1.7.2 Threads

Although we normally think of a process as having a singleir@flow, in modern systems a process can
actually consist of multiple execution units, calldgeads each running in the context of the process and
sharing the same code and global data. Threads are an inglgamportant programming model because
of the requirement for concurrency in network servers, beeat is easier to share data between multiple
threads than between multiple processes, and becausdstassatypically more efficient than processes.
Multi-threading is also one way to make programs run fasteerwmultiple processors are available, as
we will discuss in Section 1.9.1. You will learn the basic cepts of concurrency, including how to write
threaded programs, in Chapter 12.

1.7.3 Virtual Memory

Virtual memoryis an abstraction that provides each process with theoltuthiat it has exclusive use of the
main memory. Each process has the same uniform view of memwbigh is known as itvirtual address
space The virtual address space for Linux processes is showngar€il.13. (Other Unix systems use
a similar layout.) In Linux, the topmost region of the addrepace is reserved for code and data in the
operating system that is common to all processes. The lagasn of the address space holds the code and
data defined by the user’s process. Note that addressesfiguheincrease from the bottom to the top.

Memory
Kernel virtual memory I invisible to
user code
User stack

(created at runtime)

t

Memory mapped region for
shared libraries

printf function

T

Run-time heap
(created by malloc)

Read/write data
Loaded from the
hello executable file

Read-only code and data

0x08048000 (32)
0x00400000 (64)

Figure 1.13:Process virtual address space.

The virtual address space seen by each process consistsuafl@nof well-defined areas, each with a
specific purpose. You will learn more about these areas iatdre book, but it will be helpful to look
briefly at each, starting with the lowest addresses and woraur way up:



16 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

e Program code and dataCode begins at the same fixed address for all processesyéallby data
locations that correspond to global C variables. The codedata areas are initialized directly from
the contents of an executable object file, in our casééid o executable. You will learn more about
this part of the address space when we study linking andrigadiChapter 7.

e Heap.The code and data areas are followed immediately by theimmkeap Unlike the code and
data areas, which are fixed in size once the process begingmguithe heap expands and contracts
dynamically at run time as a result of calls to C standardahproutines such asal | oc andf r ee.

We will study heaps in detail when we learn about managinma&irmemory in Chapter 9.

e Shared libraries. Near the middle of the address space is an area that holdedeeand data for
shared librariessuch as the C standard library and the math library. The mati@ shared library is
a powerful, but somewhat difficult concept. You will learnvhthey work when we study dynamic
linking in Chapter 7.

e Stack. At the top of the user’s virtual address space isuker stackhat the compiler uses to im-
plement function calls. Like the heap, the user stack expamnd contracts dynamically during the
execution of the program. In particular, each time we callrecfion, the stack grows. Each time we
return from a function, it contracts. You will learn how thenepiler uses the stack in Chapter 3.

e Kernel virtual memory. The kernelis the part of the operating system that is always resident in
memory. The top region of the address space is reservedddtetimel. Application programs are
not allowed to read or write the contents of this area or teddliy call functions defined in the kernel
code.

For virtual memory to work, a sophisticated interactiongguired between the hardware and the operating
system software, including a hardware translation of eaelgress generated by the processor. The basic
idea is to store the contents of a process’s virtual memordisk, and then use the main memory as a
cache for the disk. Chapter 9 explains how this works and wisysio important to the operation of modern
systems.

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. EM@rgidvice, including disks, keyboards,
displays, and even networks, is modeled as a file. All inpdtauriput in the system is performed by reading
and writing files, using a small set of system calls knowiJas 1/O.

This simple and elegant notion of a file is nonetheless vewepil because it provides applications with

a uniform view of all of the varied I/O devices that might bentzined in the system. For example, appli-
cation programmers who manipulate the contents of a dislaféeblissfully unaware of the specific disk

technology. Further, the same program will run on differgygtems that use different disk technologies.
You will learn about Unix I/O in Chapter 10.

Aside: TheLinux project.
In August 1991, a Finnish graduate student named Linus Tagvaodestly announced a new Unix-like operating
system kernel:
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From torval ds@l aava. Hel si nki . FI (Linus Benedi ct Torval ds)
Newsgroups: conp. 0s. m ni x

Subj ect: What would you like to see nobst in mnix?

Summary: snall poll for nmy new operating system

Date: 25 Aug 91 20:57: 08 GVI

Hell o everybody out there using mnix -

I"mdoing a (free) operating system (just a hobby, won't be big and

prof essional like gnu) for 386(486) AT clones. This has been brew ng
since April, and is starting to get ready. |1'd like any feedback on

things people like/dislike in nmnix, as ny OS resenbles it sonewhat

(same physical layout of the file-system (due to practical reasons)

anmong ot her things).

I"ve currently ported bash(1.08) and gcc(1.40), and things seemto work.

This inplies that 1’1l get something practical within a few nonths, and
I"d like to know what features npbst people would want. Any suggestions
are wel cone, but | won't promise I'Il inplenent them:-)

Li nus (torval ds@«ruuna. hel sinki.fi)

The rest, as they say, is history. Linux has evolved into artieal and cultural phenomenon. By combining forces
with the GNU project, the Linux project has developed a catglPosix-compliant version of the Unix operating
system, including the kernel and all of the supporting istinacture. Linux is available on a wide array of computers,
from hand-held devices to mainframe computers. A group M H&s even ported Linux to a wristwatctEnd
Aside.

1.8 Systems Communicate with Other Systems Using Networks

Up to this point in our tour of systems, we have treated a sysie an isolated collection of hardware

and software. In practice, modern systems are often linkedher systems by networks. From the point of
view of an individual system, the network can be viewed asguosther 1/0 device, as shown in Figure 1.14.
When the system copies a sequence of bytes from main memibry t@twork adapter, the data flows across
the network to another machine, instead of, say, to a loskl diive. Similarly, the system can read data
sent from other machines and copy this data to its main memory

With the advent of global networks such as the Internet, impyformation from one machine to another
has become one of the most important uses of computer syskmexample, applications such as email,
instant messaging, the World Wide Web, FTP, and telnet duleagked on the ability to copy information
over a network.

Returning to ouhel | o example, we could use the familiar telnet application tolmeh | o on a remote
machine. Suppose we use a telokent running on our local machine to connect to a telsetveron

a remote machine. After we log in to the remote machine andarghell, the remote shell is waiting to
receive an input command. From this point, runningtieé | o program remotely involves the five basic
steps shown in Figure 1.15.

After we type the hel | 0” string to the telnet client and hit thent er key, the client sends the string to
the telnet server. After the telnet server receives thaegfrom the network, it passes it along to the remote
shell program. Next, the remote shell runsited | o program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the outpunhgtacross the network to the telnet client, which
prints the output string on our local terminal.
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Figure 1.14:A network is another 1/O device.
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Figure 1.15:Using telnetto run  hel | o remotely over a network.
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This type of exchange between clients and servers is typfaal network applications. In Chapter 11 you
will learn how to build network applications, and apply tkisowledge to build a simple Web server.

1.9 Important Themes

This concludes our initial whirlwind tour of systems. An iorant idea to take away from this discussion
is that a system is more than just hardware. It is a collecatiantertwined hardware and systems software
that must cooperate in order to achieve the ultimate goalmfing application programs. The rest of this
book will fill in some details about the hardware and the safey and it will show how, by knowing these
details, you can write programs that are faster more rejabid more secure.

To close out this chapter, we highlight several importamtcepts that cut across all aspects of computer
systems. We will discuss the importance of these conceptsittiple places within the book.

1.9.1 Concurrency and Parallelism

Throughout the history of digital computers, two demandahseen constant forces driving improvements:
we want them to do more, and we want them to run faster. Botesi factors improve when the processor
does more things at once. We use the teoncurrencyto refer to the general concept of a system with
multiple, simultaneous activities, and the teparallelismto refer to the use of concurrency to make a
system run faster. Parallelism can be exploited at multgdels of abstraction in a computer system. We
highlight three levels here, working from the highest toltveest level in the system hierarchy.

Thread-L evel Concurrency

Building on the process abstraction, we are able to devisess where multiple programs execute at the
same time, leading tconcurrency With threads, we can even have multiple control flows exaguwithin

a single process. Support for concurrent execution has foes in computer systems since the advent
of time-sharing in the early 1960s. Traditionally, this corrent execution was onimulated by having

a single computer rapidly switch among its executing preegsmuch as a juggler keeps multiple balls
flying through the air. This form of concurrency allows mplé users to interact with a system at the same
time, such as when many people want to get pages from a sirgjlesgrver. It also allows a single user to
engage in multiple tasks concurrently, such as having a welvder in one window, a word processor in
another, and streaming music playing at the same time. téa@ntly, most actual computing was done by
a single processor, even if that processor had to switch gmmauitiple tasks. This configuration is known
as auniprocessor system.

When we construct a system consisting of multiple procasatrunder the control of a single operating
system kernel, we have raultiprocessor systemSuch systems have been available for large-scale com-
puting since the 1980s, but they have more recently becomenomplace with the advent ahulti-core
processors andyperthreading Figure 1.16 shows a taxonomy of these different procegpast

Multi-core processors have several CPUs (referred to agétpintegrated onto a single integrated-circuit
chip. Figure 1.17 illustrates the organization of an Intel€Ci7 processor, where the microprocessor chip
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core threaded

Figure 1.16:Categorizing different processor configurations. Multiprocessors are becoming prevalent
with the advent of multi-core processors and hyperthreading.
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Figure 1.17:Intel Core i7 organization. Four processor cores are integrated onto a single chip.
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has four CPU cores, each with its own L1 and L2 caches, buirghtre higher levels of cache as well as
the interface to main memory. Industry experts predict tiey will be able to have dozens, and ultimately
hundreds of cores on a single chip.

Hyperthreading, sometimes callsionultaneous multi-threadinig a technique that allows a single CPU to
execute multiple flows of control. It involves having mulégopies of some of the CPU hardware, such as
program counters and register files, while having only simgipies of other parts of the hardware, such as
the units that perform floating-point arithmetic. Whereaaventional processor requires around 20,000
clock cycles to shift between different threads, a hypedtied processor decides which of its threads to
execute on a cycle-by-cycle basis. It enables the CPU to inetter advantage of its processing resources.
For example, if one thread must wait for some data to be loatteda cache, the CPU can proceed with
the execution of a different thread. As an example, the @k i7 processor can have each core executing
two threads, and so a four-core system can actually exeigitetereads in parallel.

The use of multiprocessing can improve system performamde/é ways. First, it reduces the need to
simulate concurrency when performing multiple tasks. Astio@ed, even a personal computer being used
by a single person is expected to perform many activitieswaently. Second, it can run a single application
program faster, but only if that program is expressed in sesfimultiple threads that can effectively execute
in parallel. Thus, although the principles of concurrenayenbeen formulated and studied for over 50 years,
the advent of multi-core and hyperthreaded systems hatlygimeereased the desire to find ways to write
application programs that can exploit the thread-levealiglism available with the hardware. Chapter 12
will look much more deeply into concurrency and its use tovjate a sharing of processing resources and
to enable more parallelism in program execution.

Instruction-L evel Parallelism

At a much lower level of abstraction, modern processors caawte multiple instructions at one time, a
property known asnstruction-level parallelism For example, early microprocessors, such as the 1978-
vintage Intel 8086, required multiple (typically 3—10) clocycles to execute a single instruction. More
recent processors can sustain execution rates of 2—4gtistrs per clock cycle. Any given instruction
requires much longer from start to finish, perhaps 20 cyctesare, but the processor uses a number of
clever tricks to process as many as 100 instructions at a tim&hapter 4, we will explore the use of
pipelining where the actions required to execute an instruction atéipaed into different steps, and the
processor hardware is organized as a series of stages, edcinpng one of these steps. The stages can
operate in parallel, working on different parts of differenstructions. We will see that a fairly simple
hardware design can sustain an execution rate close to sinedtion per clock cycle.

Processors that can sustain execution rates faster thaimgingction per cycle are known asiperscalar
processors. Most modern processors support superscaeatiop. In Chapter 5 we will describe a high-
level model of such processors. We will see that applicgtimgrammers can use this model to understand
the performance of their programs. They can then write pmogrsuch that the generated code achieves
higher degrees of instruction-level parallelism and tfeeseruns faster.
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Single-Instruction, Multiple-Data (SIM D) Parallelism

At the lowest level, many modern processors have speciawaae that allows a single instruction to
cause multiple operations to be performed in parallel, asamwn assingle-instruction, multiple-dateor
“SIMD” parallelism. For example, recent generations otlrand AMD processors have instructions that
can add four pairs of single-precision floating-point nursi{€ data typé | oat ) in parallel.

These SIMD instructions are provided mostly to speed upiegdpns that process image, sound, and video
data. Although some compilers attempt to automaticallyaextSIMD parallelism from C programs, a
more reliable method is to write programs using speegaitor data types supported in compilers such as
Gcc. We describe this style of programming in Web As@ler.siMD, as a supplement to the more general
presentation on program optimization found in Chapter 5.

1.9.2 Thelmportance of Abstractionsin Computer Systems

The use ofbstractionss one of the most important concepts in computer scienceeXample, one aspect
of good programming practice is to formulate a simple apgilim-program interface (API) for a set of
functions that allow programmers to use the code withouinggio delve into its inner workings. Different
programming languages provide different forms and levélsupport for abstraction, such as Java class
declarations and C function prototypes.

Virtual machine
/\

o N
i Processes :
“Instruction set ] I
architecture Virtual memory

N :
N
Files !
' ' /—)%:

Operating system| Processor | Main memory | 1/0O devices

Figure 1.18:Some abstractions provided by a computer system. A major theme in computer systems is

to provide abstract representations at different levels to hide the complexity of the actual implementations.

We have already been introduced to several of the abstngctieen in computer systems, as indicated in
Figure 1.18. On the processor side, thstruction set architectur@rovides an abstraction of the actual
processor hardware. With this abstraction, a machine-podgram behaves as if it were executed on a
processor that performs just one instruction at a time. Tiabedying hardware is far more elaborate,
executing multiple instructions in parallel, but alwaysiway that is consistent with the simple, sequential
model. By keeping the same execution model, different msmeimplementations can execute the same
machine code, while offering a range of cost and performance

On the operating system side, we have introduced threeaghetis: files as an abstraction of I/Gjrtual

memoryas an abstraction of program memory, gmdcesse®s an abstraction of a running program. To
these abstractions we add a new one:\ineial maching providing an abstraction of the entire computer,
including the operating system, the processor, and theg@mugy The idea of a virtual machine was intro-
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duced by IBM in the 1960s, but it has become more prominerinthcas a way to manage computers that
must be able to run programs designed for multiple operatystems (such as Microsoft Windows, MacOS
and Linux) or different versions of the same operating syste

We will return to these abstractions in subsequent sectibtiee book.

1.10 Summary

A computer system consists of hardware and systems softhareooperate to run application programs.
Information inside the computer is represented as groufstothat are interpreted in different ways, de-
pending on the context. Programs are translated by othgraor into different forms, beginning as ASCII
text and then translated by compilers and linkers into liexecutable files.

Processors read and interpret binary instructions thastared in main memory. Since computers spend
most of their time copying data between memory, I/O deviees, the CPU registers, the storage devices
in a system are arranged in a hierarchy, with the CPU registethe top, followed by multiple levels of
hardware cache memories, DRAM main memory, and disk stor8gwage devices that are higher in the
hierarchy are faster and more costly per bit than those lowtee hierarchy. Storage devices that are higher
in the hierarchy serve as caches for devices that are lowtbeihierarchy. Programmers can optimize the
performance of their C programs by understanding and exmicihe memory hierarchy.

The operating system kernel serves as an intermediary betite application and the hardware. It pro-
vides three fundamental abstractions: (1) Files are attigines for I/O devices. (2) Virtual memory is an
abstraction for both main memory and disks. (3) Processealmtractions for the processor, main memory,
and I/O devices.

Finally, networks provide ways for computer systems to camicate with one another. From the viewpoint
of a particular system, the network is just another 1/0O devic
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