
Chapter 1

A Tour of Computer Systems

A computer systemconsists of hardware and systems software that work together to run application pro-
grams. Specific implementations of systems change over time, but the underlying concepts do not. All
computer systems have similar hardware and software components that perform similar functions. This
book is written for programmers who want to get better at their craft by understanding how these compo-
nents work and how they affect the correctness and performance of their programs.

You are poised for an exciting journey. If you dedicate yourself to learning the concepts in this book, then
you will be on your way to becoming a rare “power programmer,”enlightened by an understanding of the
underlying computer system and its impact on your application programs.

You are going to learn practical skills such as how to avoid strange numerical errors caused by the way that
computers represent numbers. You will learn how to optimizeyour C code by using clever tricks that ex-
ploit the designs of modern processors and memory systems. You will learn how the compiler implements
procedure calls and how to use this knowledge to avoid the security holes from buffer overflow vulnerabil-
ities that plague network and Internet software. You will learn how to recognize and avoid the nasty errors
during linking that confound the average programmer. You will learn how to write your own Unix shell,
your own dynamic storage allocation package, and even your own Web server. You will learn the promises
and pitfalls of concurrency, a topic of increasing importance as multiple processor cores are integrated onto
single chips.

In their classic text on the C programming language [58], Kernighan and Ritchie introduce readers to C
using thehello program shown in Figure 1.1. Althoughhello is a very simple program, every major
part of the system must work in concert in order for it to run tocompletion. In a sense, the goal of this book
is to help you understand what happens and why, when you runhello on your system.

We begin our study of systems by tracing the lifetime of thehello program, from the time it is created
by a programmer, until it runs on a system, prints its simple message, and terminates. As we follow the
lifetime of the program, we will briefly introduce the key concepts, terminology, and components that come
into play. Later chapters will expand on these ideas.

1

2 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1.1:The hello program.

1.1 Information Is Bits + Context

Our hello program begins life as asource program(or source file) that the programmer creates with an
editor and saves in a text file calledhello.c. The source program is a sequence of bits, each with a value
of 0 or 1, organized in 8-bit chunks calledbytes. Each byte represents some text character in the program.

Most modern systems represent text characters using the ASCII standard that represents each character with
a unique byte-sized integer value. For example, Figure 1.2 shows the ASCII representation of thehello.c
program.

i n c l u d e <sp> < s t d i o .
35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \n \n i n t <sp> m a i n () \n {
104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123

\n <sp> <sp> <sp> <sp> p r i n t f (" h e l
10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108

l o , <sp> w o r l d \ n ") ; \n }
108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125

Figure 1.2:The ASCII text representation of hello.c.

The hello.c program is stored in a file as a sequence of bytes. Each byte hasan integer value that
corresponds to some character. For example, the first byte has the integer value 35, which corresponds to
the character ‘#’. The second byte has the integer value 105, which corresponds to the character ‘i’, and so
on. Notice that each text line is terminated by the invisiblenewlinecharacter ‘\n’, which is represented by
the integer value 10. Files such ashello.c that consist exclusively of ASCII characters are known astext
files. All other files are known asbinary files.

The representation ofhello.c illustrates a fundamental idea: All information in a system— including
disk files, programs stored in memory, user data stored in memory, and data transferred across a network
— is represented as a bunch of bits. The only thing that distinguishes different data objects is the context

1.2. PROGRAMS ARE TRANSLATED BY OTHER PROGRAMS INTO DIFFERENT FORMS 3

in which we view them. For example, in different contexts, the same sequence of bytes might represent an
integer, floating-point number, character string, or machine instruction.

As programmers, we need to understand machine representations of numbers because they are not the same
as integers and real numbers. They are finite approximationsthat can behave in unexpected ways. This
fundamental idea is explored in detail in Chapter 2.

Aside: Origins of the C programming language.
C was developed from 1969 to 1973 by Dennis Ritchie of Bell Laboratories. The American National Standards
Institute (ANSI) ratified the ANSI C standard in 1989, and this standardization later became the responsibility of
the International Standards Organization (ISO). The standards define the C language and a set of library functions
known as theC standard library. Kernighan and Ritchie describe ANSI C in their classic book, which is known
affectionately as “K&R” [58]. In Ritchie’s words [88], C is “quirky, flawed, and an enormous success.” So why the
success?

• C was closely tied with the Unix operating system.C was developed from the beginning as the system
programming language for Unix. Most of the Unix kernel, and all of its supporting tools and libraries, were
written in C. As Unix became popular in universities in the late 1970s and early 1980s, many people were
exposed to C and found that they liked it. Since Unix was written almost entirely in C, it could be easily
ported to new machines, which created an even wider audiencefor both C and Unix.

• C is a small, simple language.The design was controlled by a single person, rather than a committee, and
the result was a clean, consistent design with little baggage. The K&R book describes the complete language
and standard library, with numerous examples and exercises, in only 261 pages. The simplicity of C made it
relatively easy to learn and to port to different computers.

• C was designed for a practical purpose.C was designed to implement the Unix operating system. Later,
other people found that they could write the programs they wanted, without the language getting in the way.

C is the language of choice for system-level programming, and there is a huge installed base of application-level
programs as well. However, it is not perfect for all programmers and all situations. C pointers are a common source
of confusion and programming errors. C also lacks explicit support for useful abstractions such as classes, objects,
and exceptions. Newer languages such as C++ and Java addressthese issues for application-level programs.End
Aside.

1.2 Programs Are Translated by Other Programs into Different Forms

Thehello program begins life as a high-level C program because it can be read and understood by human
beings in that form. However, in order to runhello.c on the system, the individual C statements must be
translated by other programs into a sequence of low-levelmachine-languageinstructions. These instructions
are then packaged in a form called anexecutable object programand stored as a binary disk file. Object
programs are also referred to asexecutable object files.

On a Unix system, the translation from source file to object file is performed by acompiler driver:

unix> gcc -o hello hello.c

Here, theGCC compiler driver reads the source filehello.c and translates it into an executable object file
hello. The translation is performed in the sequence of four phasesshown in Figure 1.3. The programs
that perform the four phases (preprocessor, compiler, assembler, andlinker) are known collectively as the
compilation system.

4 CHAPTER 1. A TOUR OF COMPUTER SYSTEMSPre�processor(cpp) hello .i Compiler(cc1) hello .s Assembler(as) hello .o Linker(ld) hellohello .cSourceprogram(text) Modifiedsourceprogram(text) Assemblyprogram(text) Relocatableobjectprograms(binary) Executableobjectprogram(binary)
printf.o

Figure 1.3:The compilation system.

• Preprocessing phase.The preprocessor (cpp) modifies the original C program according to directives
that begin with the# character. For example, the#include <stdio.h> command in line 1 of
hello.c tells the preprocessor to read the contents of the system header filestdio.h and insert it
directly into the program text. The result is another C program, typically with the.i suffix.

• Compilation phase.The compiler (cc1) translates the text filehello.i into the text filehello.s,
which contains anassembly-language program. Each statement in an assembly-language program
exactly describes one low-level machine-language instruction in a standard text form. Assembly
language is useful because it provides a common output language for different compilers for different
high-level languages. For example, C compilers and Fortrancompilers both generate output files in
the same assembly language.

• Assembly phase.Next, the assembler (as) translateshello.s into machine-language instructions,
packages them in a form known as arelocatable object program, and stores the result in the object
file hello.o. Thehello.o file is a binary file whose bytes encode machine language instructions
rather than characters. If we were to viewhello.owith a text editor, it would appear to be gibberish.

• Linking phase.Notice that ourhello program calls theprintf function, which is part of thestan-
dard C library provided by every C compiler. Theprintf function resides in a separate precom-
piled object file calledprintf.o, which must somehow be merged with ourhello.o program.
The linker (ld) handles this merging. The result is thehello file, which is anexecutable object file
(or simplyexecutable) that is ready to be loaded into memory and executed by the system.

Aside: The GNU project.
GCC is one of many useful tools developed by the GNU (short for GNU’s Not Unix) project. The GNU project is a
tax-exempt charity started by Richard Stallman in 1984, with the ambitious goal of developing a complete Unix-like
system whose source code is unencumbered by restrictions onhow it can be modified or distributed. The GNU
project has developed an environment with all the major components of a Unix operating system, except for the
kernel, which was developed separately by the Linux project. The GNU environment includes theEMACS editor,
GCC compiler, GDB debugger, assembler, linker, utilities for manipulating binaries, and other components. The
GCC compiler has grown to support many different languages, with the ability to generate code for many different
machines. Supported languages include C, C++, Fortran, Java, Pascal, Objective-C, and Ada.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open-source movement
(commonly associated with Linux) owes its intellectual origins to the GNU project’s notion offree software(“free”
as in “free speech” not “free beer”). Further, Linux owes much of its popularity to the GNU tools, which provide
the environment for the Linux kernel.End Aside.

1.3. IT PAYS TO UNDERSTAND HOW COMPILATION SYSTEMS WORK 5

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such ashello.c, we can rely on the compilation system to produce correct and
efficient machine code. However, there are some important reasons why programmers need to understand
how compilation systems work:

• Optimizing program performance.Modern compilers are sophisticated tools that usually produce
good code. As programmers, we do not need to know the inner workings of the compiler in order to
write efficient code. However, in order to make good coding decisions in our C programs, we do need
a basic understanding of machine-level code and how the compiler translates different C statements
into machine code. For example, is aswitch statement always more efficient than a sequence of
if-else statements? How much overhead is incurred by a function call? Is awhile loop more
efficient than afor loop? Are pointer references more efficient than array indexes? Why does our
loop run so much faster if we sum into a local variable insteadof an argument that is passed by
reference? How can a function run faster when we simply rearrange the parentheses in an arithmetic
expression?

In Chapter 3, we will introduce two related machine languages: IA32, the 32-bit code that has be-
come ubiquitous on machines running Linux, Windows, and more recently the Macintosh operating
systems, and x86-64, a 64-bit extension found in more recentmicroprocessors. We describe how
compilers translate different C constructs into these languages. In Chapter 5, you will learn how to
tune the performance of your C programs by making simple transformations to the C code that help
the compiler do its job better. In Chapter 6 you will learn about the hierarchical nature of the memory
system, how C compilers store data arrays in memory, and how your C programs can exploit this
knowledge to run more efficiently.

• Understanding link-time errors.In our experience, some of the most perplexing programming er-
rors are related to the operation of the linker, especially when you are trying to build large software
systems. For example, what does it mean when the linker reports that it cannot resolve a reference?
What is the difference between a static variable and a globalvariable? What happens if you define
two global variables in different C files with the same name? What is the difference between a static
library and a dynamic library? Why does it matter what order we list libraries on the command line?
And scariest of all, why do some linker-related errors not appear until run time? You will learn the
answers to these kinds of questions in Chapter 7

• Avoiding security holes.For many years,buffer overflow vulnerabilitieshave accounted for the ma-
jority of security holes in network and Internet servers. These vulnerabilities exist because too few
programmers understand the need to carefully restrict the quantity and forms of data they accept from
untrusted sources. A first step in learning secure programming is to understand the consequences of
the way data and control information are stored on the program stack. We cover the stack discipline
and buffer overflow vulnerabilities in Chapter 3 as part of our study of assembly language. We will
also learn about methods that can be used by the programmer, compiler, and operating system to
reduce the threat of attack.

6 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

1.4 Processors Read and Interpret Instructions Stored in Memory

At this point, ourhello.c source program has been translated by the compilation system into an exe-
cutable object file calledhello that is stored on disk. To run the executable file on a Unix system, we type

its name to an application program known as ashell:
unix> ./hello
hello, world
unix>

The shell is a command-line interpreter that prints a prompt, waits for you to type a command line, and then

performs the command. If the first word of the command line does not correspond to a built-in shell com-
mand, then the shell assumes that it is the name of an executable file that it should load and run. So in this
case, the shell loads and runs thehello program and then waits for it to terminate. Thehello program
prints its message to the screen and then terminates. The shell then prints a prompt and waits for the next
input command line.

1.4.1 Hardware Organization of a System

To understand what happens to ourhello program when we run it, we need to understand the hardware
organization of a typical system, which is shown in Figure 1.4. This particular picture is modeled after
the family of Intel Pentium systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages throughout the course of the
book.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

Figure 1.4: Hardware organization of a typical system. CPU: Central Processing Unit, ALU: Arith-
metic/Logic Unit, PC: Program counter, USB: Universal Serial Bus.

1.4. PROCESSORS READ AND INTERPRET INSTRUCTIONS STORED IN MEMORY 7

Buses

Running throughout the system is a collection of electricalconduits calledbusesthat carry bytes of infor-
mation back and forth between the components. Buses are typically designed to transfer fixed-sized chunks
of bytes known aswords. The number of bytes in a word (theword size) is a fundamental system parameter
that varies across systems. Most machines today have word sizes of either 4 bytes (32 bits) or 8 bytes (64
bits). For the sake of our discussion here, we will assume a word size of 4 bytes, and we will assume that
buses transfer only one word at a time.

I/O Devices

Input/output (I/O) devices are the system’s connection to the external world. Our example system has four
I/O devices: a keyboard and mouse for user input, a display for user output, and a disk drive (or simply disk)
for long-term storage of data and programs. Initially, the executablehello program resides on the disk.

Each I/O device is connected to the I/O bus by either acontroller or anadapter. The distinction between the
two is mainly one of packaging. Controllers are chip sets in the device itself or on the system’s main printed
circuit board (often called themotherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between the I/O bus and an I/O
device.

Chapter 6 has more to say about how I/O devices such as disks work. In Chapter 10, you will learn how
to use the Unix I/O interface to access devices from your application programs. We focus on the especially
interesting class of devices known as networks, but the techniques generalize to other kinds of devices as
well.

Main Memory

The main memoryis a temporary storage device that holds both a program and the data it manipulates
while the processor is executing the program. Physically, main memory consists of a collection ofdynamic
random access memory (DRAM)chips. Logically, memory is organized as a linear array of bytes, each
with its own unique address (array index) starting at zero. In general, each of the machine instructions that
constitute a program can consist of a variable number of bytes. The sizes of data items that correspond to
C program variables vary according to type. For example, on an IA32 machine running Linux, data of type
short requires two bytes, typesint, float, andlong four bytes, and typedouble eight bytes.

Chapter 6 has more to say about how memory technologies such as DRAM chips work, and how they are
combined to form main memory.

Processor

Thecentral processing unit(CPU), or simplyprocessor, is the engine that interprets (orexecutes) instruc-
tions stored in main memory. At its core is a word-sized storage device (orregister) called theprogram
counter (PC). At any point in time, the PC points at (contains the address of) some machine-language

8 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

instruction in main memory.1

From the time that power is applied to the system, until the time that the power is shut off, a processor
repeatedly executes the instruction pointed at by the program counter and updates the program counter to
point to the next instruction. A processorappears tooperate according to a very simple instruction execution
model, defined by itsinstruction set architecture. In this model, instructions execute in strict sequence, and
executing a single instruction involves performing a series of steps. The processor reads the instruction from
memory pointed at by the program counter (PC), interprets the bits in the instruction, performs some simple
operation dictated by the instruction, and then updates thePC to point to the next instruction, which may or
may not be contiguous in memory to the instruction that was just executed.

There are only a few of these simple operations, and they revolve around main memory, theregister file, and
the arithmetic/logic unit(ALU). The register file is a small storage device that consists of a collection of
word-sized registers, each with its own unique name. The ALUcomputes new data and address values. Here
are some examples of the simple operations that the CPU mightcarry out at the request of an instruction:

• Load: Copy a byte or a word from main memory into a register, overwriting the previous contents of
the register.

• Store:Copy a byte or a word from a register to a location in main memory, overwriting the previous
contents of that location.

• Operate:Copy the contents of two registers to the ALU, perform an arithmetic operation on the two
words, and store the result in a register, overwriting the previous contents of that register.

• Jump: Extract a word from the instruction itself and copy that wordinto the program counter (PC),
overwriting the previous value of the PC.

We say that a processor appears to be a simple implementationof its instruction set architecture, but in fact
modern processors use far more complex mechanisms to speed up program execution. Thus, we can dis-
tinguish the processor’s instruction set architecture, describing the effect of each machine-code instruction,
from its microarchitecture, describing how the processor is actually implemented. When we study machine
code in Chapter 3, we will consider the abstraction providedby the machine’s instruction set architecture.
Chapter 4 has more to say about how processors are actually implemented.

1.4.2 Running the hello Program

Given this simple view of a system’s hardware organization and operation, we can begin to understand what
happens when we run our example program. We must omit a lot of details here that will be filled in later,
but for now we will be content with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type a command. As we type the
characters “./hello” at the keyboard, the shell program reads each one into a register, and then stores it
in memory, as shown in Figure 1.5.

1PC is also a commonly used acronym for “personal computer”. However, the distinction between the two should be clear from
the context.

1.5. CACHES MATTER 9

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

"hello"

User
types

"hello"

Figure 1.5:Reading the hello command from the keyboard.

When we hit theenter key on the keyboard, the shell knows that we have finished typing the command.
The shell then loads the executablehello file by executing a sequence of instructions that copies the code
and data in thehello object file from disk to main memory. The data include the string of characters
“hello, world\n” that will eventually be printed out.

Using a technique known asdirect memory access(DMA, discussed in Chapter 6), the data travels directly
from disk to main memory, without passing through the processor. This step is shown in Figure 1.6.

Once the code and data in thehello object file are loaded into memory, the processor begins executing the
machine-language instructions in thehello program’smain routine. These instructions copy the bytes
in the “hello, world\n” string from memory to the register file, and from there to thedisplay device,
where they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

An important lesson from this simple example is that a systemspends a lot of time moving information from
one place to another. The machine instructions in thehello program are originally stored on disk. When
the program is loaded, they are copied to main memory. As the processor runs the program, instructions are
copied from main memory into the processor. Similarly, the data string “hello,world\n”, originally
on disk, is copied to main memory, and then copied from main memory to the display device. From a
programmer’s perspective, much of this copying is overheadthat slows down the “real work” of the program.
Thus, a major goal for system designers is to make these copy operations run as fast as possible.

Because of physical laws, larger storage devices are slowerthan smaller storage devices. And faster devices
are more expensive to build than their slower counterparts.For example, the disk drive on a typical system
might be 1000 times larger than the main memory, but it might take the processor 10,000,000 times longer

10 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

hello code

"hello,world\n"

Figure 1.6:Loading the executable from disk into main memory.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

hello code

"hello,world\n"

"hello,world\n"

Figure 1.7:Writing the output string from memory to the display.

1.6. STORAGE DEVICES FORM A HIERARCHY 11

to read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred bytes of information, as opposed to billions of
bytes in the main memory. However, the processor can read data from the register file almost 100 times
faster than from memory. Even more troublesome, as semiconductor technology progresses over the years,
thisprocessor-memory gapcontinues to increase. It is easier and cheaper to make processors run faster than
it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller faster storage devices called
cache memories(or simply caches) that serve as temporary staging areas forinformation that the processor
is likely to need in the near future. Figure 1.8 shows the cache memories in a typical system. AnL1 cache
on the processor chip holds tens of thousands of bytes and canbe accessed nearly as fast as the register file.
A largerL2 cachewith hundreds of thousands to millions of bytes is connectedto the processor by a special
bus. It might take 5 times longer for the process to access theL2 cache than the L1 cache, but this is still 5
to 10 times faster than accessing the main memory. The L1 and L2 caches are implemented with a hardware
technology known asstatic random access memory(SRAM). Newer and more powerful systems even have
three levels of cache: L1, L2, and L3. The idea behind cachingis that a system can get the effect of both
a very large memory and a very fast one by exploitinglocality, the tendency for programs to access data
and code in localized regions. By setting up caches to hold data that is likely to be accessed often, we can
perform most memory operations using the fast caches.

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache

memories

Figure 1.8:Cache memories.

One of the most important lessons in this book is that application programmers who are aware of cache
memories can exploit them to improve the performance of their programs by an order of magnitude. You
will learn more about these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g., cache memory) between the processor and a
larger slower device (e.g., main memory) turns out to be a general idea. In fact, the storage devices in every
computer system are organized as amemory hierarchysimilar to Figure 1.9. As we move from the top of
the hierarchy to the bottom, the devices become slower, larger, and less costly per byte. The register file
occupies the top level in the hierarchy, which is known as level 0 or L0. We show three levels of caching L1
to L3, occupying memory hierarchy levels 1 to 3. Main memory occupies level 4, and so on.

The main idea of a memory hierarchy is that storage at one level serves as a cache for storage at the next
lower level. Thus, the register file is a cache for the L1 cache. Caches L1 and L2 are caches for L2 and

12 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

Regs

L1 cache

(SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Larger,

slower,

and

cheaper

(per byte)

storage

devices

Remote secondary storage

(distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers.

Main memory holds disk

blocks retrieved from local

disks.

L2 cache

(SRAM)

L1 cache holds cache lines retrieved

from the L2 cache.

CPU registers hold words retrieved from

cache memory.

L2 cache holds cache lines

retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices

L3 cache

(SRAM)
L3 cache holds cache lines

retrieved from memory.

L6:

Figure 1.9:An example of a memory hierarchy.

L3, respectively. The L3 cache is a cache for the main memory,which is a cache for the disk. On some
networked systems with distributed file systems, the local disk serves as a cache for data stored on the disks
of other systems.

Just as programmers can exploit knowledge of the different caches to improve performance, programmers
can exploit their understanding of the entire memory hierarchy. Chapter 6 will have much more to say about
this.

1.7 The Operating System Manages the Hardware

Back to ourhello example. When the shell loaded and ran thehello program, and when thehello
program printed its message, neither program accessed the keyboard, display, disk, or main memory directly.
Rather, they relied on the services provided by theoperating system. We can think of the operating system as
a layer of software interposed between the application program and the hardware, as shown in Figure 1.10.
All attempts by an application program to manipulate the hardware must go through the operating system.

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

Figure 1.10:Layered view of a computer system.

1.7. THE OPERATING SYSTEM MANAGES THE HARDWARE 13

The operating system has two primary purposes: (1) to protect the hardware from misuse by runaway appli-
cations, and (2) to provide applications with simple and uniform mechanisms for manipulating complicated
and often wildly different low-level hardware devices. Theoperating system achieves both goals via the
fundamental abstractions shown in Figure 1.11:processes, virtual memory, andfiles. As this figure sug-
gests, files are abstractions for I/O devices, virtual memory is an abstraction for both the main memory and
disk I/O devices, and processes are abstractions for the processor, main memory, and I/O devices. We will
discuss each in turn.

Processor Main memory I/O devices
Processes FilesVirtual memory

Figure 1.11:Abstractions provided by an operating system.

Aside: Unix and Posix.
The 1960s was an era of huge, complex operating systems, suchas IBM’s OS/360 and Honeywell’s Multics systems.
While OS/360 was one of the most successful software projects in history, Multics dragged on for years and never
achieved wide-scale use. Bell Laboratories was an originalpartner in the Multics project, but dropped out in 1969
because of concern over the complexity of the project and thelack of progress. In reaction to their unpleasant
Multics experience, a group of Bell Labs researchers — Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe
Ossanna — began work in 1969 on a simpler operating system fora DEC PDP-7 computer, written entirely in
machine language. Many of the ideas in the new system, such asthe hierarchical file system and the notion of a
shell as a user-level process, were borrowed from Multics but implemented in a smaller, simpler package. In 1970,
Brian Kernighan dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten
in C in 1973, and Unix was announced to the outside world in 1974 [89].

Because Bell Labs made the source code available to schools with generous terms, Unix developed a large following
at universities. The most influential work was done at the University of California at Berkeley in the late 1970s and
early 1980s, with Berkeley researchers adding virtual memory and the Internet protocols in a series of releases called
Unix 4.xBSD (Berkeley Software Distribution). Concurrently, Bell Labs was releasing their own versions, which
became known as System V Unix. Versions from other vendors, such as the Sun Microsystems Solaris system, were
derived from these original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new and often incom-
patible features. To combat this trend, IEEE (Institute forElectrical and Electronics Engineers) sponsored an effort
to standardize Unix, later dubbed “Posix” by Richard Stallman. The result was a family of standards, known as
the Posix standards, that cover such issues as the C languageinterface for Unix system calls, shell programs and
utilities, threads, and network programming. As more systems comply more fully with the Posix standards, the
differences between Unix versions are gradually disappearing. End Aside.

1.7.1 Processes

When a program such ashello runs on a modern system, the operating system provides the illusion that
the program is the only one running on the system. The programappears to have exclusive use of both the
processor, main memory, and I/O devices. The processor appears to execute the instructions in the program,

14 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

one after the other, without interruption. And the code and data of the program appear to be the only objects
in the system’s memory. These illusions are provided by the notion of a process, one of the most important
and successful ideas in computer science.

A processis the operating system’s abstraction for a running program. Multiple processes can run concur-
rently on the same system, and each process appears to have exclusive use of the hardware. Byconcurrently,
we mean that the instructions of one process are interleavedwith the instructions of another process. In most
systems, there are more processes to run than there are CPUs to run them. Traditional systems could only
execute one program at a time, while newermulti-coreprocessors can execute several programs simulta-
neously. In either case, a single CPU can appear to execute multiple processes concurrently by having the
processor switch among them. The operating system performsthis interleaving with a mechanism known as
context switching. To simplify the rest of this discussion, we consider only auniprocessor systemcontaining
a single CPU. We will return to the discussion ofmultiprocessorsystems in Section 1.9.1.

The operating system keeps track of all the state information that the process needs in order to run. This
state, which is known as thecontext, includes information such as the current values of the PC, the register
file, and the contents of main memory. At any point in time, a uniprocessor system can only execute the
code for a single process. When the operating system decidesto transfer control from the current process
to some new process, it performs acontext switchby saving the context of the current process, restoring the
context of the new process, and then passing control to the new process. The new process picks up exactly
where it left off. Figure 1.12 shows the basic idea for our examplehello scenario.

Process A Process B

User code

Kernel code

User code

Kernel code

User code

Time

Context
switch

Context
switch

read

Disk interrupt

Return
from read

Figure 1.12:Process context switching.

There are two concurrent processes in our example scenario:the shell process and thehello process.
Initially, the shell process is running alone, waiting for input on the command line. When we ask it to run
the hello program, the shell carries out our request by invoking a special function known as asystem
call that passes control to the operating system. The operating system saves the shell’s context, creates
a newhello process and its context, and then passes control to the newhello process. Afterhello
terminates, the operating system restores the context of the shell process and passes control back to it, where
it waits for the next command line input.

Implementing the process abstraction requires close cooperation between both the low-level hardware and
the operating system software. We will explore how this works, and how applications can create and control
their own processes, in Chapter 8.

1.7. THE OPERATING SYSTEM MANAGES THE HARDWARE 15

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern systems a process can
actually consist of multiple execution units, calledthreads, each running in the context of the process and
sharing the same code and global data. Threads are an increasingly important programming model because
of the requirement for concurrency in network servers, because it is easier to share data between multiple
threads than between multiple processes, and because threads are typically more efficient than processes.
Multi-threading is also one way to make programs run faster when multiple processors are available, as
we will discuss in Section 1.9.1. You will learn the basic concepts of concurrency, including how to write
threaded programs, in Chapter 12.

1.7.3 Virtual Memory

Virtual memoryis an abstraction that provides each process with the illusion that it has exclusive use of the
main memory. Each process has the same uniform view of memory, which is known as itsvirtual address
space. The virtual address space for Linux processes is shown in Figure 1.13. (Other Unix systems use
a similar layout.) In Linux, the topmost region of the address space is reserved for code and data in the
operating system that is common to all processes. The lower region of the address space holds the code and
data defined by the user’s process. Note that addresses in thefigure increase from the bottom to the top.Kernel v irtual memory

Memory mapped region forshared librariesRunºt ime heap(created by malloc)
User stack(created at runt ime)

0

Memoryinvisible touser code

Read/write dataReadûonly code and data Loaded from thehello executable f ile
printf funct ion

0x08048000 (32)0x00400000 (64)
Figure 1.13:Process virtual address space.

The virtual address space seen by each process consists of a number of well-defined areas, each with a
specific purpose. You will learn more about these areas laterin the book, but it will be helpful to look
briefly at each, starting with the lowest addresses and working our way up:

16 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

• Program code and data.Code begins at the same fixed address for all processes, followed by data
locations that correspond to global C variables. The code and data areas are initialized directly from
the contents of an executable object file, in our case thehello executable. You will learn more about
this part of the address space when we study linking and loading in Chapter 7.

• Heap.The code and data areas are followed immediately by the run-time heap. Unlike the code and
data areas, which are fixed in size once the process begins running, the heap expands and contracts
dynamically at run time as a result of calls to C standard library routines such asmalloc andfree.
We will study heaps in detail when we learn about managing virtual memory in Chapter 9.

• Shared libraries.Near the middle of the address space is an area that holds the code and data for
shared librariessuch as the C standard library and the math library. The notion of a shared library is
a powerful, but somewhat difficult concept. You will learn how they work when we study dynamic
linking in Chapter 7.

• Stack. At the top of the user’s virtual address space is theuser stackthat the compiler uses to im-
plement function calls. Like the heap, the user stack expands and contracts dynamically during the
execution of the program. In particular, each time we call a function, the stack grows. Each time we
return from a function, it contracts. You will learn how the compiler uses the stack in Chapter 3.

• Kernel virtual memory. The kernel is the part of the operating system that is always resident in
memory. The top region of the address space is reserved for the kernel. Application programs are
not allowed to read or write the contents of this area or to directly call functions defined in the kernel
code.

For virtual memory to work, a sophisticated interaction is required between the hardware and the operating
system software, including a hardware translation of everyaddress generated by the processor. The basic
idea is to store the contents of a process’s virtual memory ondisk, and then use the main memory as a
cache for the disk. Chapter 9 explains how this works and why it is so important to the operation of modern
systems.

1.7.4 Files

A file is a sequence of bytes, nothing more and nothing less. Every I/O device, including disks, keyboards,
displays, and even networks, is modeled as a file. All input and output in the system is performed by reading
and writing files, using a small set of system calls known asUnix I/O.

This simple and elegant notion of a file is nonetheless very powerful because it provides applications with
a uniform view of all of the varied I/O devices that might be contained in the system. For example, appli-
cation programmers who manipulate the contents of a disk fileare blissfully unaware of the specific disk
technology. Further, the same program will run on differentsystems that use different disk technologies.
You will learn about Unix I/O in Chapter 10.

Aside: The Linux project.
In August 1991, a Finnish graduate student named Linus Torvalds modestly announced a new Unix-like operating
system kernel:

1.8. SYSTEMS COMMUNICATE WITH OTHER SYSTEMS USING NETWORKS 17

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -
I’m doing a (free) operating system (just a hobby, won’t be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I’d like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I’ll get something practical within a few months, and
I’d like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By combining forces
with the GNU project, the Linux project has developed a complete, Posix-compliant version of the Unix operating
system, including the kernel and all of the supporting infrastructure. Linux is available on a wide array of computers,
from hand-held devices to mainframe computers. A group at IBM has even ported Linux to a wristwatch!End
Aside.

1.8 Systems Communicate with Other Systems Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated collection of hardware
and software. In practice, modern systems are often linked to other systems by networks. From the point of
view of an individual system, the network can be viewed as just another I/O device, as shown in Figure 1.14.
When the system copies a sequence of bytes from main memory tothe network adapter, the data flows across
the network to another machine, instead of, say, to a local disk drive. Similarly, the system can read data
sent from other machines and copy this data to its main memory.

With the advent of global networks such as the Internet, copying information from one machine to another
has become one of the most important uses of computer systems. For example, applications such as email,
instant messaging, the World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to ourhello example, we could use the familiar telnet application to runhello on a remote
machine. Suppose we use a telnetclient running on our local machine to connect to a telnetserveron
a remote machine. After we log in to the remote machine and runa shell, the remote shell is waiting to
receive an input command. From this point, running thehello program remotely involves the five basic
steps shown in Figure 1.15.

After we type the “hello” string to the telnet client and hit theenter key, the client sends the string to
the telnet server. After the telnet server receives the string from the network, it passes it along to the remote
shell program. Next, the remote shell runs thehello program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to the telnet client, which
prints the output string on our local terminal.

18 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Expansion slots

Network
adapter

Network

PC

Figure 1.14:A network is another I/O device.

Localtelnetclient Remotetelnetserver2. Client sends "hello"string to telnet server 3. Server sends "hello"string to the shell, whichruns the hello program,and passes the outputto the telnet server4. Telnet server sends"hello, world \n" stringto client5. Client prints"hello, world \n"string on display
1. User types"hello" at thekeyboard

Figure 1.15:Using telnet to run hello remotely over a network.

1.9. IMPORTANT THEMES 19

This type of exchange between clients and servers is typicalof all network applications. In Chapter 11 you
will learn how to build network applications, and apply thisknowledge to build a simple Web server.

1.9 Important Themes

This concludes our initial whirlwind tour of systems. An important idea to take away from this discussion
is that a system is more than just hardware. It is a collectionof intertwined hardware and systems software
that must cooperate in order to achieve the ultimate goal of running application programs. The rest of this
book will fill in some details about the hardware and the software, and it will show how, by knowing these
details, you can write programs that are faster more reliable, and more secure.

To close out this chapter, we highlight several important concepts that cut across all aspects of computer
systems. We will discuss the importance of these concepts atmultiple places within the book.

1.9.1 Concurrency and Parallelism

Throughout the history of digital computers, two demands have been constant forces driving improvements:
we want them to do more, and we want them to run faster. Both of these factors improve when the processor
does more things at once. We use the termconcurrencyto refer to the general concept of a system with
multiple, simultaneous activities, and the termparallelism to refer to the use of concurrency to make a
system run faster. Parallelism can be exploited at multiplelevels of abstraction in a computer system. We
highlight three levels here, working from the highest to thelowest level in the system hierarchy.

Thread-Level Concurrency

Building on the process abstraction, we are able to devise systems where multiple programs execute at the
same time, leading toconcurrency. With threads, we can even have multiple control flows executing within
a single process. Support for concurrent execution has beenfound in computer systems since the advent
of time-sharing in the early 1960s. Traditionally, this concurrent execution was onlysimulated, by having
a single computer rapidly switch among its executing processes, much as a juggler keeps multiple balls
flying through the air. This form of concurrency allows multiple users to interact with a system at the same
time, such as when many people want to get pages from a single web server. It also allows a single user to
engage in multiple tasks concurrently, such as having a web browser in one window, a word processor in
another, and streaming music playing at the same time. Untilrecently, most actual computing was done by
a single processor, even if that processor had to switch among multiple tasks. This configuration is known
as auniprocessor system.

When we construct a system consisting of multiple processors all under the control of a single operating
system kernel, we have amultiprocessor system. Such systems have been available for large-scale com-
puting since the 1980s, but they have more recently become commonplace with the advent ofmulti-core
processors andhyperthreading. Figure 1.16 shows a taxonomy of these different processor types.

Multi-core processors have several CPUs (referred to as “cores”) integrated onto a single integrated-circuit
chip. Figure 1.17 illustrates the organization of an Intel Core i7 processor, where the microprocessor chip

20 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

Figure 1.16:Categorizing different processor configurations. Multiprocessors are becoming prevalent
with the advent of multi-core processors and hyperthreading.

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

Figure 1.17:Intel Core i7 organization. Four processor cores are integrated onto a single chip.

1.9. IMPORTANT THEMES 21

has four CPU cores, each with its own L1 and L2 caches, but sharing the higher levels of cache as well as
the interface to main memory. Industry experts predict thatthey will be able to have dozens, and ultimately
hundreds of cores on a single chip.

Hyperthreading, sometimes calledsimultaneous multi-threadingis a technique that allows a single CPU to
execute multiple flows of control. It involves having multiple copies of some of the CPU hardware, such as
program counters and register files, while having only single copies of other parts of the hardware, such as
the units that perform floating-point arithmetic. Whereas aconventional processor requires around 20,000
clock cycles to shift between different threads, a hyperthreaded processor decides which of its threads to
execute on a cycle-by-cycle basis. It enables the CPU to makebetter advantage of its processing resources.
For example, if one thread must wait for some data to be loadedinto a cache, the CPU can proceed with
the execution of a different thread. As an example, the IntelCore i7 processor can have each core executing
two threads, and so a four-core system can actually execute eight threads in parallel.

The use of multiprocessing can improve system performance in two ways. First, it reduces the need to
simulate concurrency when performing multiple tasks. As mentioned, even a personal computer being used
by a single person is expected to perform many activities concurrently. Second, it can run a single application
program faster, but only if that program is expressed in terms of multiple threads that can effectively execute
in parallel. Thus, although the principles of concurrency have been formulated and studied for over 50 years,
the advent of multi-core and hyperthreaded systems has greatly increased the desire to find ways to write
application programs that can exploit the thread-level parallelism available with the hardware. Chapter 12
will look much more deeply into concurrency and its use to provide a sharing of processing resources and
to enable more parallelism in program execution.

Instruction-Level Parallelism

At a much lower level of abstraction, modern processors can execute multiple instructions at one time, a
property known asinstruction-level parallelism. For example, early microprocessors, such as the 1978-
vintage Intel 8086, required multiple (typically 3–10) clock cycles to execute a single instruction. More
recent processors can sustain execution rates of 2–4 instructions per clock cycle. Any given instruction
requires much longer from start to finish, perhaps 20 cycles or more, but the processor uses a number of
clever tricks to process as many as 100 instructions at a time. In Chapter 4, we will explore the use of
pipelining, where the actions required to execute an instruction are partitioned into different steps, and the
processor hardware is organized as a series of stages, each performing one of these steps. The stages can
operate in parallel, working on different parts of different instructions. We will see that a fairly simple
hardware design can sustain an execution rate close to one instruction per clock cycle.

Processors that can sustain execution rates faster than oneinstruction per cycle are known assuperscalar
processors. Most modern processors support superscalar operation. In Chapter 5 we will describe a high-
level model of such processors. We will see that applicationprogrammers can use this model to understand
the performance of their programs. They can then write programs such that the generated code achieves
higher degrees of instruction-level parallelism and therefore runs faster.

22 CHAPTER 1. A TOUR OF COMPUTER SYSTEMS

Single-Instruction, Multiple-Data (SIMD) Parallelism

At the lowest level, many modern processors have special hardware that allows a single instruction to
cause multiple operations to be performed in parallel, a mode known assingle-instruction, multiple-data, or
“SIMD” parallelism. For example, recent generations of Intel and AMD processors have instructions that
can add four pairs of single-precision floating-point numbers (C data typefloat) in parallel.

These SIMD instructions are provided mostly to speed up applications that process image, sound, and video
data. Although some compilers attempt to automatically extract SIMD parallelism from C programs, a
more reliable method is to write programs using specialvectordata types supported in compilers such as
GCC. We describe this style of programming in Web AsideOPT:SIMD, as a supplement to the more general
presentation on program optimization found in Chapter 5.

1.9.2 The Importance of Abstractions in Computer Systems

The use ofabstractionsis one of the most important concepts in computer science. For example, one aspect
of good programming practice is to formulate a simple application-program interface (API) for a set of
functions that allow programmers to use the code without having to delve into its inner workings. Different
programming languages provide different forms and levels of support for abstraction, such as Java class
declarations and C function prototypes.

Processor Main memory I/O devices
Processes FilesVirtual memoryOperat ing system

Virtual machineInstruct ion setarchitecture
Figure 1.18:Some abstractions provided by a computer system. A major theme in computer systems is
to provide abstract representations at different levels to hide the complexity of the actual implementations.

We have already been introduced to several of the abstractions seen in computer systems, as indicated in
Figure 1.18. On the processor side, theinstruction set architectureprovides an abstraction of the actual
processor hardware. With this abstraction, a machine-codeprogram behaves as if it were executed on a
processor that performs just one instruction at a time. The underlying hardware is far more elaborate,
executing multiple instructions in parallel, but always ina way that is consistent with the simple, sequential
model. By keeping the same execution model, different processor implementations can execute the same
machine code, while offering a range of cost and performance.

On the operating system side, we have introduced three abstractions:filesas an abstraction of I/O,virtual
memoryas an abstraction of program memory, andprocessesas an abstraction of a running program. To
these abstractions we add a new one: thevirtual machine, providing an abstraction of the entire computer,
including the operating system, the processor, and the programs. The idea of a virtual machine was intro-

1.10. SUMMARY 23

duced by IBM in the 1960s, but it has become more prominent recently as a way to manage computers that
must be able to run programs designed for multiple operatingsystems (such as Microsoft Windows, MacOS
and Linux) or different versions of the same operating system.

We will return to these abstractions in subsequent sectionsof the book.

1.10 Summary

A computer system consists of hardware and systems softwarethat cooperate to run application programs.
Information inside the computer is represented as groups ofbits that are interpreted in different ways, de-
pending on the context. Programs are translated by other programs into different forms, beginning as ASCII
text and then translated by compilers and linkers into binary executable files.

Processors read and interpret binary instructions that arestored in main memory. Since computers spend
most of their time copying data between memory, I/O devices,and the CPU registers, the storage devices
in a system are arranged in a hierarchy, with the CPU registers at the top, followed by multiple levels of
hardware cache memories, DRAM main memory, and disk storage. Storage devices that are higher in the
hierarchy are faster and more costly per bit than those lowerin the hierarchy. Storage devices that are higher
in the hierarchy serve as caches for devices that are lower inthe hierarchy. Programmers can optimize the
performance of their C programs by understanding and exploiting the memory hierarchy.

The operating system kernel serves as an intermediary between the application and the hardware. It pro-
vides three fundamental abstractions: (1) Files are abstractions for I/O devices. (2) Virtual memory is an
abstraction for both main memory and disks. (3) Processes are abstractions for the processor, main memory,
and I/O devices.

Finally, networks provide ways for computer systems to communicate with one another. From the viewpoint
of a particular system, the network is just another I/O device.

Bibliographic Notes

Ritchie has written interesting first hand accounts of the early days of C and Unix [87, 88]. Ritchie and
Thompson presented the first published account of Unix [89].Silberschatz, Galvin, and Gagne [98] pro-
vide a comprehensive history of the different flavors of Unix. The GNU (www.gnu.org) and Linux
(www.linux.org) Web pages have loads of current and historical information. The Posix standards are
available online at (www.unix.org).

