CS 349, Summer 2011
Optimizing the Performance of a Pipelined Processor
Assigned: June 6, Due: June 21, 11:59PM

Harry Bovik (bovik@cs.cmu.edu) is the lead person for this assignment.

1 Introduction

In this lab, you will learn about the design and implementabf a pipelined Y86 processor, optimizing both
it and a benchmark program to maximize performance. You lbver@d to make any semantics preserving
transformations to the benchmark program, or to make ergmants to the pipelined processor, or both.
When you have completed the lab, you will have a keen apgregcitor the interactions between code and
hardware that affect the performance of your programs.

The lab is organized into three parts, each with its own hanbh Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part B yall extend the SEQ simulator with two
new instructions. These two parts will prepare you for Parth@ heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.

Any clarifications and revisions to the assignment will betpd on the course Web page.
3 Handout Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how sudents should download
thear chl ab- handout . t arfile.

1. Start by copying the filarchlab-handout.tar to a (protected) directory in which you plan to
do your work.

2. Then give the commandhar xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directolREADMBMakefile ,sim.tar ,archlab.ps ,archlab.pdf ,
andsimguide.pdf

3. Next, give the commantar xvf sim.tar . This will create the directorgim , which contains
your personal copy of the Y86 tools. You will be doing all ofuyavork inside this directory.

4. Finally, change to theim directory and build the Y86 tools:

unix> cd sim
unix> make cl ean; nmke

4 PartA

You will be working in directorysim/misc in this part.

Your task is to write and simulate the following three Y86 grams. The required behavior of these pro-
grams is defined by the example C functionsekamples.c . Be sure to put your name and ID in a
comment at the beginning of each program. You can test yagrams by first assembling them with the
programyYAs and then running them with the instruction set simulat.

In all of your Y86 functions, you should follow the 1A32 comtons for the structure of the stack frame
and for register usage instructions, including saving astiaring any callee-save registers that you use.

sum ys: lteratively sum linked list elements

Write a Y86 progransum.ys that iteratively sums the elements of a linked list. Yourgweon should
consist of some code that sets up the stack structure, isv@Kanction, and then halts. In this case, the
function should be Y86 code for a functiosum_list) that is functionally equivalent to the Sum_list
function in Figure 1. Test your program using the followimgege-element list:

Sample linked list

.align 4
elel:
.long 0x00a
.long ele2
ele2:
.long 0x0bO0
long ele3
ele3:
.long 0xc00
dong O

© 00 N O b~ WDN PP

BB W W WWWWWWWWNDNDNDDNNDNMNNNNNNRPRPRREPRERRERRPREPRPREPR
P O © 0 ~NO O B~ WNPO OWOWNOO OO~ WDNEOOOWNOOOMMWNDNLPREO

*/

/= linked list element * [
typedef struct ELE {
int val;
struct ELE * next;
} +list_ptr;
[* sum_list - Sum the elements of a linked list
int sum_list(list_ptr |s)
{
int val = 0;
while (Is) {
val += Is->val;
Is = Is->next;
}
return val,
}
[* rsum_list - Recursive version of sum_list
int rsum_list(list_ptr Is)
{
if (!ls)
return O;
else {
int val = Is->val;
int rest = rsum_list(Is->next);
return val + rest;
}
}
[= copy_block - Copy src to dest and return xor checksum of src
int copy_block(int *Src, int *dest, int len)
{
int result = O;
while (len > 0) {
int val = * SIC++;
*dest++ = val;
result "= val;
len--;
}
return result;
}

Figure 1:C versions of the Y86 solution functions

. See sim/misc/examples.c

r sum ys: Recursively sum linked list elements

Write a Y86 progranrsum.ys that recursively sums the elements of a linked list. Thisecskould be
similar to the code irsum.ys , except that it should use a functiosum _list that recursively sums a
list of numbers, as shown with the C functissum _list in Figure 1. Test your program using the same
three-element list you used for testiligt.ys

copy. ys: Copy a source block to a destination block

Write a program ¢opy.ys) that copies a block of words from one part of memory to anothen-
overlapping area) area of memory, computing the checksuon) @ all the words copied.

Your program should consist of code that sets up a stack framiekes a functiorcopy block , and
then halts. The function should be functionally equivaterthe C functioncopy _block shown in Figure
Figure 1. Test your program using the following three-elatrsource and destination blocks:

.align 4
Source block
Src:
.long 0x00a
.long 0x0bO
.long 0xc00
Destination block
dest:
Jong 0x111
long 0x222
.long 0x333
5 PartB

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to suppartnew instructions:iaddl (described

in Homework problems 4.47 and 4.49)leave (described in Homework problems 4.48 and 4250}o
add these instructions, you will modify the fisgeq-full.hcl , which implements the version of SEQ
described in the CS:APP2e textbook. In addition, it corgtaiaclarations of some constants that you will
need for your solution.

Your HCL file must begin with a header comment containing tik#ing information:
e Your name and ID.

e A description of the computations required for treldl instruction. Use the descriptions of
irmovl andOPI in Figure 4.18 in the CS:APP2e text as a guide.

n the international editioriaddl is described in problems 4.48 and 4.50
2In the international editiorleave is described in problems 4.47 and 4.49

4

¢ A description of the computations required for fleave instruction. Use the description pbpl
in Figure 4.20 in the CS:APP2e text as a guide.
Building and Testing Your Solution

Once you have finished modifying tiseq-full.hcl file, then you will need to build a new instance of
the SEQ simulatorgsim) based on this HCL file, and then test it:

¢ Building a new simulatorYou can usanake to build a new SEQ simulator:
unix> make VERSI ON=f ul |

This builds a version ofsim that uses the control logic you specifiedsieq-full.hcl . To save
typing, you can assigiERSION=full in the Makefile.

e Testing your solution on a simple Y86 prograrRor your initial testing, we recommend running
simple programs such asumi.yo (testingiaddl) andasumlyo (testingleave) in TTY
mode, comparing the results against the ISA simulation:

unix> ./ssim-t ../y86-code/asum.yo
unix> ./ssim-t ../y86-code/asum .yo

If the ISA test fails, then you should debug your impleméntaby single stepping the simulator in

GUI mode:
unix> ./ssim-g ../y86-code/asum .yo
unix> ./ssim-g ../y86-code/asum .yo

e Retesting your solution using the benchmark prograr@nce your simulator is able to correctly
execute small programs, then you can automatically teshithe Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; nmake testssin

This will run ssim on the benchmark programs and check for correctness by aorgphe resulting
processor state with the state from a high-level ISA sinitatNote that none of these programs test
the added instructions. You are simply making sure that wolution did not inject errors for the
original instructions. See file/ly86-code/README file for more detalils.

e Performing regression testsOnce you can execute the benchmark programs correctly, ytben
should run the extensive set of regression tests/ptest . To test everything excepaddl
andleave :

unix> (cd ../ptest; make SI M= ./seq/ssim

To test your implementation d@gaddl

| *

* NCOPY - copy src to dst, returning number of positive ints
* contained in src array.

*/

int ncopy(int *Src, int +dst, int len)

int count = O;
int val;

© 00 N O OB~ WN P
-~

10 while (len > 0) {
11 val = *Src++;
12 *dst++ = val;
13 if (val > 0)

14 count++;
15 len--;

16 }

17 return count;

18 }

Figure 2:C version of the ncopy function. See sim/pipe/ncopy.c.

unix> (cd ../ptest; make S| M-. ./seq/ssimTFLAGS=-i)
To test your implementation déave

unix> (cd ../ptest; make SI M. ./seq/ssimTFLAGS=-1)
To test bothaddl andleave :

unix> (cd ../ptest; make S| M-. ./seq/ssimTFLAGS=-il)

For more information on the SEQ simulator refer to the handes:APP2e Guide to Y86 Processor Simu-
lators (simguide.pdf).

6 PartC

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 2 copieslan -element integer arragrc to a non-overlappinglst , return-
ing a count of the number of positive integers containedrin . Figure 3 shows the baseline Y86 version

of ncopy . The filepipe-full.hcl contains a copy of the HCL code for PIPE, along with a dedlamat
of the constant valuBADDL .
Your task in Part C is to modifyjcopy.ys andpipe-full.hcl with the goal of makingicopy.ys

run as fast as possible.

You will be handing in two filespipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

© 0N o g b~ wWwDN PP

o o o ad D DD DD DDAEDNSDOWWWWWOWWWWWNNDNNNDNDNDNDNMDNDNDNDNDNDNERERERRRRRERERLPRLPR
W NP O OO0 ~NOUOODWNPEPOOOWNOOOOAaDRAWNMEPOOOONOOOGMAMAWDNMEOOOWOWNOOOOGPMPMWNDNIEPEREO

HH B A A HH B
ncopy.ys - Copy a src block of len ints to dst.
Return the number of positive ints (>0) contained in src.

#

#

#

Include your name and ID here.

#

Describe how and why you modified the baseline code.
#

HHHHHH R R R R R HHHHHH
Do not modify this portion
Function prologue.

ncopy: pushl %ebp # Save old frame pointer
rrmovl %esp,%ebp # Set up new frame pointer
pushl %esi # Save callee-save regs
pushl %ebx
pushl %edi
mrmovl 8(%ebp),%ebx # src
mrmovl 16(%ebp),%edx # len

mrmovl 12(%ebp),%ecx # dst

HHHHHH R R T
You can modify this portion
Loop header

xorl %eax,%eax # count = O;
andl %edx,%edx # len <= 0?
jle Done # if so, goto Done:
Loop: mrmovl (%ebx), %esi # read val from src...
rmmovl %esi, (%ecx) # ..and store it to dst
andl %esi, %esi # val <= 0?
jle Npos # if so, goto Npos:
irmovl $1, %edi
addl %edi, %eax # count++
Npos: irmovl $1, %edi
subl %edi, %edx # len--
irmovl $4, %edi
addl %edi, %ebx # src++
addl %edi, %ecx # dst++
andl %edx,%edx # len > 07?
jg Loop # if so, goto Loop:

HHHHHH R R R R HHHHHH
Do not modify the following section of code
Function epilogue.
Done:
popl %edi # Restore callee-save registers
popl %ebx
popl %esi
rrmovl %ebp, %esp
popl %ebp
ret
HHHHHH R R R R HHHHHH
Keep the following label at the end of your function
End: 7

Figure 3:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

e Your name and ID.

¢ A high-level description of your code. In each case, desdnitww and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the felloy constraints:

e Your ncopy.ys function must work for arbitrary array sizes. You might benfgted to hardwire
your solution for 64-element arrays by simply coding 64 cogstructions, but this would be a bad
idea because we will be grading your solution based on it®peance on arbitrary arrays.

e Your ncopy.ys function must run correctly witlyis. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

e The assembled version of yomcopy file must not be more than 1000 bytes long. You can check the
length of any program with thecopy function embedded using the provided scdpeck-len.pl

unix> . /check-len.pl < ncopy.yo

¢ Your pipe-full.hcl implementation must pass the regression test#i@6-code and../ptest
(without the-il flags that testaddl andleave).

Other than that, you are free to implement thddl instruction if you think that will help. You may
make any semantics preserving transformations tonttepy.ys function, such as reordering instruc-
tions, replacing groups of instructions with single instrans, deleting some instructions, and adding other
instructions. You may find it useful to read about loop uringjlin Section 5.8 of CS:APP2e.

Building and Running Your Solution

In order to test your solution, you will need to build a driy@ogram that calls youncopy function. We
have provided you with thgen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers
will construct the following two useful driver programs:

e sdriver.yo : A small driver progranthat tests ancopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt wighwalue of 2 in registe¥oeax after copying
thesrc array.

e Idriver.yo . A large driver programthat tests amcopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program willthaith a value of 31 Qx1f) in register
%eax after copying thesrc array.

Each time you modify youncopy.ys program, you can rebuild the driver programs by typing
unix> make drivers

Each time you modify youpipe-full.hcl file, you can rebuild the simulator by typing
unix> make psi m VERSI ON=f ul

If you want to rebuild the simulator and the driver progratype

unix> make VERSI ON=f ul

To test your solution in GUI mode on a small 4-element arrgyet

unix> ./ psim-g sdriver.yo

To test your solution on a larger 63-element array, type

unix> ./psim-g Idriver.yo

Once your simulator correctly runs your versionrafopy.ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the ISA simulattake sure that youncopy.ys function works prop-
erly with vis:

unix> make drivers
unix> ..Inmsclyis sdriver.yo

e Testing your code on a range of block lengths with the ISAlsitoiu The Perl scriptorrectness.pl
generates driver files with block lengths from O up to somatl{pefault 65), plus some larger sizes.
It simulates them (by default withis), and checks the results. It generates a report showinddhess
for each block length:

unix> ./ correctness. pl

This script generates test programs where the result carigsvrandomly from one run to another,
and so it provides a more stringent test than the standardrdri

If you get incorrect results for some lengfki, you can generate a driver file for that length that
includes checking code, and where the result varies randoml

unix> ./lgen-driver.pl -f ncopy.ys -n K -rc > driver.ys
unix> make driver.yo
unix> ../msc/yis driver.yo

The program will end with registé¥eax having the following value:

Oxaaaa : All tests pass.

Oxbbbb : Incorrect count

Oxcccc : Function ncopy is more than 1000 bytes long.

Oxdddd : Some of the source data was not copied to its destination.

Oxeeee : Some word just before or just after the destination regias worrupted.

e Testing your pipeline simulator on the benchmark progra@isce your simulator is able to correctly
executesdriver.ys andldriver.ys , you should test it against the Y86 benchmark programs
in ../y86-code

unix> (cd ../y86-code; nmke testpsim

This will run psim on the benchmark programs and compare results wih

e Testing your pipeline simulator with extensive regressests.Once you can execute the benchmark
programs correctly, then you should check it with the regjmstests in./ptest . For example, if
your solution implements thiaddl instruction, then

unix> (cd ../ptest; make Sl M=. ./ pipel/psimTFLAGS=-i)

e Testing your code on a range of block lengths with the pipegimulator. Finally, you can run the
same code tests on the pipeline simulator that you did eavlth the ISA simulator

unix> ./correctness.pl -p

7 Evaluation

The lab is worth 190 points: 30 points for Part A, 60 pointsParrt B, and 100 points for Part C.

Part A

Part A is worth 30 points, 10 points for each Y86 solution parg. Each solution program will be evaluated
for correctness, including proper handling of the stack mgiksters, as well as functional equivalence with
the example C functions iexamples.c

The programsum.ys andrsum.ys will be considered correct if the graders do not spot anyrerio
them, and their respectidum_list andrsum _list functions return the surixcba in registerdoeax.

The programcopy.ys will be considered correct if the graders do not spot anyrerio them, and the
copy _block function returns the surixcba in register%eax, copies the three word00a , Ox0b ,
andOxc to the 12 contiguous memory locations beginning at adddess , and does not corrupt other
memory locations.

10

Part B

This part of the lab is worth 60 points:

10 points for your description of the computations requii@dheiaddl instruction.
10 points for your description of the computations requii@dheleave instruction.

10 points for passing the benchmark regression test86ncode |, to verify that your simulator still
correctly executes the benchmark suite.

15 points for passing the regression testptiest for iadd|

15 points for passing the regression testptiest for leave .

Part C

This part of the Lab is worth 100 point¥bu will not receive any credit if either your code for ncopy.ys
or your modified simulator fails any of the tests described edier.

20 points each for your descriptions in the headersadpy.ys and pipe-full.hcl and the
quality of these implementations.

60 points for performance. To receive credit here, yourtsamumust be correct, as defined earlier.
That is,ncopy runs correctly withyis, andpipe-full.hcl passes all tests y86-code and
ptest

We will express the performance of your function in unitcg€les per elemefCPE). That is, if the
simulated code requireS cycles to copy a block oN elements, then the CPE$/N. The PIPE
simulator displays the total number of cycles required tmplete the program. The baseline version
of thencopy function running on the standard PIPE simulator with a |&8eslement array requires
914 cycles to copy 63 elements, for a CPB®1/63 = 14.51.

Since some cycles are used to set up the caticimpy and to set up the loop withincopy , you
will find that you will get different values of the CPE for déifent block lengths (generally the CPE
will drop asV increases). We will therefore evaluate the performancenaf yjunction by computing
the average of the CPEs for blocks ranging from 1 to 64 elesneiou can use the Perl script

benchmark.pl inthepipe directory to run simulations of yourcopy.ys code over a range of
block lengths and compute the average CPE. Simply run thenzomd

unix> ./ benchmar k. pl

to see what happens. For example, the baseline versionottpy function has CPE values ranging
betweerd6.0 and14.51, with an average of6.44. Note that this Perl script does not check for the
correctness of the answer. Use the scriptrectness.pl for this:

unix> .l benchmark. pl -p

11

You should be able to achieve an average CPE of lesslifi@in Our best version averagé27. If
your average CPE ig then your scoré for this portion of the lab will be:

0, c> 125
S = < 240-(125—¢), 100<c<125
60, ¢ < 10.0
By default, benchmark.pl andcorrectness.pl compile and teshcopy.ys . Use the-f
argument to specify a different file name. THe flag gives a complete list of the command line

arguments.

8 Handin Instructions

SITE-SPECIFIC: Insert a description that explains how students should hand in the three
parts of the lab. Here is the description we use at CMU.

¢ You will be handing in three sets of files:

— Part A:sum.ys ,rsum.ys , andcopy.ys
— Part B:seg-full.hcl
— Part C:ncopy.ys andpipe-full.hcl

e Make sure you have included your name and ID in a comment @bghef each of your handin files.

¢ To handin your files for part X, go to yowrchlab-handout directory and type:
unix> make handi n- part X TEAM-t eammane
whereXis a, b, orc, and wheregeamname is your ID. For example, to handin Part A:
unix> meke handi n- parta TEAMEt eanmane
e After the handin, if you discover a mistake and want to sulamévised copy, type

unix nmake handi n- part X TEAM=t eammane VERSI ON=2

Keep incrementing the version number with each submission.

e You can verify your handin by looking in

CLASSDIR/archlab/handin-partX

You have list and insert permissions in this directory, butead or write permissions.

12

9 Hints

e By design, bottsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it

e If you running in GUI mode on a Unix server, make sure that yamehinitialized the DISPLAY
environment variable:

unix> set env DI SPLAY myhost . edu: O

¢ With some X servers, the “Program Code” window begins lif@adosed icon when you ryssim
orssim in GUI mode. Simply click on the icon to expand the window.

¢ With some Microsoft Windows-based X servers, the “Memonntéats” window will not automati-
cally resize itself. You'll need to resize the window by hand

e Thepsim andssim simulators terminate with a segmentation fault if you askiho execute a file
that is not a valid Y86 object file.

13

